------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of constructions over unary relations ------------------------------------------------------------------------ module Relation.Unary.Properties where open import Data.Product using (_×_; _,_; swap; proj₁) open import Data.Sum.Base using (inj₁; inj₂) open import Data.Unit using (tt) open import Relation.Binary.Core hiding (Decidable) open import Relation.Unary open import Relation.Nullary using (yes; no) open import Relation.Nullary.Product using (_×-dec_) open import Relation.Nullary.Sum using (_⊎-dec_) open import Relation.Nullary.Negation using (¬?) open import Function using (_$_; _∘_) ---------------------------------------------------------------------- -- The empty set module _ {a} {A : Set a} where ∅? : Decidable {A = A} ∅ ∅? _ = no λ() ∅-Empty : Empty {A = A} ∅ ∅-Empty x () ∁∅-Universal : Universal {A = A} (∁ ∅) ∁∅-Universal = λ x x∈∅ → x∈∅ ---------------------------------------------------------------------- -- The universe module _ {a} {A : Set a} where U? : Decidable {A = A} U U? _ = yes tt U-Universal : Universal {A = A} U U-Universal = λ _ → _ ∁U-Empty : Empty {A = A} (∁ U) ∁U-Empty = λ x x∈∁U → x∈∁U _ ---------------------------------------------------------------------- -- Subset properties module _ {a ℓ} {A : Set a} where ∅-⊆ : (P : Pred A ℓ) → ∅ ⊆ P ∅-⊆ P () ⊆-U : (P : Pred A ℓ) → P ⊆ U ⊆-U P _ = _ ⊆-refl : Reflexive (_⊆_ {A = A} {ℓ}) ⊆-refl x∈P = x∈P ⊆-trans : Transitive (_⊆_ {A = A} {ℓ}) ⊆-trans P⊆Q Q⊆R x∈P = Q⊆R (P⊆Q x∈P) ⊂-asym : Asymmetric (_⊂_ {A = A} {ℓ}) ⊂-asym (_ , Q⊈P) = Q⊈P ∘ proj₁ ---------------------------------------------------------------------- -- Decidability properties module _ {a} {A : Set a} where ∁? : ∀ {ℓ} {P : Pred A ℓ} → Decidable P → Decidable (∁ P) ∁? P? x = ¬? (P? x) _∪?_ : ∀ {ℓ₁ ℓ₂} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} → Decidable P → Decidable Q → Decidable (P ∪ Q) _∪?_ P? Q? x = (P? x) ⊎-dec (Q? x) _∩?_ : ∀ {ℓ₁ ℓ₂} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} → Decidable P → Decidable Q → Decidable (P ∩ Q) _∩?_ P? Q? x = (P? x) ×-dec (Q? x) module _ {a b} {A : Set a} {B : Set b} where _×?_ : ∀ {ℓ₁ ℓ₂} {P : Pred A ℓ₁} {Q : Pred B ℓ₂} → Decidable P → Decidable Q → Decidable (P ⟨×⟩ Q) _×?_ P? Q? (a , b) = (P? a) ×-dec (Q? b) _⊙?_ : ∀ {ℓ₁ ℓ₂} {P : Pred A ℓ₁} {Q : Pred B ℓ₂} → Decidable P → Decidable Q → Decidable (P ⟨⊙⟩ Q) _⊙?_ P? Q? (a , b) = (P? a) ⊎-dec (Q? b) _⊎?_ : ∀ {ℓ} {P : Pred A ℓ} {Q : Pred B ℓ} → Decidable P → Decidable Q → Decidable (P ⟨⊎⟩ Q) _⊎?_ P? Q? (inj₁ a) = P? a _⊎?_ P? Q? (inj₂ b) = Q? b _~? : ∀ {ℓ} {P : Pred (A × B) ℓ} → Decidable P → Decidable (P ~) _~? P? = P? ∘ swap