------------------------------------------------------------------------ -- The Agda standard library -- -- A generalisation of the arithmetic operations ------------------------------------------------------------------------ module Data.Nat.GeneralisedArithmetic where open import Data.Nat open import Data.Nat.Properties open import Function using (_∘′_; _∘_; id) open import Relation.Binary.PropositionalEquality open ≡-Reasoning module _ {a} {A : Set a} where fold : A → (A → A) → ℕ → A fold z s zero = z fold z s (suc n) = s (fold z s n) add : (0# : A) (1+ : A → A) → ℕ → A → A add 0# 1+ n z = fold z 1+ n mul : (0# : A) (1+ : A → A) → (+ : A → A → A) → (ℕ → A → A) mul 0# 1+ _+_ n x = fold 0# (λ s → x + s) n -- Properties module _ {a} {A : Set a} where fold-+ : ∀ {s : A → A} {z : A} → ∀ m {n} → fold z s (m + n) ≡ fold (fold z s n) s m fold-+ zero = refl fold-+ {s = s} (suc m) = cong s (fold-+ m) fold-k : ∀ {s : A → A} {z : A} {k} m → fold k (s ∘′_) m z ≡ fold (k z) s m fold-k zero = refl fold-k {s = s} (suc m) = cong s (fold-k m) fold-* : ∀ {s : A → A} {z : A} m {n} → fold z s (m * n) ≡ fold z (fold id (s ∘_) n) m fold-* zero = refl fold-* {s = s} {z} (suc m) {n} = let +n = fold id (s ∘′_) n in begin fold z s (n + m * n) ≡⟨ fold-+ n ⟩ fold (fold z s (m * n)) s n ≡⟨ cong (λ z → fold z s n) (fold-* m) ⟩ fold (fold z +n m) s n ≡⟨ sym (fold-k n) ⟩ fold z +n (suc m) ∎ fold-pull : ∀ {s : A → A} {z : A} (g : A → A → A) (p : A) (eqz : g z p ≡ p) (eqs : ∀ l → s (g l p) ≡ g (s l) p) → ∀ m → fold p s m ≡ g (fold z s m) p fold-pull _ _ eqz _ zero = sym eqz fold-pull {s = s} {z} g p eqz eqs (suc m) = begin s (fold p s m) ≡⟨ cong s (fold-pull g p eqz eqs m) ⟩ s (g (fold z s m) p) ≡⟨ eqs (fold z s m) ⟩ g (s (fold z s m)) p ∎ id-is-fold : ∀ m → fold zero suc m ≡ m id-is-fold zero = refl id-is-fold (suc m) = cong suc (id-is-fold m) +-is-fold : ∀ m {n} → fold n suc m ≡ m + n +-is-fold zero = refl +-is-fold (suc m) = cong suc (+-is-fold m) *-is-fold : ∀ m {n} → fold zero (n +_) m ≡ m * n *-is-fold zero = refl *-is-fold (suc m) {n} = cong (n +_) (*-is-fold m) ^-is-fold : ∀ {m} n → fold 1 (m *_) n ≡ m ^ n ^-is-fold zero = refl ^-is-fold {m} (suc n) = cong (m *_) (^-is-fold n) *+-is-fold : ∀ m n {p} → fold p (n +_) m ≡ m * n + p *+-is-fold m n {p} = begin fold p (n +_) m ≡⟨ fold-pull _+_ p refl (λ l → sym (+-assoc n l p)) m ⟩ fold 0 (n +_) m + p ≡⟨ cong (_+ p) (*-is-fold m) ⟩ m * n + p ∎ ^*-is-fold : ∀ m n {p} → fold p (m *_) n ≡ m ^ n * p ^*-is-fold m n {p} = begin fold p (m *_) n ≡⟨ fold-pull _*_ p (*-identityˡ p) (λ l → sym (*-assoc m l p)) n ⟩ fold 1 (m *_) n * p ≡⟨ cong (_* p) (^-is-fold n) ⟩ m ^ n * p ∎