------------------------------------------------------------------------ -- The Agda standard library -- -- Propositional (intensional) equality ------------------------------------------------------------------------ module Relation.Binary.PropositionalEquality where open import Function open import Function.Equality using (Π; _⟶_; ≡-setoid) open import Level open import Data.Empty open import Data.Product open import Relation.Nullary using (yes ; no) open import Relation.Unary using (Pred) open import Relation.Binary open import Relation.Binary.Indexed.Heterogeneous using (IndexedSetoid) import Relation.Binary.Indexed.Heterogeneous.Construct.Trivial as Trivial open import Relation.Binary.HeterogeneousEquality.Core as H using (_≅_) ------------------------------------------------------------------------ -- Re-export contents of core module open import Relation.Binary.PropositionalEquality.Core public ------------------------------------------------------------------------ -- Some properties subst₂ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p) {x₁ x₂ y₁ y₂} → x₁ ≡ x₂ → y₁ ≡ y₂ → P x₁ y₁ → P x₂ y₂ subst₂ P refl refl p = p cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl cong-app : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → f ≡ g → (x : A) → f x ≡ g x cong-app refl x = refl cong₂ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} (f : A → B → C) {x y u v} → x ≡ y → u ≡ v → f x u ≡ f y v cong₂ f refl refl = refl setoid : ∀ {a} → Set a → Setoid _ _ setoid A = record { Carrier = A ; _≈_ = _≡_ ; isEquivalence = isEquivalence } decSetoid : ∀ {a} {A : Set a} → Decidable {A = A} _≡_ → DecSetoid _ _ decSetoid dec = record { _≈_ = _≡_ ; isDecEquivalence = record { isEquivalence = isEquivalence ; _≟_ = dec } } isPreorder : ∀ {a} {A : Set a} → IsPreorder {A = A} _≡_ _≡_ isPreorder = record { isEquivalence = isEquivalence ; reflexive = id ; trans = trans } preorder : ∀ {a} → Set a → Preorder _ _ _ preorder A = record { Carrier = A ; _≈_ = _≡_ ; _∼_ = _≡_ ; isPreorder = isPreorder } ------------------------------------------------------------------------ -- Pointwise equality infix 4 _≗_ _→-setoid_ : ∀ {a b} (A : Set a) (B : Set b) → Setoid _ _ A →-setoid B = ≡-setoid A (Trivial.indexedSetoid (setoid B)) _≗_ : ∀ {a b} {A : Set a} {B : Set b} (f g : A → B) → Set _ _≗_ {A = A} {B} = Setoid._≈_ (A →-setoid B) :→-to-Π : ∀ {a b₁ b₂} {A : Set a} {B : IndexedSetoid _ b₁ b₂} → ((x : A) → IndexedSetoid.Carrier B x) → Π (setoid A) B :→-to-Π {B = B} f = record { _⟨$⟩_ = f; cong = cong′ } where open IndexedSetoid B using (_≈_) cong′ : ∀ {x y} → x ≡ y → f x ≈ f y cong′ refl = IndexedSetoid.refl B →-to-⟶ : ∀ {a b₁ b₂} {A : Set a} {B : Setoid b₁ b₂} → (A → Setoid.Carrier B) → setoid A ⟶ B →-to-⟶ = :→-to-Π ------------------------------------------------------------------------ -- Inspect -- Inspect can be used when you want to pattern match on the result r -- of some expression e, and you also need to "remember" that r ≡ e. record Reveal_·_is_ {a b} {A : Set a} {B : A → Set b} (f : (x : A) → B x) (x : A) (y : B x) : Set (a ⊔ b) where constructor [_] field eq : f x ≡ y inspect : ∀ {a b} {A : Set a} {B : A → Set b} (f : (x : A) → B x) (x : A) → Reveal f · x is f x inspect f x = [ refl ] -- Example usage: -- f x y with g x | inspect g x -- f x y | c z | [ eq ] = ... ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning -- This is special instance of Relation.Binary.EqReasoning. -- Rather than instantiating the latter with (setoid A), -- we reimplement equation chains from scratch -- since then goals are printed much more readably. module ≡-Reasoning {a} {A : Set a} where infix 3 _∎ infixr 2 _≡⟨⟩_ _≡⟨_⟩_ _≅⟨_⟩_ infix 1 begin_ begin_ : ∀{x y : A} → x ≡ y → x ≡ y begin_ x≡y = x≡y _≡⟨⟩_ : ∀ (x {y} : A) → x ≡ y → x ≡ y _ ≡⟨⟩ x≡y = x≡y _≡⟨_⟩_ : ∀ (x {y z} : A) → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z _≅⟨_⟩_ : ∀ (x {y z} : A) → x ≅ y → y ≡ z → x ≡ z _ ≅⟨ x≅y ⟩ y≡z = trans (H.≅-to-≡ x≅y) y≡z _∎ : ∀ (x : A) → x ≡ x _∎ _ = refl ------------------------------------------------------------------------ -- Functional extensionality -- If _≡_ were extensional, then the following statement could be -- proved. Extensionality : (a b : Level) → Set _ Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g -- If extensionality holds for a given universe level, then it also -- holds for lower ones. extensionality-for-lower-levels : ∀ {a₁ b₁} a₂ b₂ → Extensionality (a₁ ⊔ a₂) (b₁ ⊔ b₂) → Extensionality a₁ b₁ extensionality-for-lower-levels a₂ b₂ ext f≡g = cong (λ h → lower ∘ h ∘ lift) $ ext (cong (lift {ℓ = b₂}) ∘ f≡g ∘ lower {ℓ = a₂}) -- Functional extensionality implies a form of extensionality for -- Π-types. ∀-extensionality : ∀ {a b} → Extensionality a (suc b) → {A : Set a} (B₁ B₂ : A → Set b) → (∀ x → B₁ x ≡ B₂ x) → (∀ x → B₁ x) ≡ (∀ x → B₂ x) ∀-extensionality ext B₁ B₂ B₁≡B₂ with ext B₁≡B₂ ∀-extensionality ext B .B B₁≡B₂ | refl = refl ------------------------------------------------------------------------ -- Proof irrelevance isPropositional : ∀ {a} → Set a → Set a isPropositional A = (a b : A) → a ≡ b ≡-irrelevance : ∀ {a} {A : Set a} → Irrelevant (_≡_ {A = A}) ≡-irrelevance refl refl = refl module _ {a} {A : Set a} (_≟_ : Decidable (_≡_ {A = A})) {a b : A} where ≡-≟-identity : (eq : a ≡ b) → a ≟ b ≡ yes eq ≡-≟-identity eq with a ≟ b ... | yes p = cong yes (≡-irrelevance p eq) ... | no ¬p = ⊥-elim (¬p eq) ≢-≟-identity : a ≢ b → ∃ λ ¬eq → a ≟ b ≡ no ¬eq ≢-≟-identity ¬eq with a ≟ b ... | yes p = ⊥-elim (¬eq p) ... | no ¬p = ¬p , refl ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.15 proof-irrelevance = ≡-irrelevance {-# WARNING_ON_USAGE proof-irrelevance "Warning: proof-irrelevance was deprecated in v0.15. Please use ≡-irrelevance instead." #-}