/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "aom/aom_integer.h" #include "aom_ports/mem.h" #include "aom_dsp/blend.h" #include "aom_dsp/aom_dsp_common.h" #include "config/aom_dsp_rtcd.h" // Blending with alpha mask. Mask values come from the range [0, 64], // as described for AOM_BLEND_A64 in aom_dsp/blend.h. src0 or src1 can // be the same as dst, or dst can be different from both sources. // NOTE(david.barker): The input and output of aom_blend_a64_d32_mask_c() are // in a higher intermediate precision, and will later be rounded down to pixel // precision. // Thus, in order to avoid double-rounding, we want to use normal right shifts // within this function, not ROUND_POWER_OF_TWO. // This works because of the identity: // ROUND_POWER_OF_TWO(x >> y, z) == ROUND_POWER_OF_TWO(x, y+z) // // In contrast, the output of the non-d32 functions will not be further rounded, // so we *should* use ROUND_POWER_OF_TWO there. void aom_lowbd_blend_a64_d16_mask_c( uint8_t *dst, uint32_t dst_stride, const CONV_BUF_TYPE *src0, uint32_t src0_stride, const CONV_BUF_TYPE *src1, uint32_t src1_stride, const uint8_t *mask, uint32_t mask_stride, int w, int h, int subw, int subh, ConvolveParams *conv_params) { int i, j; const int bd = 8; const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; const int round_offset = (1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1)); const int round_bits = 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; assert(IMPLIES((void *)src0 == dst, src0_stride == dst_stride)); assert(IMPLIES((void *)src1 == dst, src1_stride == dst_stride)); assert(h >= 4); assert(w >= 4); assert(IS_POWER_OF_TWO(h)); assert(IS_POWER_OF_TWO(w)); if (subw == 0 && subh == 0) { for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { int32_t res; const int m = mask[i * mask_stride + j]; res = ((m * (int32_t)src0[i * src0_stride + j] + (AOM_BLEND_A64_MAX_ALPHA - m) * (int32_t)src1[i * src1_stride + j]) >> AOM_BLEND_A64_ROUND_BITS); res -= round_offset; dst[i * dst_stride + j] = clip_pixel(ROUND_POWER_OF_TWO(res, round_bits)); } } } else if (subw == 1 && subh == 1) { for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { int32_t res; const int m = ROUND_POWER_OF_TWO( mask[(2 * i) * mask_stride + (2 * j)] + mask[(2 * i + 1) * mask_stride + (2 * j)] + mask[(2 * i) * mask_stride + (2 * j + 1)] + mask[(2 * i + 1) * mask_stride + (2 * j + 1)], 2); res = ((m * (int32_t)src0[i * src0_stride + j] + (AOM_BLEND_A64_MAX_ALPHA - m) * (int32_t)src1[i * src1_stride + j]) >> AOM_BLEND_A64_ROUND_BITS); res -= round_offset; dst[i * dst_stride + j] = clip_pixel(ROUND_POWER_OF_TWO(res, round_bits)); } } } else if (subw == 1 && subh == 0) { for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { int32_t res; const int m = AOM_BLEND_AVG(mask[i * mask_stride + (2 * j)], mask[i * mask_stride + (2 * j + 1)]); res = ((m * (int32_t)src0[i * src0_stride + j] + (AOM_BLEND_A64_MAX_ALPHA - m) * (int32_t)src1[i * src1_stride + j]) >> AOM_BLEND_A64_ROUND_BITS); res -= round_offset; dst[i * dst_stride + j] = clip_pixel(ROUND_POWER_OF_TWO(res, round_bits)); } } } else { for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { int32_t res; const int m = AOM_BLEND_AVG(mask[(2 * i) * mask_stride + j], mask[(2 * i + 1) * mask_stride + j]); res = ((int32_t)(m * (int32_t)src0[i * src0_stride + j] + (AOM_BLEND_A64_MAX_ALPHA - m) * (int32_t)src1[i * src1_stride + j]) >> AOM_BLEND_A64_ROUND_BITS); res -= round_offset; dst[i * dst_stride + j] = clip_pixel(ROUND_POWER_OF_TWO(res, round_bits)); } } } } void aom_highbd_blend_a64_d16_mask_c( uint8_t *dst_8, uint32_t dst_stride, const CONV_BUF_TYPE *src0, uint32_t src0_stride, const CONV_BUF_TYPE *src1, uint32_t src1_stride, const uint8_t *mask, uint32_t mask_stride, int w, int h, int subw, int subh, ConvolveParams *conv_params, const int bd) { const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; const int round_offset = (1 << (offset_bits - conv_params->round_1)) + (1 << (offset_bits - conv_params->round_1 - 1)); const int round_bits = 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; uint16_t *dst = CONVERT_TO_SHORTPTR(dst_8); assert(IMPLIES(src0 == dst, src0_stride == dst_stride)); assert(IMPLIES(src1 == dst, src1_stride == dst_stride)); assert(h >= 1); assert(w >= 1); assert(IS_POWER_OF_TWO(h)); assert(IS_POWER_OF_TWO(w)); // excerpt from clip_pixel_highbd() // set saturation_value to (1 << bd) - 1 unsigned int saturation_value; switch (bd) { case 8: default: saturation_value = 255; break; case 10: saturation_value = 1023; break; case 12: saturation_value = 4095; break; } if (subw == 0 && subh == 0) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { int32_t res; const int m = mask[j]; res = ((m * src0[j] + (AOM_BLEND_A64_MAX_ALPHA - m) * src1[j]) >> AOM_BLEND_A64_ROUND_BITS); res -= round_offset; unsigned int v = negative_to_zero(ROUND_POWER_OF_TWO(res, round_bits)); dst[j] = AOMMIN(v, saturation_value); } mask += mask_stride; src0 += src0_stride; src1 += src1_stride; dst += dst_stride; } } else if (subw == 1 && subh == 1) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { int32_t res; const int m = ROUND_POWER_OF_TWO( mask[2 * j] + mask[mask_stride + 2 * j] + mask[2 * j + 1] + mask[mask_stride + 2 * j + 1], 2); res = (m * src0[j] + (AOM_BLEND_A64_MAX_ALPHA - m) * src1[j]) >> AOM_BLEND_A64_ROUND_BITS; res -= round_offset; unsigned int v = negative_to_zero(ROUND_POWER_OF_TWO(res, round_bits)); dst[j] = AOMMIN(v, saturation_value); } mask += 2 * mask_stride; src0 += src0_stride; src1 += src1_stride; dst += dst_stride; } } else if (subw == 1 && subh == 0) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { int32_t res; const int m = AOM_BLEND_AVG(mask[2 * j], mask[2 * j + 1]); res = (m * src0[j] + (AOM_BLEND_A64_MAX_ALPHA - m) * src1[j]) >> AOM_BLEND_A64_ROUND_BITS; res -= round_offset; unsigned int v = negative_to_zero(ROUND_POWER_OF_TWO(res, round_bits)); dst[j] = AOMMIN(v, saturation_value); } mask += mask_stride; src0 += src0_stride; src1 += src1_stride; dst += dst_stride; } } else { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { int32_t res; const int m = AOM_BLEND_AVG(mask[j], mask[mask_stride + j]); res = (m * src0[j] + (AOM_BLEND_A64_MAX_ALPHA - m) * src1[j]) >> AOM_BLEND_A64_ROUND_BITS; res -= round_offset; unsigned int v = negative_to_zero(ROUND_POWER_OF_TWO(res, round_bits)); dst[j] = AOMMIN(v, saturation_value); } mask += 2 * mask_stride; src0 += src0_stride; src1 += src1_stride; dst += dst_stride; } } } // Blending with alpha mask. Mask values come from the range [0, 64], // as described for AOM_BLEND_A64 in aom_dsp/blend.h. src0 or src1 can // be the same as dst, or dst can be different from both sources. void aom_blend_a64_mask_c(uint8_t *dst, uint32_t dst_stride, const uint8_t *src0, uint32_t src0_stride, const uint8_t *src1, uint32_t src1_stride, const uint8_t *mask, uint32_t mask_stride, int w, int h, int subw, int subh) { int i, j; assert(IMPLIES(src0 == dst, src0_stride == dst_stride)); assert(IMPLIES(src1 == dst, src1_stride == dst_stride)); assert(h >= 1); assert(w >= 1); assert(IS_POWER_OF_TWO(h)); assert(IS_POWER_OF_TWO(w)); if (subw == 0 && subh == 0) { for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { const int m = mask[i * mask_stride + j]; dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j], src1[i * src1_stride + j]); } } } else if (subw == 1 && subh == 1) { for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { const int m = ROUND_POWER_OF_TWO( mask[(2 * i) * mask_stride + (2 * j)] + mask[(2 * i + 1) * mask_stride + (2 * j)] + mask[(2 * i) * mask_stride + (2 * j + 1)] + mask[(2 * i + 1) * mask_stride + (2 * j + 1)], 2); dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j], src1[i * src1_stride + j]); } } } else if (subw == 1 && subh == 0) { for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { const int m = AOM_BLEND_AVG(mask[i * mask_stride + (2 * j)], mask[i * mask_stride + (2 * j + 1)]); dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j], src1[i * src1_stride + j]); } } } else { for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { const int m = AOM_BLEND_AVG(mask[(2 * i) * mask_stride + j], mask[(2 * i + 1) * mask_stride + j]); dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j], src1[i * src1_stride + j]); } } } } void aom_highbd_blend_a64_mask_c(uint8_t *dst_8, uint32_t dst_stride, const uint8_t *src0_8, uint32_t src0_stride, const uint8_t *src1_8, uint32_t src1_stride, const uint8_t *mask, uint32_t mask_stride, int w, int h, int subw, int subh, int bd) { int i, j; uint16_t *dst = CONVERT_TO_SHORTPTR(dst_8); const uint16_t *src0 = CONVERT_TO_SHORTPTR(src0_8); const uint16_t *src1 = CONVERT_TO_SHORTPTR(src1_8); (void)bd; assert(IMPLIES(src0 == dst, src0_stride == dst_stride)); assert(IMPLIES(src1 == dst, src1_stride == dst_stride)); assert(h >= 1); assert(w >= 1); assert(IS_POWER_OF_TWO(h)); assert(IS_POWER_OF_TWO(w)); assert(bd == 8 || bd == 10 || bd == 12); if (subw == 0 && subh == 0) { for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { const int m = mask[i * mask_stride + j]; dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j], src1[i * src1_stride + j]); } } } else if (subw == 1 && subh == 1) { for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { const int m = ROUND_POWER_OF_TWO( mask[(2 * i) * mask_stride + (2 * j)] + mask[(2 * i + 1) * mask_stride + (2 * j)] + mask[(2 * i) * mask_stride + (2 * j + 1)] + mask[(2 * i + 1) * mask_stride + (2 * j + 1)], 2); dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j], src1[i * src1_stride + j]); } } } else if (subw == 1 && subh == 0) { for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { const int m = AOM_BLEND_AVG(mask[i * mask_stride + (2 * j)], mask[i * mask_stride + (2 * j + 1)]); dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j], src1[i * src1_stride + j]); } } } else { for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { const int m = AOM_BLEND_AVG(mask[(2 * i) * mask_stride + j], mask[(2 * i + 1) * mask_stride + j]); dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j], src1[i * src1_stride + j]); } } } }