------------------------------------------------------------------------ -- The Agda standard library -- -- Coprimality ------------------------------------------------------------------------ module Data.Nat.Coprimality where open import Data.Empty open import Data.Fin using (toℕ; fromℕ≤) open import Data.Fin.Properties using (toℕ-fromℕ≤) open import Data.Nat open import Data.Nat.Divisibility open import Data.Nat.GCD open import Data.Nat.GCD.Lemmas open import Data.Nat.Primality open import Data.Nat.Properties open import Data.Product as Prod open import Function open import Level using (0ℓ) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; refl; cong; subst; module ≡-Reasoning) open import Relation.Nullary open import Relation.Binary -- Coprime m n is inhabited iff m and n are coprime (relatively -- prime), i.e. if their only common divisor is 1. Coprime : Rel ℕ 0ℓ Coprime m n = ∀ {i} → i ∣ m × i ∣ n → i ≡ 1 -- Coprime numbers have 1 as their gcd. coprime-gcd : ∀ {m n} → Coprime m n → GCD m n 1 coprime-gcd {m} {n} c = GCD.is (1∣ m , 1∣ n) greatest where greatest : ∀ {d} → d ∣ m × d ∣ n → d ∣ 1 greatest cd with c cd ... | refl = 1∣ 1 -- If two numbers have 1 as their gcd, then they are coprime. gcd-coprime : ∀ {m n} → GCD m n 1 → Coprime m n gcd-coprime g cd with GCD.greatest g cd ... | divides q eq = i*j≡1⇒j≡1 q _ (P.sym eq) -- Coprime is decidable. private 0≢1 : 0 ≢ 1 0≢1 () 2+≢1 : ∀ {n} → suc (suc n) ≢ 1 2+≢1 () coprime? : Decidable Coprime coprime? i j with gcd i j ... | (0 , g) = no (0≢1 ∘ GCD.unique g ∘ coprime-gcd) ... | (1 , g) = yes (gcd-coprime g) ... | (suc (suc d) , g) = no (2+≢1 ∘ GCD.unique g ∘ coprime-gcd) -- The coprimality relation is symmetric. sym : Symmetric Coprime sym c = c ∘ swap -- Everything is coprime to 1. 1-coprimeTo : ∀ m → Coprime 1 m 1-coprimeTo m = ∣1⇒≡1 ∘ proj₁ -- Nothing except for 1 is coprime to 0. 0-coprimeTo-1 : ∀ {m} → Coprime 0 m → m ≡ 1 0-coprimeTo-1 {m} c = c (m ∣0 , ∣-refl) -- If m and n are coprime, then n + m and n are also coprime. coprime-+ : ∀ {m n} → Coprime m n → Coprime (n + m) n coprime-+ c (d₁ , d₂) = c (∣m+n∣m⇒∣n d₁ d₂ , d₂) -- If the "gcd" in Bézout's identity is non-zero, then the "other" -- divisors are coprime. Bézout-coprime : ∀ {i j d} → Bézout.Identity (suc d) (i * suc d) (j * suc d) → Coprime i j Bézout-coprime (Bézout.+- x y eq) (divides q₁ refl , divides q₂ refl) = lem₁₀ y q₂ x q₁ eq Bézout-coprime (Bézout.-+ x y eq) (divides q₁ refl , divides q₂ refl) = lem₁₀ x q₁ y q₂ eq -- Coprime numbers satisfy Bézout's identity. coprime-Bézout : ∀ {i j} → Coprime i j → Bézout.Identity 1 i j coprime-Bézout = Bézout.identity ∘ coprime-gcd -- If i divides jk and is coprime to j, then it divides k. coprime-divisor : ∀ {k i j} → Coprime i j → i ∣ j * k → i ∣ k coprime-divisor {k} c (divides q eq′) with coprime-Bézout c ... | Bézout.+- x y eq = divides (x * k ∸ y * q) (lem₈ x y eq eq′) ... | Bézout.-+ x y eq = divides (y * q ∸ x * k) (lem₉ x y eq eq′) -- If d is a common divisor of mk and nk, and m and n are coprime, -- then d divides k. coprime-factors : ∀ {d m n k} → Coprime m n → d ∣ m * k × d ∣ n * k → d ∣ k coprime-factors c (divides q₁ eq₁ , divides q₂ eq₂) with coprime-Bézout c ... | Bézout.+- x y eq = divides (x * q₁ ∸ y * q₂) (lem₁₁ x y eq eq₁ eq₂) ... | Bézout.-+ x y eq = divides (y * q₂ ∸ x * q₁) (lem₁₁ y x eq eq₂ eq₁) -- A variant of GCD. data GCD′ : ℕ → ℕ → ℕ → Set where gcd-* : ∀ {d} q₁ q₂ (c : Coprime q₁ q₂) → GCD′ (q₁ * d) (q₂ * d) d -- The two definitions are equivalent. gcd-gcd′ : ∀ {d m n} → GCD m n d → GCD′ m n d gcd-gcd′ g with GCD.commonDivisor g gcd-gcd′ {zero} g | (divides q₁ refl , divides q₂ refl) with q₁ * 0 | *-comm 0 q₁ | q₂ * 0 | *-comm 0 q₂ ... | .0 | refl | .0 | refl = gcd-* 1 1 (1-coprimeTo 1) gcd-gcd′ {suc d} g | (divides q₁ refl , divides q₂ refl) = gcd-* q₁ q₂ (Bézout-coprime (Bézout.identity g)) gcd′-gcd : ∀ {m n d} → GCD′ m n d → GCD m n d gcd′-gcd (gcd-* q₁ q₂ c) = GCD.is (n∣m*n q₁ , n∣m*n q₂) (coprime-factors c) -- Calculates (the alternative representation of) the gcd of the -- arguments. gcd′ : ∀ m n → ∃ λ d → GCD′ m n d gcd′ m n = Prod.map id gcd-gcd′ (gcd m n) -- Primality implies coprimality. prime⇒coprime : ∀ m → Prime m → ∀ n → 0 < n → n < m → Coprime m n prime⇒coprime 0 () _ _ _ _ prime⇒coprime 1 () _ _ _ _ prime⇒coprime (suc (suc m)) _ 0 () _ _ prime⇒coprime (suc (suc m)) _ _ _ _ {1} _ = refl prime⇒coprime (suc (suc m)) p _ _ _ {0} (divides q 2+m≡q*0 , _) = ⊥-elim $ i+1+j≢i 0 (begin 2 + m ≡⟨ 2+m≡q*0 ⟩ q * 0 ≡⟨ *-zeroʳ q ⟩ 0 ∎) where open ≡-Reasoning prime⇒coprime (suc (suc m)) p (suc n) _ 1+n<2+m {suc (suc i)} (2+i∣2+m , 2+i∣1+n) = ⊥-elim (p _ 2+i′∣2+m) where i