summaryrefslogtreecommitdiff
path: root/volumes.c
diff options
context:
space:
mode:
Diffstat (limited to 'volumes.c')
-rw-r--r--volumes.c2172
1 files changed, 2172 insertions, 0 deletions
diff --git a/volumes.c b/volumes.c
new file mode 100644
index 00000000..ccfa732e
--- /dev/null
+++ b/volumes.c
@@ -0,0 +1,2172 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+#include <stdio.h>
+#include <stdlib.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <uuid/uuid.h>
+#include <fcntl.h>
+#include <unistd.h>
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "print-tree.h"
+#include "volumes.h"
+#include "utils.h"
+
+struct stripe {
+ struct btrfs_device *dev;
+ u64 physical;
+};
+
+static inline int nr_parity_stripes(struct map_lookup *map)
+{
+ if (map->type & BTRFS_BLOCK_GROUP_RAID5)
+ return 1;
+ else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
+ return 2;
+ else
+ return 0;
+}
+
+static inline int nr_data_stripes(struct map_lookup *map)
+{
+ return map->num_stripes - nr_parity_stripes(map);
+}
+
+#define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )
+
+static LIST_HEAD(fs_uuids);
+
+static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
+ u8 *uuid)
+{
+ struct btrfs_device *dev;
+ struct list_head *cur;
+
+ list_for_each(cur, head) {
+ dev = list_entry(cur, struct btrfs_device, dev_list);
+ if (dev->devid == devid &&
+ !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) {
+ return dev;
+ }
+ }
+ return NULL;
+}
+
+static struct btrfs_fs_devices *find_fsid(u8 *fsid)
+{
+ struct list_head *cur;
+ struct btrfs_fs_devices *fs_devices;
+
+ list_for_each(cur, &fs_uuids) {
+ fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
+ if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
+ return fs_devices;
+ }
+ return NULL;
+}
+
+static int device_list_add(const char *path,
+ struct btrfs_super_block *disk_super,
+ u64 devid, struct btrfs_fs_devices **fs_devices_ret)
+{
+ struct btrfs_device *device;
+ struct btrfs_fs_devices *fs_devices;
+ u64 found_transid = btrfs_super_generation(disk_super);
+
+ fs_devices = find_fsid(disk_super->fsid);
+ if (!fs_devices) {
+ fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
+ if (!fs_devices)
+ return -ENOMEM;
+ INIT_LIST_HEAD(&fs_devices->devices);
+ list_add(&fs_devices->list, &fs_uuids);
+ memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
+ fs_devices->latest_devid = devid;
+ fs_devices->latest_trans = found_transid;
+ fs_devices->lowest_devid = (u64)-1;
+ device = NULL;
+ } else {
+ device = __find_device(&fs_devices->devices, devid,
+ disk_super->dev_item.uuid);
+ }
+ if (!device) {
+ device = kzalloc(sizeof(*device), GFP_NOFS);
+ if (!device) {
+ /* we can safely leave the fs_devices entry around */
+ return -ENOMEM;
+ }
+ device->fd = -1;
+ device->devid = devid;
+ device->generation = found_transid;
+ memcpy(device->uuid, disk_super->dev_item.uuid,
+ BTRFS_UUID_SIZE);
+ device->name = kstrdup(path, GFP_NOFS);
+ if (!device->name) {
+ kfree(device);
+ return -ENOMEM;
+ }
+ device->label = kstrdup(disk_super->label, GFP_NOFS);
+ if (!device->label) {
+ kfree(device->name);
+ kfree(device);
+ return -ENOMEM;
+ }
+ device->total_devs = btrfs_super_num_devices(disk_super);
+ device->super_bytes_used = btrfs_super_bytes_used(disk_super);
+ device->total_bytes =
+ btrfs_stack_device_total_bytes(&disk_super->dev_item);
+ device->bytes_used =
+ btrfs_stack_device_bytes_used(&disk_super->dev_item);
+ list_add(&device->dev_list, &fs_devices->devices);
+ device->fs_devices = fs_devices;
+ } else if (!device->name || strcmp(device->name, path)) {
+ char *name = strdup(path);
+ if (!name)
+ return -ENOMEM;
+ kfree(device->name);
+ device->name = name;
+ }
+
+
+ if (found_transid > fs_devices->latest_trans) {
+ fs_devices->latest_devid = devid;
+ fs_devices->latest_trans = found_transid;
+ }
+ if (fs_devices->lowest_devid > devid) {
+ fs_devices->lowest_devid = devid;
+ }
+ *fs_devices_ret = fs_devices;
+ return 0;
+}
+
+int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
+{
+ struct btrfs_fs_devices *seed_devices;
+ struct btrfs_device *device;
+
+again:
+ while (!list_empty(&fs_devices->devices)) {
+ device = list_entry(fs_devices->devices.next,
+ struct btrfs_device, dev_list);
+ if (device->fd != -1) {
+ fsync(device->fd);
+ if (posix_fadvise(device->fd, 0, 0, POSIX_FADV_DONTNEED))
+ fprintf(stderr, "Warning, could not drop caches\n");
+ close(device->fd);
+ device->fd = -1;
+ }
+ device->writeable = 0;
+ list_del(&device->dev_list);
+ /* free the memory */
+ free(device->name);
+ free(device->label);
+ free(device);
+ }
+
+ seed_devices = fs_devices->seed;
+ fs_devices->seed = NULL;
+ if (seed_devices) {
+ struct btrfs_fs_devices *orig;
+
+ orig = fs_devices;
+ fs_devices = seed_devices;
+ list_del(&orig->list);
+ free(orig);
+ goto again;
+ } else {
+ list_del(&fs_devices->list);
+ free(fs_devices);
+ }
+
+ return 0;
+}
+
+void btrfs_close_all_devices(void)
+{
+ struct btrfs_fs_devices *fs_devices;
+
+ while (!list_empty(&fs_uuids)) {
+ fs_devices = list_entry(fs_uuids.next, struct btrfs_fs_devices,
+ list);
+ btrfs_close_devices(fs_devices);
+ }
+}
+
+int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, int flags)
+{
+ int fd;
+ struct list_head *head = &fs_devices->devices;
+ struct list_head *cur;
+ struct btrfs_device *device;
+ int ret;
+
+ list_for_each(cur, head) {
+ device = list_entry(cur, struct btrfs_device, dev_list);
+ if (!device->name) {
+ printk("no name for device %llu, skip it now\n", device->devid);
+ continue;
+ }
+
+ fd = open(device->name, flags);
+ if (fd < 0) {
+ ret = -errno;
+ goto fail;
+ }
+
+ if (posix_fadvise(fd, 0, 0, POSIX_FADV_DONTNEED))
+ fprintf(stderr, "Warning, could not drop caches\n");
+
+ if (device->devid == fs_devices->latest_devid)
+ fs_devices->latest_bdev = fd;
+ if (device->devid == fs_devices->lowest_devid)
+ fs_devices->lowest_bdev = fd;
+ device->fd = fd;
+ if (flags & O_RDWR)
+ device->writeable = 1;
+ }
+ return 0;
+fail:
+ btrfs_close_devices(fs_devices);
+ return ret;
+}
+
+int btrfs_scan_one_device(int fd, const char *path,
+ struct btrfs_fs_devices **fs_devices_ret,
+ u64 *total_devs, u64 super_offset, int super_recover)
+{
+ struct btrfs_super_block *disk_super;
+ char buf[BTRFS_SUPER_INFO_SIZE];
+ int ret;
+ u64 devid;
+
+ disk_super = (struct btrfs_super_block *)buf;
+ ret = btrfs_read_dev_super(fd, disk_super, super_offset, super_recover);
+ if (ret < 0)
+ return -EIO;
+ devid = btrfs_stack_device_id(&disk_super->dev_item);
+ if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
+ *total_devs = 1;
+ else
+ *total_devs = btrfs_super_num_devices(disk_super);
+
+ ret = device_list_add(path, disk_super, devid, fs_devices_ret);
+
+ return ret;
+}
+
+/*
+ * this uses a pretty simple search, the expectation is that it is
+ * called very infrequently and that a given device has a small number
+ * of extents
+ */
+static int find_free_dev_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_device *device,
+ struct btrfs_path *path,
+ u64 num_bytes, u64 *start)
+{
+ struct btrfs_key key;
+ struct btrfs_root *root = device->dev_root;
+ struct btrfs_dev_extent *dev_extent = NULL;
+ u64 hole_size = 0;
+ u64 last_byte = 0;
+ u64 search_start = root->fs_info->alloc_start;
+ u64 search_end = device->total_bytes;
+ int ret;
+ int slot = 0;
+ int start_found;
+ struct extent_buffer *l;
+
+ start_found = 0;
+ path->reada = 2;
+
+ /* FIXME use last free of some kind */
+
+ /* we don't want to overwrite the superblock on the drive,
+ * so we make sure to start at an offset of at least 1MB
+ */
+ search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
+
+ if (search_start >= search_end) {
+ ret = -ENOSPC;
+ goto error;
+ }
+
+ key.objectid = device->devid;
+ key.offset = search_start;
+ key.type = BTRFS_DEV_EXTENT_KEY;
+ ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto error;
+ ret = btrfs_previous_item(root, path, 0, key.type);
+ if (ret < 0)
+ goto error;
+ l = path->nodes[0];
+ btrfs_item_key_to_cpu(l, &key, path->slots[0]);
+ while (1) {
+ l = path->nodes[0];
+ slot = path->slots[0];
+ if (slot >= btrfs_header_nritems(l)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret == 0)
+ continue;
+ if (ret < 0)
+ goto error;
+no_more_items:
+ if (!start_found) {
+ if (search_start >= search_end) {
+ ret = -ENOSPC;
+ goto error;
+ }
+ *start = search_start;
+ start_found = 1;
+ goto check_pending;
+ }
+ *start = last_byte > search_start ?
+ last_byte : search_start;
+ if (search_end <= *start) {
+ ret = -ENOSPC;
+ goto error;
+ }
+ goto check_pending;
+ }
+ btrfs_item_key_to_cpu(l, &key, slot);
+
+ if (key.objectid < device->devid)
+ goto next;
+
+ if (key.objectid > device->devid)
+ goto no_more_items;
+
+ if (key.offset >= search_start && key.offset > last_byte &&
+ start_found) {
+ if (last_byte < search_start)
+ last_byte = search_start;
+ hole_size = key.offset - last_byte;
+ if (key.offset > last_byte &&
+ hole_size >= num_bytes) {
+ *start = last_byte;
+ goto check_pending;
+ }
+ }
+ if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
+ goto next;
+ }
+
+ start_found = 1;
+ dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
+ last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
+next:
+ path->slots[0]++;
+ cond_resched();
+ }
+check_pending:
+ /* we have to make sure we didn't find an extent that has already
+ * been allocated by the map tree or the original allocation
+ */
+ btrfs_release_path(path);
+ BUG_ON(*start < search_start);
+
+ if (*start + num_bytes > search_end) {
+ ret = -ENOSPC;
+ goto error;
+ }
+ /* check for pending inserts here */
+ return 0;
+
+error:
+ btrfs_release_path(path);
+ return ret;
+}
+
+static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_device *device,
+ u64 chunk_tree, u64 chunk_objectid,
+ u64 chunk_offset,
+ u64 num_bytes, u64 *start, int convert)
+{
+ int ret;
+ struct btrfs_path *path;
+ struct btrfs_root *root = device->dev_root;
+ struct btrfs_dev_extent *extent;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ /*
+ * For convert case, just skip search free dev_extent, as caller
+ * is responsible to make sure it's free.
+ */
+ if (!convert) {
+ ret = find_free_dev_extent(trans, device, path, num_bytes,
+ start);
+ if (ret)
+ goto err;
+ }
+
+ key.objectid = device->devid;
+ key.offset = *start;
+ key.type = BTRFS_DEV_EXTENT_KEY;
+ ret = btrfs_insert_empty_item(trans, root, path, &key,
+ sizeof(*extent));
+ BUG_ON(ret);
+
+ leaf = path->nodes[0];
+ extent = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_dev_extent);
+ btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
+ btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
+ btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
+
+ write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
+ (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
+ BTRFS_UUID_SIZE);
+
+ btrfs_set_dev_extent_length(leaf, extent, num_bytes);
+ btrfs_mark_buffer_dirty(leaf);
+err:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
+{
+ struct btrfs_path *path;
+ int ret;
+ struct btrfs_key key;
+ struct btrfs_chunk *chunk;
+ struct btrfs_key found_key;
+
+ path = btrfs_alloc_path();
+ BUG_ON(!path);
+
+ key.objectid = objectid;
+ key.offset = (u64)-1;
+ key.type = BTRFS_CHUNK_ITEM_KEY;
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto error;
+
+ BUG_ON(ret == 0);
+
+ ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
+ if (ret) {
+ *offset = 0;
+ } else {
+ btrfs_item_key_to_cpu(path->nodes[0], &found_key,
+ path->slots[0]);
+ if (found_key.objectid != objectid)
+ *offset = 0;
+ else {
+ chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_chunk);
+ *offset = found_key.offset +
+ btrfs_chunk_length(path->nodes[0], chunk);
+ }
+ }
+ ret = 0;
+error:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
+ u64 *objectid)
+{
+ int ret;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+
+ key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
+ key.type = BTRFS_DEV_ITEM_KEY;
+ key.offset = (u64)-1;
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto error;
+
+ BUG_ON(ret == 0);
+
+ ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
+ BTRFS_DEV_ITEM_KEY);
+ if (ret) {
+ *objectid = 1;
+ } else {
+ btrfs_item_key_to_cpu(path->nodes[0], &found_key,
+ path->slots[0]);
+ *objectid = found_key.offset + 1;
+ }
+ ret = 0;
+error:
+ btrfs_release_path(path);
+ return ret;
+}
+
+/*
+ * the device information is stored in the chunk root
+ * the btrfs_device struct should be fully filled in
+ */
+int btrfs_add_device(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_device *device)
+{
+ int ret;
+ struct btrfs_path *path;
+ struct btrfs_dev_item *dev_item;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+ unsigned long ptr;
+ u64 free_devid = 0;
+
+ root = root->fs_info->chunk_root;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ ret = find_next_devid(root, path, &free_devid);
+ if (ret)
+ goto out;
+
+ key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
+ key.type = BTRFS_DEV_ITEM_KEY;
+ key.offset = free_devid;
+
+ ret = btrfs_insert_empty_item(trans, root, path, &key,
+ sizeof(*dev_item));
+ if (ret)
+ goto out;
+
+ leaf = path->nodes[0];
+ dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
+
+ device->devid = free_devid;
+ btrfs_set_device_id(leaf, dev_item, device->devid);
+ btrfs_set_device_generation(leaf, dev_item, 0);
+ btrfs_set_device_type(leaf, dev_item, device->type);
+ btrfs_set_device_io_align(leaf, dev_item, device->io_align);
+ btrfs_set_device_io_width(leaf, dev_item, device->io_width);
+ btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
+ btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
+ btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
+ btrfs_set_device_group(leaf, dev_item, 0);
+ btrfs_set_device_seek_speed(leaf, dev_item, 0);
+ btrfs_set_device_bandwidth(leaf, dev_item, 0);
+ btrfs_set_device_start_offset(leaf, dev_item, 0);
+
+ ptr = (unsigned long)btrfs_device_uuid(dev_item);
+ write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
+ ptr = (unsigned long)btrfs_device_fsid(dev_item);
+ write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
+ btrfs_mark_buffer_dirty(leaf);
+ ret = 0;
+
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_update_device(struct btrfs_trans_handle *trans,
+ struct btrfs_device *device)
+{
+ int ret;
+ struct btrfs_path *path;
+ struct btrfs_root *root;
+ struct btrfs_dev_item *dev_item;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+
+ root = device->dev_root->fs_info->chunk_root;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
+ key.type = BTRFS_DEV_ITEM_KEY;
+ key.offset = device->devid;
+
+ ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
+ if (ret < 0)
+ goto out;
+
+ if (ret > 0) {
+ ret = -ENOENT;
+ goto out;
+ }
+
+ leaf = path->nodes[0];
+ dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
+
+ btrfs_set_device_id(leaf, dev_item, device->devid);
+ btrfs_set_device_type(leaf, dev_item, device->type);
+ btrfs_set_device_io_align(leaf, dev_item, device->io_align);
+ btrfs_set_device_io_width(leaf, dev_item, device->io_width);
+ btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
+ btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
+ btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
+ btrfs_mark_buffer_dirty(leaf);
+
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_key *key,
+ struct btrfs_chunk *chunk, int item_size)
+{
+ struct btrfs_super_block *super_copy = root->fs_info->super_copy;
+ struct btrfs_disk_key disk_key;
+ u32 array_size;
+ u8 *ptr;
+
+ array_size = btrfs_super_sys_array_size(super_copy);
+ if (array_size + item_size + sizeof(disk_key)
+ > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
+ return -EFBIG;
+
+ ptr = super_copy->sys_chunk_array + array_size;
+ btrfs_cpu_key_to_disk(&disk_key, key);
+ memcpy(ptr, &disk_key, sizeof(disk_key));
+ ptr += sizeof(disk_key);
+ memcpy(ptr, chunk, item_size);
+ item_size += sizeof(disk_key);
+ btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
+ return 0;
+}
+
+static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
+ int sub_stripes)
+{
+ if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
+ return calc_size;
+ else if (type & BTRFS_BLOCK_GROUP_RAID10)
+ return calc_size * (num_stripes / sub_stripes);
+ else if (type & BTRFS_BLOCK_GROUP_RAID5)
+ return calc_size * (num_stripes - 1);
+ else if (type & BTRFS_BLOCK_GROUP_RAID6)
+ return calc_size * (num_stripes - 2);
+ else
+ return calc_size * num_stripes;
+}
+
+
+static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
+{
+ /* TODO, add a way to store the preferred stripe size */
+ return BTRFS_STRIPE_LEN;
+}
+
+/*
+ * btrfs_device_avail_bytes - count bytes available for alloc_chunk
+ *
+ * It is not equal to "device->total_bytes - device->bytes_used".
+ * We do not allocate any chunk in 1M at beginning of device, and not
+ * allowed to allocate any chunk before alloc_start if it is specified.
+ * So search holes from max(1M, alloc_start) to device->total_bytes.
+ */
+static int btrfs_device_avail_bytes(struct btrfs_trans_handle *trans,
+ struct btrfs_device *device,
+ u64 *avail_bytes)
+{
+ struct btrfs_path *path;
+ struct btrfs_root *root = device->dev_root;
+ struct btrfs_key key;
+ struct btrfs_dev_extent *dev_extent = NULL;
+ struct extent_buffer *l;
+ u64 search_start = root->fs_info->alloc_start;
+ u64 search_end = device->total_bytes;
+ u64 extent_end = 0;
+ u64 free_bytes = 0;
+ int ret;
+ int slot = 0;
+
+ search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = device->devid;
+ key.offset = root->fs_info->alloc_start;
+ key.type = BTRFS_DEV_EXTENT_KEY;
+
+ path->reada = 2;
+ ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto error;
+ ret = btrfs_previous_item(root, path, 0, key.type);
+ if (ret < 0)
+ goto error;
+
+ while (1) {
+ l = path->nodes[0];
+ slot = path->slots[0];
+ if (slot >= btrfs_header_nritems(l)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret == 0)
+ continue;
+ if (ret < 0)
+ goto error;
+ break;
+ }
+ btrfs_item_key_to_cpu(l, &key, slot);
+
+ if (key.objectid < device->devid)
+ goto next;
+ if (key.objectid > device->devid)
+ break;
+ if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
+ goto next;
+ if (key.offset > search_end)
+ break;
+ if (key.offset > search_start)
+ free_bytes += key.offset - search_start;
+
+ dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
+ extent_end = key.offset + btrfs_dev_extent_length(l,
+ dev_extent);
+ if (extent_end > search_start)
+ search_start = extent_end;
+ if (search_start > search_end)
+ break;
+next:
+ path->slots[0]++;
+ cond_resched();
+ }
+
+ if (search_start < search_end)
+ free_bytes += search_end - search_start;
+
+ *avail_bytes = free_bytes;
+ ret = 0;
+error:
+ btrfs_free_path(path);
+ return ret;
+}
+
+#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
+ - sizeof(struct btrfs_item) \
+ - sizeof(struct btrfs_chunk)) \
+ / sizeof(struct btrfs_stripe) + 1)
+
+#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
+ - 2 * sizeof(struct btrfs_disk_key) \
+ - 2 * sizeof(struct btrfs_chunk)) \
+ / sizeof(struct btrfs_stripe) + 1)
+
+int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
+ struct btrfs_root *extent_root, u64 *start,
+ u64 *num_bytes, u64 type)
+{
+ u64 dev_offset;
+ struct btrfs_fs_info *info = extent_root->fs_info;
+ struct btrfs_root *chunk_root = info->chunk_root;
+ struct btrfs_stripe *stripes;
+ struct btrfs_device *device = NULL;
+ struct btrfs_chunk *chunk;
+ struct list_head private_devs;
+ struct list_head *dev_list = &info->fs_devices->devices;
+ struct list_head *cur;
+ struct map_lookup *map;
+ int min_stripe_size = 1 * 1024 * 1024;
+ u64 calc_size = 8 * 1024 * 1024;
+ u64 min_free;
+ u64 max_chunk_size = 4 * calc_size;
+ u64 avail = 0;
+ u64 max_avail = 0;
+ u64 percent_max;
+ int num_stripes = 1;
+ int max_stripes = 0;
+ int min_stripes = 1;
+ int sub_stripes = 0;
+ int looped = 0;
+ int ret;
+ int index;
+ int stripe_len = BTRFS_STRIPE_LEN;
+ struct btrfs_key key;
+ u64 offset;
+
+ if (list_empty(dev_list)) {
+ return -ENOSPC;
+ }
+
+ if (type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
+ BTRFS_BLOCK_GROUP_RAID10 |
+ BTRFS_BLOCK_GROUP_DUP)) {
+ if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
+ calc_size = 8 * 1024 * 1024;
+ max_chunk_size = calc_size * 2;
+ min_stripe_size = 1 * 1024 * 1024;
+ max_stripes = BTRFS_MAX_DEVS_SYS_CHUNK;
+ } else if (type & BTRFS_BLOCK_GROUP_DATA) {
+ calc_size = 1024 * 1024 * 1024;
+ max_chunk_size = 10 * calc_size;
+ min_stripe_size = 64 * 1024 * 1024;
+ max_stripes = BTRFS_MAX_DEVS(chunk_root);
+ } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
+ calc_size = 1024 * 1024 * 1024;
+ max_chunk_size = 4 * calc_size;
+ min_stripe_size = 32 * 1024 * 1024;
+ max_stripes = BTRFS_MAX_DEVS(chunk_root);
+ }
+ }
+ if (type & BTRFS_BLOCK_GROUP_RAID1) {
+ num_stripes = min_t(u64, 2,
+ btrfs_super_num_devices(info->super_copy));
+ if (num_stripes < 2)
+ return -ENOSPC;
+ min_stripes = 2;
+ }
+ if (type & BTRFS_BLOCK_GROUP_DUP) {
+ num_stripes = 2;
+ min_stripes = 2;
+ }
+ if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
+ num_stripes = btrfs_super_num_devices(info->super_copy);
+ if (num_stripes > max_stripes)
+ num_stripes = max_stripes;
+ min_stripes = 2;
+ }
+ if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
+ num_stripes = btrfs_super_num_devices(info->super_copy);
+ if (num_stripes > max_stripes)
+ num_stripes = max_stripes;
+ if (num_stripes < 4)
+ return -ENOSPC;
+ num_stripes &= ~(u32)1;
+ sub_stripes = 2;
+ min_stripes = 4;
+ }
+ if (type & (BTRFS_BLOCK_GROUP_RAID5)) {
+ num_stripes = btrfs_super_num_devices(info->super_copy);
+ if (num_stripes > max_stripes)
+ num_stripes = max_stripes;
+ if (num_stripes < 2)
+ return -ENOSPC;
+ min_stripes = 2;
+ stripe_len = find_raid56_stripe_len(num_stripes - 1,
+ btrfs_super_stripesize(info->super_copy));
+ }
+ if (type & (BTRFS_BLOCK_GROUP_RAID6)) {
+ num_stripes = btrfs_super_num_devices(info->super_copy);
+ if (num_stripes > max_stripes)
+ num_stripes = max_stripes;
+ if (num_stripes < 3)
+ return -ENOSPC;
+ min_stripes = 3;
+ stripe_len = find_raid56_stripe_len(num_stripes - 2,
+ btrfs_super_stripesize(info->super_copy));
+ }
+
+ /* we don't want a chunk larger than 10% of the FS */
+ percent_max = div_factor(btrfs_super_total_bytes(info->super_copy), 1);
+ max_chunk_size = min(percent_max, max_chunk_size);
+
+again:
+ if (chunk_bytes_by_type(type, calc_size, num_stripes, sub_stripes) >
+ max_chunk_size) {
+ calc_size = max_chunk_size;
+ calc_size /= num_stripes;
+ calc_size /= stripe_len;
+ calc_size *= stripe_len;
+ }
+ /* we don't want tiny stripes */
+ calc_size = max_t(u64, calc_size, min_stripe_size);
+
+ calc_size /= stripe_len;
+ calc_size *= stripe_len;
+ INIT_LIST_HEAD(&private_devs);
+ cur = dev_list->next;
+ index = 0;
+
+ if (type & BTRFS_BLOCK_GROUP_DUP)
+ min_free = calc_size * 2;
+ else
+ min_free = calc_size;
+
+ /* build a private list of devices we will allocate from */
+ while(index < num_stripes) {
+ device = list_entry(cur, struct btrfs_device, dev_list);
+ ret = btrfs_device_avail_bytes(trans, device, &avail);
+ if (ret)
+ return ret;
+ cur = cur->next;
+ if (avail >= min_free) {
+ list_move_tail(&device->dev_list, &private_devs);
+ index++;
+ if (type & BTRFS_BLOCK_GROUP_DUP)
+ index++;
+ } else if (avail > max_avail)
+ max_avail = avail;
+ if (cur == dev_list)
+ break;
+ }
+ if (index < num_stripes) {
+ list_splice(&private_devs, dev_list);
+ if (index >= min_stripes) {
+ num_stripes = index;
+ if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
+ num_stripes /= sub_stripes;
+ num_stripes *= sub_stripes;
+ }
+ looped = 1;
+ goto again;
+ }
+ if (!looped && max_avail > 0) {
+ looped = 1;
+ calc_size = max_avail;
+ goto again;
+ }
+ return -ENOSPC;
+ }
+ ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
+ &offset);
+ if (ret)
+ return ret;
+ key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
+ key.type = BTRFS_CHUNK_ITEM_KEY;
+ key.offset = offset;
+
+ chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
+ if (!chunk)
+ return -ENOMEM;
+
+ map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
+ if (!map) {
+ kfree(chunk);
+ return -ENOMEM;
+ }
+
+ stripes = &chunk->stripe;
+ *num_bytes = chunk_bytes_by_type(type, calc_size,
+ num_stripes, sub_stripes);
+ index = 0;
+ while(index < num_stripes) {
+ struct btrfs_stripe *stripe;
+ BUG_ON(list_empty(&private_devs));
+ cur = private_devs.next;
+ device = list_entry(cur, struct btrfs_device, dev_list);
+
+ /* loop over this device again if we're doing a dup group */
+ if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
+ (index == num_stripes - 1))
+ list_move_tail(&device->dev_list, dev_list);
+
+ ret = btrfs_alloc_dev_extent(trans, device,
+ info->chunk_root->root_key.objectid,
+ BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
+ calc_size, &dev_offset, 0);
+ BUG_ON(ret);
+
+ device->bytes_used += calc_size;
+ ret = btrfs_update_device(trans, device);
+ BUG_ON(ret);
+
+ map->stripes[index].dev = device;
+ map->stripes[index].physical = dev_offset;
+ stripe = stripes + index;
+ btrfs_set_stack_stripe_devid(stripe, device->devid);
+ btrfs_set_stack_stripe_offset(stripe, dev_offset);
+ memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
+ index++;
+ }
+ BUG_ON(!list_empty(&private_devs));
+
+ /* key was set above */
+ btrfs_set_stack_chunk_length(chunk, *num_bytes);
+ btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
+ btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
+ btrfs_set_stack_chunk_type(chunk, type);
+ btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
+ btrfs_set_stack_chunk_io_align(chunk, stripe_len);
+ btrfs_set_stack_chunk_io_width(chunk, stripe_len);
+ btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
+ btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
+ map->sector_size = extent_root->sectorsize;
+ map->stripe_len = stripe_len;
+ map->io_align = stripe_len;
+ map->io_width = stripe_len;
+ map->type = type;
+ map->num_stripes = num_stripes;
+ map->sub_stripes = sub_stripes;
+
+ ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
+ btrfs_chunk_item_size(num_stripes));
+ BUG_ON(ret);
+ *start = key.offset;;
+
+ map->ce.start = key.offset;
+ map->ce.size = *num_bytes;
+
+ ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
+ BUG_ON(ret);
+
+ if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
+ ret = btrfs_add_system_chunk(trans, chunk_root, &key,
+ chunk, btrfs_chunk_item_size(num_stripes));
+ BUG_ON(ret);
+ }
+
+ kfree(chunk);
+ return ret;
+}
+
+/*
+ * Alloc a DATA chunk with SINGLE profile.
+ *
+ * If 'convert' is set, it will alloc a chunk with 1:1 mapping
+ * (btrfs logical bytenr == on-disk bytenr)
+ * For that case, caller must make sure the chunk and dev_extent are not
+ * occupied.
+ */
+int btrfs_alloc_data_chunk(struct btrfs_trans_handle *trans,
+ struct btrfs_root *extent_root, u64 *start,
+ u64 num_bytes, u64 type, int convert)
+{
+ u64 dev_offset;
+ struct btrfs_fs_info *info = extent_root->fs_info;
+ struct btrfs_root *chunk_root = info->chunk_root;
+ struct btrfs_stripe *stripes;
+ struct btrfs_device *device = NULL;
+ struct btrfs_chunk *chunk;
+ struct list_head *dev_list = &info->fs_devices->devices;
+ struct list_head *cur;
+ struct map_lookup *map;
+ u64 calc_size = 8 * 1024 * 1024;
+ int num_stripes = 1;
+ int sub_stripes = 0;
+ int ret;
+ int index;
+ int stripe_len = BTRFS_STRIPE_LEN;
+ struct btrfs_key key;
+
+ key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
+ key.type = BTRFS_CHUNK_ITEM_KEY;
+ if (convert) {
+ BUG_ON(*start != round_down(*start, extent_root->sectorsize));
+ key.offset = *start;
+ dev_offset = *start;
+ } else {
+ ret = find_next_chunk(chunk_root,
+ BTRFS_FIRST_CHUNK_TREE_OBJECTID,
+ &key.offset);
+ if (ret)
+ return ret;
+ }
+
+ chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
+ if (!chunk)
+ return -ENOMEM;
+
+ map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
+ if (!map) {
+ kfree(chunk);
+ return -ENOMEM;
+ }
+
+ stripes = &chunk->stripe;
+ calc_size = num_bytes;
+
+ index = 0;
+ cur = dev_list->next;
+ device = list_entry(cur, struct btrfs_device, dev_list);
+
+ while (index < num_stripes) {
+ struct btrfs_stripe *stripe;
+
+ ret = btrfs_alloc_dev_extent(trans, device,
+ info->chunk_root->root_key.objectid,
+ BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
+ calc_size, &dev_offset, convert);
+ BUG_ON(ret);
+
+ device->bytes_used += calc_size;
+ ret = btrfs_update_device(trans, device);
+ BUG_ON(ret);
+
+ map->stripes[index].dev = device;
+ map->stripes[index].physical = dev_offset;
+ stripe = stripes + index;
+ btrfs_set_stack_stripe_devid(stripe, device->devid);
+ btrfs_set_stack_stripe_offset(stripe, dev_offset);
+ memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
+ index++;
+ }
+
+ /* key was set above */
+ btrfs_set_stack_chunk_length(chunk, num_bytes);
+ btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
+ btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
+ btrfs_set_stack_chunk_type(chunk, type);
+ btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
+ btrfs_set_stack_chunk_io_align(chunk, stripe_len);
+ btrfs_set_stack_chunk_io_width(chunk, stripe_len);
+ btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
+ btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
+ map->sector_size = extent_root->sectorsize;
+ map->stripe_len = stripe_len;
+ map->io_align = stripe_len;
+ map->io_width = stripe_len;
+ map->type = type;
+ map->num_stripes = num_stripes;
+ map->sub_stripes = sub_stripes;
+
+ ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
+ btrfs_chunk_item_size(num_stripes));
+ BUG_ON(ret);
+ if (!convert)
+ *start = key.offset;
+
+ map->ce.start = key.offset;
+ map->ce.size = num_bytes;
+
+ ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
+ BUG_ON(ret);
+
+ kfree(chunk);
+ return ret;
+}
+
+int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
+{
+ struct cache_extent *ce;
+ struct map_lookup *map;
+ int ret;
+
+ ce = search_cache_extent(&map_tree->cache_tree, logical);
+ if (!ce) {
+ fprintf(stderr, "No mapping for %llu-%llu\n",
+ (unsigned long long)logical,
+ (unsigned long long)logical+len);
+ return 1;
+ }
+ if (ce->start > logical || ce->start + ce->size < logical) {
+ fprintf(stderr, "Invalid mapping for %llu-%llu, got "
+ "%llu-%llu\n", (unsigned long long)logical,
+ (unsigned long long)logical+len,
+ (unsigned long long)ce->start,
+ (unsigned long long)ce->start + ce->size);
+ return 1;
+ }
+ map = container_of(ce, struct map_lookup, ce);
+
+ if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
+ ret = map->num_stripes;
+ else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
+ ret = map->sub_stripes;
+ else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
+ ret = 2;
+ else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
+ ret = 3;
+ else
+ ret = 1;
+ return ret;
+}
+
+int btrfs_next_bg(struct btrfs_mapping_tree *map_tree, u64 *logical,
+ u64 *size, u64 type)
+{
+ struct cache_extent *ce;
+ struct map_lookup *map;
+ u64 cur = *logical;
+
+ ce = search_cache_extent(&map_tree->cache_tree, cur);
+
+ while (ce) {
+ /*
+ * only jump to next bg if our cur is not 0
+ * As the initial logical for btrfs_next_bg() is 0, and
+ * if we jump to next bg, we skipped a valid bg.
+ */
+ if (cur) {
+ ce = next_cache_extent(ce);
+ if (!ce)
+ return -ENOENT;
+ }
+
+ cur = ce->start;
+ map = container_of(ce, struct map_lookup, ce);
+ if (map->type & type) {
+ *logical = ce->start;
+ *size = ce->size;
+ return 0;
+ }
+ }
+
+ return -ENOENT;
+}
+
+int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
+ u64 chunk_start, u64 physical, u64 devid,
+ u64 **logical, int *naddrs, int *stripe_len)
+{
+ struct cache_extent *ce;
+ struct map_lookup *map;
+ u64 *buf;
+ u64 bytenr;
+ u64 length;
+ u64 stripe_nr;
+ u64 rmap_len;
+ int i, j, nr = 0;
+
+ ce = search_cache_extent(&map_tree->cache_tree, chunk_start);
+ BUG_ON(!ce);
+ map = container_of(ce, struct map_lookup, ce);
+
+ length = ce->size;
+ rmap_len = map->stripe_len;
+ if (map->type & BTRFS_BLOCK_GROUP_RAID10)
+ length = ce->size / (map->num_stripes / map->sub_stripes);
+ else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
+ length = ce->size / map->num_stripes;
+ else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6)) {
+ length = ce->size / nr_data_stripes(map);
+ rmap_len = map->stripe_len * nr_data_stripes(map);
+ }
+
+ buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
+
+ for (i = 0; i < map->num_stripes; i++) {
+ if (devid && map->stripes[i].dev->devid != devid)
+ continue;
+ if (map->stripes[i].physical > physical ||
+ map->stripes[i].physical + length <= physical)
+ continue;
+
+ stripe_nr = (physical - map->stripes[i].physical) /
+ map->stripe_len;
+
+ if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
+ stripe_nr = (stripe_nr * map->num_stripes + i) /
+ map->sub_stripes;
+ } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
+ stripe_nr = stripe_nr * map->num_stripes + i;
+ } /* else if RAID[56], multiply by nr_data_stripes().
+ * Alternatively, just use rmap_len below instead of
+ * map->stripe_len */
+
+ bytenr = ce->start + stripe_nr * rmap_len;
+ for (j = 0; j < nr; j++) {
+ if (buf[j] == bytenr)
+ break;
+ }
+ if (j == nr)
+ buf[nr++] = bytenr;
+ }
+
+ *logical = buf;
+ *naddrs = nr;
+ *stripe_len = rmap_len;
+
+ return 0;
+}
+
+static inline int parity_smaller(u64 a, u64 b)
+{
+ return a > b;
+}
+
+/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
+static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
+{
+ struct btrfs_bio_stripe s;
+ int i;
+ u64 l;
+ int again = 1;
+
+ while (again) {
+ again = 0;
+ for (i = 0; i < bbio->num_stripes - 1; i++) {
+ if (parity_smaller(raid_map[i], raid_map[i+1])) {
+ s = bbio->stripes[i];
+ l = raid_map[i];
+ bbio->stripes[i] = bbio->stripes[i+1];
+ raid_map[i] = raid_map[i+1];
+ bbio->stripes[i+1] = s;
+ raid_map[i+1] = l;
+ again = 1;
+ }
+ }
+ }
+}
+
+int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
+ u64 logical, u64 *length,
+ struct btrfs_multi_bio **multi_ret, int mirror_num,
+ u64 **raid_map_ret)
+{
+ return __btrfs_map_block(map_tree, rw, logical, length, NULL,
+ multi_ret, mirror_num, raid_map_ret);
+}
+
+int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
+ u64 logical, u64 *length, u64 *type,
+ struct btrfs_multi_bio **multi_ret, int mirror_num,
+ u64 **raid_map_ret)
+{
+ struct cache_extent *ce;
+ struct map_lookup *map;
+ u64 offset;
+ u64 stripe_offset;
+ u64 stripe_nr;
+ u64 *raid_map = NULL;
+ int stripes_allocated = 8;
+ int stripes_required = 1;
+ int stripe_index;
+ int i;
+ struct btrfs_multi_bio *multi = NULL;
+
+ if (multi_ret && rw == READ) {
+ stripes_allocated = 1;
+ }
+again:
+ ce = search_cache_extent(&map_tree->cache_tree, logical);
+ if (!ce) {
+ kfree(multi);
+ *length = (u64)-1;
+ return -ENOENT;
+ }
+ if (ce->start > logical) {
+ kfree(multi);
+ *length = ce->start - logical;
+ return -ENOENT;
+ }
+
+ if (multi_ret) {
+ multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
+ GFP_NOFS);
+ if (!multi)
+ return -ENOMEM;
+ }
+ map = container_of(ce, struct map_lookup, ce);
+ offset = logical - ce->start;
+
+ if (rw == WRITE) {
+ if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_DUP)) {
+ stripes_required = map->num_stripes;
+ } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
+ stripes_required = map->sub_stripes;
+ }
+ }
+ if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
+ && multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
+ /* RAID[56] write or recovery. Return all stripes */
+ stripes_required = map->num_stripes;
+
+ /* Only allocate the map if we've already got a large enough multi_ret */
+ if (stripes_allocated >= stripes_required) {
+ raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
+ if (!raid_map) {
+ kfree(multi);
+ return -ENOMEM;
+ }
+ }
+ }
+
+ /* if our multi bio struct is too small, back off and try again */
+ if (multi_ret && stripes_allocated < stripes_required) {
+ stripes_allocated = stripes_required;
+ kfree(multi);
+ multi = NULL;
+ goto again;
+ }
+ stripe_nr = offset;
+ /*
+ * stripe_nr counts the total number of stripes we have to stride
+ * to get to this block
+ */
+ stripe_nr = stripe_nr / map->stripe_len;
+
+ stripe_offset = stripe_nr * map->stripe_len;
+ BUG_ON(offset < stripe_offset);
+
+ /* stripe_offset is the offset of this block in its stripe*/
+ stripe_offset = offset - stripe_offset;
+
+ if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
+ BTRFS_BLOCK_GROUP_RAID10 |
+ BTRFS_BLOCK_GROUP_DUP)) {
+ /* we limit the length of each bio to what fits in a stripe */
+ *length = min_t(u64, ce->size - offset,
+ map->stripe_len - stripe_offset);
+ } else {
+ *length = ce->size - offset;
+ }
+
+ if (!multi_ret)
+ goto out;
+
+ multi->num_stripes = 1;
+ stripe_index = 0;
+ if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
+ if (rw == WRITE)
+ multi->num_stripes = map->num_stripes;
+ else if (mirror_num)
+ stripe_index = mirror_num - 1;
+ else
+ stripe_index = stripe_nr % map->num_stripes;
+ } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
+ int factor = map->num_stripes / map->sub_stripes;
+
+ stripe_index = stripe_nr % factor;
+ stripe_index *= map->sub_stripes;
+
+ if (rw == WRITE)
+ multi->num_stripes = map->sub_stripes;
+ else if (mirror_num)
+ stripe_index += mirror_num - 1;
+
+ stripe_nr = stripe_nr / factor;
+ } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
+ if (rw == WRITE)
+ multi->num_stripes = map->num_stripes;
+ else if (mirror_num)
+ stripe_index = mirror_num - 1;
+ } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6)) {
+
+ if (raid_map) {
+ int rot;
+ u64 tmp;
+ u64 raid56_full_stripe_start;
+ u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;
+
+ /*
+ * align the start of our data stripe in the logical
+ * address space
+ */
+ raid56_full_stripe_start = offset / full_stripe_len;
+ raid56_full_stripe_start *= full_stripe_len;
+
+ /* get the data stripe number */
+ stripe_nr = raid56_full_stripe_start / map->stripe_len;
+ stripe_nr = stripe_nr / nr_data_stripes(map);
+
+ /* Work out the disk rotation on this stripe-set */
+ rot = stripe_nr % map->num_stripes;
+
+ /* Fill in the logical address of each stripe */
+ tmp = stripe_nr * nr_data_stripes(map);
+
+ for (i = 0; i < nr_data_stripes(map); i++)
+ raid_map[(i+rot) % map->num_stripes] =
+ ce->start + (tmp + i) * map->stripe_len;
+
+ raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
+ if (map->type & BTRFS_BLOCK_GROUP_RAID6)
+ raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;
+
+ *length = map->stripe_len;
+ stripe_index = 0;
+ stripe_offset = 0;
+ multi->num_stripes = map->num_stripes;
+ } else {
+ stripe_index = stripe_nr % nr_data_stripes(map);
+ stripe_nr = stripe_nr / nr_data_stripes(map);
+
+ /*
+ * Mirror #0 or #1 means the original data block.
+ * Mirror #2 is RAID5 parity block.
+ * Mirror #3 is RAID6 Q block.
+ */
+ if (mirror_num > 1)
+ stripe_index = nr_data_stripes(map) + mirror_num - 2;
+
+ /* We distribute the parity blocks across stripes */
+ stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
+ }
+ } else {
+ /*
+ * after this do_div call, stripe_nr is the number of stripes
+ * on this device we have to walk to find the data, and
+ * stripe_index is the number of our device in the stripe array
+ */
+ stripe_index = stripe_nr % map->num_stripes;
+ stripe_nr = stripe_nr / map->num_stripes;
+ }
+ BUG_ON(stripe_index >= map->num_stripes);
+
+ for (i = 0; i < multi->num_stripes; i++) {
+ multi->stripes[i].physical =
+ map->stripes[stripe_index].physical + stripe_offset +
+ stripe_nr * map->stripe_len;
+ multi->stripes[i].dev = map->stripes[stripe_index].dev;
+ stripe_index++;
+ }
+ *multi_ret = multi;
+
+ if (type)
+ *type = map->type;
+
+ if (raid_map) {
+ sort_parity_stripes(multi, raid_map);
+ *raid_map_ret = raid_map;
+ }
+out:
+ return 0;
+}
+
+struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
+ u8 *uuid, u8 *fsid)
+{
+ struct btrfs_device *device;
+ struct btrfs_fs_devices *cur_devices;
+
+ cur_devices = root->fs_info->fs_devices;
+ while (cur_devices) {
+ if (!fsid ||
+ (!memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE) ||
+ root->fs_info->ignore_fsid_mismatch)) {
+ device = __find_device(&cur_devices->devices,
+ devid, uuid);
+ if (device)
+ return device;
+ }
+ cur_devices = cur_devices->seed;
+ }
+ return NULL;
+}
+
+struct btrfs_device *
+btrfs_find_device_by_devid(struct btrfs_fs_devices *fs_devices,
+ u64 devid, int instance)
+{
+ struct list_head *head = &fs_devices->devices;
+ struct btrfs_device *dev;
+ int num_found = 0;
+
+ list_for_each_entry(dev, head, dev_list) {
+ if (dev->devid == devid && num_found++ == instance)
+ return dev;
+ }
+ return NULL;
+}
+
+int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
+{
+ struct cache_extent *ce;
+ struct map_lookup *map;
+ struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
+ int readonly = 0;
+ int i;
+
+ /*
+ * During chunk recovering, we may fail to find block group's
+ * corresponding chunk, we will rebuild it later
+ */
+ ce = search_cache_extent(&map_tree->cache_tree, chunk_offset);
+ if (!root->fs_info->is_chunk_recover)
+ BUG_ON(!ce);
+ else
+ return 0;
+
+ map = container_of(ce, struct map_lookup, ce);
+ for (i = 0; i < map->num_stripes; i++) {
+ if (!map->stripes[i].dev->writeable) {
+ readonly = 1;
+ break;
+ }
+ }
+
+ return readonly;
+}
+
+static struct btrfs_device *fill_missing_device(u64 devid)
+{
+ struct btrfs_device *device;
+
+ device = kzalloc(sizeof(*device), GFP_NOFS);
+ device->devid = devid;
+ device->fd = -1;
+ return device;
+}
+
+/*
+ * slot == -1: SYSTEM chunk
+ * return -EIO on error, otherwise return 0
+ */
+static int btrfs_check_chunk_valid(struct btrfs_root *root,
+ struct extent_buffer *leaf,
+ struct btrfs_chunk *chunk,
+ int slot, u64 logical)
+{
+ u64 length;
+ u64 stripe_len;
+ u16 num_stripes;
+ u16 sub_stripes;
+ u64 type;
+
+ length = btrfs_chunk_length(leaf, chunk);
+ stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
+ num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
+ sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
+ type = btrfs_chunk_type(leaf, chunk);
+
+ /*
+ * These valid checks may be insufficient to cover every corner cases.
+ */
+ if (!IS_ALIGNED(logical, root->sectorsize)) {
+ error("invalid chunk logical %llu", logical);
+ return -EIO;
+ }
+ if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
+ error("invalid chunk sectorsize %llu",
+ (unsigned long long)btrfs_chunk_sector_size(leaf, chunk));
+ return -EIO;
+ }
+ if (!length || !IS_ALIGNED(length, root->sectorsize)) {
+ error("invalid chunk length %llu", length);
+ return -EIO;
+ }
+ if (stripe_len != BTRFS_STRIPE_LEN) {
+ error("invalid chunk stripe length: %llu", stripe_len);
+ return -EIO;
+ }
+ /* Check on chunk item type */
+ if (slot == -1 && (type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
+ error("invalid chunk type %llu", type);
+ return -EIO;
+ }
+ if (type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
+ BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
+ error("unrecognized chunk type: %llu",
+ ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
+ BTRFS_BLOCK_GROUP_PROFILE_MASK) & type);
+ return -EIO;
+ }
+ /*
+ * Btrfs_chunk contains at least one stripe, and for sys_chunk
+ * it can't exceed the system chunk array size
+ * For normal chunk, it should match its chunk item size.
+ */
+ if (num_stripes < 1 ||
+ (slot == -1 && sizeof(struct btrfs_stripe) * num_stripes >
+ BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) ||
+ (slot >= 0 && sizeof(struct btrfs_stripe) * (num_stripes - 1) >
+ btrfs_item_size_nr(leaf, slot))) {
+ error("invalid num_stripes: %u", num_stripes);
+ return -EIO;
+ }
+ /*
+ * Device number check against profile
+ */
+ if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes == 0) ||
+ (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
+ (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
+ (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
+ (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
+ ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
+ num_stripes != 1)) {
+ error("Invalid num_stripes:sub_stripes %u:%u for profile %llu",
+ num_stripes, sub_stripes,
+ type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/*
+ * Slot is used to verify the chunk item is valid
+ *
+ * For sys chunk in superblock, pass -1 to indicate sys chunk.
+ */
+static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
+ struct extent_buffer *leaf,
+ struct btrfs_chunk *chunk, int slot)
+{
+ struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
+ struct map_lookup *map;
+ struct cache_extent *ce;
+ u64 logical;
+ u64 length;
+ u64 devid;
+ u8 uuid[BTRFS_UUID_SIZE];
+ int num_stripes;
+ int ret;
+ int i;
+
+ logical = key->offset;
+ length = btrfs_chunk_length(leaf, chunk);
+ num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
+ /* Validation check */
+ ret = btrfs_check_chunk_valid(root, leaf, chunk, slot, logical);
+ if (ret) {
+ error("%s checksums match, but it has an invalid chunk, %s",
+ (slot == -1) ? "Superblock" : "Metadata",
+ (slot == -1) ? "try btrfsck --repair -s <superblock> ie, 0,1,2" : "");
+ return ret;
+ }
+
+ ce = search_cache_extent(&map_tree->cache_tree, logical);
+
+ /* already mapped? */
+ if (ce && ce->start <= logical && ce->start + ce->size > logical) {
+ return 0;
+ }
+
+ map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
+ if (!map)
+ return -ENOMEM;
+
+ map->ce.start = logical;
+ map->ce.size = length;
+ map->num_stripes = num_stripes;
+ map->io_width = btrfs_chunk_io_width(leaf, chunk);
+ map->io_align = btrfs_chunk_io_align(leaf, chunk);
+ map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
+ map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
+ map->type = btrfs_chunk_type(leaf, chunk);
+ map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
+
+ for (i = 0; i < num_stripes; i++) {
+ map->stripes[i].physical =
+ btrfs_stripe_offset_nr(leaf, chunk, i);
+ devid = btrfs_stripe_devid_nr(leaf, chunk, i);
+ read_extent_buffer(leaf, uuid, (unsigned long)
+ btrfs_stripe_dev_uuid_nr(chunk, i),
+ BTRFS_UUID_SIZE);
+ map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
+ NULL);
+ if (!map->stripes[i].dev) {
+ map->stripes[i].dev = fill_missing_device(devid);
+ printf("warning, device %llu is missing\n",
+ (unsigned long long)devid);
+ }
+
+ }
+ ret = insert_cache_extent(&map_tree->cache_tree, &map->ce);
+ BUG_ON(ret);
+
+ return 0;
+}
+
+static int fill_device_from_item(struct extent_buffer *leaf,
+ struct btrfs_dev_item *dev_item,
+ struct btrfs_device *device)
+{
+ unsigned long ptr;
+
+ device->devid = btrfs_device_id(leaf, dev_item);
+ device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
+ device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
+ device->type = btrfs_device_type(leaf, dev_item);
+ device->io_align = btrfs_device_io_align(leaf, dev_item);
+ device->io_width = btrfs_device_io_width(leaf, dev_item);
+ device->sector_size = btrfs_device_sector_size(leaf, dev_item);
+
+ ptr = (unsigned long)btrfs_device_uuid(dev_item);
+ read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
+
+ return 0;
+}
+
+static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
+{
+ struct btrfs_fs_devices *fs_devices;
+ int ret;
+
+ fs_devices = root->fs_info->fs_devices->seed;
+ while (fs_devices) {
+ if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
+ ret = 0;
+ goto out;
+ }
+ fs_devices = fs_devices->seed;
+ }
+
+ fs_devices = find_fsid(fsid);
+ if (!fs_devices) {
+ /* missing all seed devices */
+ fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
+ if (!fs_devices) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ INIT_LIST_HEAD(&fs_devices->devices);
+ list_add(&fs_devices->list, &fs_uuids);
+ memcpy(fs_devices->fsid, fsid, BTRFS_FSID_SIZE);
+ }
+
+ ret = btrfs_open_devices(fs_devices, O_RDONLY);
+ if (ret)
+ goto out;
+
+ fs_devices->seed = root->fs_info->fs_devices->seed;
+ root->fs_info->fs_devices->seed = fs_devices;
+out:
+ return ret;
+}
+
+static int read_one_dev(struct btrfs_root *root,
+ struct extent_buffer *leaf,
+ struct btrfs_dev_item *dev_item)
+{
+ struct btrfs_device *device;
+ u64 devid;
+ int ret = 0;
+ u8 fs_uuid[BTRFS_UUID_SIZE];
+ u8 dev_uuid[BTRFS_UUID_SIZE];
+
+ devid = btrfs_device_id(leaf, dev_item);
+ read_extent_buffer(leaf, dev_uuid,
+ (unsigned long)btrfs_device_uuid(dev_item),
+ BTRFS_UUID_SIZE);
+ read_extent_buffer(leaf, fs_uuid,
+ (unsigned long)btrfs_device_fsid(dev_item),
+ BTRFS_UUID_SIZE);
+
+ if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
+ ret = open_seed_devices(root, fs_uuid);
+ if (ret)
+ return ret;
+ }
+
+ device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
+ if (!device) {
+ device = kzalloc(sizeof(*device), GFP_NOFS);
+ if (!device)
+ return -ENOMEM;
+ device->fd = -1;
+ list_add(&device->dev_list,
+ &root->fs_info->fs_devices->devices);
+ }
+
+ fill_device_from_item(leaf, dev_item, device);
+ device->dev_root = root->fs_info->dev_root;
+ return ret;
+}
+
+int btrfs_read_sys_array(struct btrfs_root *root)
+{
+ struct btrfs_super_block *super_copy = root->fs_info->super_copy;
+ struct extent_buffer *sb;
+ struct btrfs_disk_key *disk_key;
+ struct btrfs_chunk *chunk;
+ u8 *array_ptr;
+ unsigned long sb_array_offset;
+ int ret = 0;
+ u32 num_stripes;
+ u32 array_size;
+ u32 len = 0;
+ u32 cur_offset;
+ struct btrfs_key key;
+
+ sb = btrfs_find_create_tree_block(root->fs_info,
+ BTRFS_SUPER_INFO_OFFSET,
+ BTRFS_SUPER_INFO_SIZE);
+ if (!sb)
+ return -ENOMEM;
+ btrfs_set_buffer_uptodate(sb);
+ write_extent_buffer(sb, super_copy, 0, sizeof(*super_copy));
+ array_size = btrfs_super_sys_array_size(super_copy);
+
+ array_ptr = super_copy->sys_chunk_array;
+ sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
+ cur_offset = 0;
+
+ while (cur_offset < array_size) {
+ disk_key = (struct btrfs_disk_key *)array_ptr;
+ len = sizeof(*disk_key);
+ if (cur_offset + len > array_size)
+ goto out_short_read;
+
+ btrfs_disk_key_to_cpu(&key, disk_key);
+
+ array_ptr += len;
+ sb_array_offset += len;
+ cur_offset += len;
+
+ if (key.type == BTRFS_CHUNK_ITEM_KEY) {
+ chunk = (struct btrfs_chunk *)sb_array_offset;
+ /*
+ * At least one btrfs_chunk with one stripe must be
+ * present, exact stripe count check comes afterwards
+ */
+ len = btrfs_chunk_item_size(1);
+ if (cur_offset + len > array_size)
+ goto out_short_read;
+
+ num_stripes = btrfs_chunk_num_stripes(sb, chunk);
+ if (!num_stripes) {
+ printk(
+ "ERROR: invalid number of stripes %u in sys_array at offset %u\n",
+ num_stripes, cur_offset);
+ ret = -EIO;
+ break;
+ }
+
+ len = btrfs_chunk_item_size(num_stripes);
+ if (cur_offset + len > array_size)
+ goto out_short_read;
+
+ ret = read_one_chunk(root, &key, sb, chunk, -1);
+ if (ret)
+ break;
+ } else {
+ printk(
+ "ERROR: unexpected item type %u in sys_array at offset %u\n",
+ (u32)key.type, cur_offset);
+ ret = -EIO;
+ break;
+ }
+ array_ptr += len;
+ sb_array_offset += len;
+ cur_offset += len;
+ }
+ free_extent_buffer(sb);
+ return ret;
+
+out_short_read:
+ printk("ERROR: sys_array too short to read %u bytes at offset %u\n",
+ len, cur_offset);
+ free_extent_buffer(sb);
+ return -EIO;
+}
+
+int btrfs_read_chunk_tree(struct btrfs_root *root)
+{
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ int ret;
+ int slot;
+
+ root = root->fs_info->chunk_root;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ /*
+ * Read all device items, and then all the chunk items. All
+ * device items are found before any chunk item (their object id
+ * is smaller than the lowest possible object id for a chunk
+ * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
+ */
+ key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
+ key.offset = 0;
+ key.type = 0;
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto error;
+ while(1) {
+ leaf = path->nodes[0];
+ slot = path->slots[0];
+ if (slot >= btrfs_header_nritems(leaf)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret == 0)
+ continue;
+ if (ret < 0)
+ goto error;
+ break;
+ }
+ btrfs_item_key_to_cpu(leaf, &found_key, slot);
+ if (found_key.type == BTRFS_DEV_ITEM_KEY) {
+ struct btrfs_dev_item *dev_item;
+ dev_item = btrfs_item_ptr(leaf, slot,
+ struct btrfs_dev_item);
+ ret = read_one_dev(root, leaf, dev_item);
+ BUG_ON(ret);
+ } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
+ struct btrfs_chunk *chunk;
+ chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
+ ret = read_one_chunk(root, &found_key, leaf, chunk,
+ slot);
+ BUG_ON(ret);
+ }
+ path->slots[0]++;
+ }
+
+ ret = 0;
+error:
+ btrfs_free_path(path);
+ return ret;
+}
+
+struct list_head *btrfs_scanned_uuids(void)
+{
+ return &fs_uuids;
+}
+
+static int rmw_eb(struct btrfs_fs_info *info,
+ struct extent_buffer *eb, struct extent_buffer *orig_eb)
+{
+ int ret;
+ unsigned long orig_off = 0;
+ unsigned long dest_off = 0;
+ unsigned long copy_len = eb->len;
+
+ ret = read_whole_eb(info, eb, 0);
+ if (ret)
+ return ret;
+
+ if (eb->start + eb->len <= orig_eb->start ||
+ eb->start >= orig_eb->start + orig_eb->len)
+ return 0;
+ /*
+ * | ----- orig_eb ------- |
+ * | ----- stripe ------- |
+ * | ----- orig_eb ------- |
+ * | ----- orig_eb ------- |
+ */
+ if (eb->start > orig_eb->start)
+ orig_off = eb->start - orig_eb->start;
+ if (orig_eb->start > eb->start)
+ dest_off = orig_eb->start - eb->start;
+
+ if (copy_len > orig_eb->len - orig_off)
+ copy_len = orig_eb->len - orig_off;
+ if (copy_len > eb->len - dest_off)
+ copy_len = eb->len - dest_off;
+
+ memcpy(eb->data + dest_off, orig_eb->data + orig_off, copy_len);
+ return 0;
+}
+
+static void split_eb_for_raid56(struct btrfs_fs_info *info,
+ struct extent_buffer *orig_eb,
+ struct extent_buffer **ebs,
+ u64 stripe_len, u64 *raid_map,
+ int num_stripes)
+{
+ struct extent_buffer *eb;
+ u64 start = orig_eb->start;
+ u64 this_eb_start;
+ int i;
+ int ret;
+
+ for (i = 0; i < num_stripes; i++) {
+ if (raid_map[i] >= BTRFS_RAID5_P_STRIPE)
+ break;
+
+ eb = calloc(1, sizeof(struct extent_buffer) + stripe_len);
+ if (!eb)
+ BUG();
+
+ eb->start = raid_map[i];
+ eb->len = stripe_len;
+ eb->refs = 1;
+ eb->flags = 0;
+ eb->fd = -1;
+ eb->dev_bytenr = (u64)-1;
+
+ this_eb_start = raid_map[i];
+
+ if (start > this_eb_start ||
+ start + orig_eb->len < this_eb_start + stripe_len) {
+ ret = rmw_eb(info, eb, orig_eb);
+ BUG_ON(ret);
+ } else {
+ memcpy(eb->data, orig_eb->data + eb->start - start, stripe_len);
+ }
+ ebs[i] = eb;
+ }
+}
+
+int write_raid56_with_parity(struct btrfs_fs_info *info,
+ struct extent_buffer *eb,
+ struct btrfs_multi_bio *multi,
+ u64 stripe_len, u64 *raid_map)
+{
+ struct extent_buffer **ebs, *p_eb = NULL, *q_eb = NULL;
+ int i;
+ int j;
+ int ret;
+ int alloc_size = eb->len;
+
+ ebs = kmalloc(sizeof(*ebs) * multi->num_stripes, GFP_NOFS);
+ BUG_ON(!ebs);
+
+ if (stripe_len > alloc_size)
+ alloc_size = stripe_len;
+
+ split_eb_for_raid56(info, eb, ebs, stripe_len, raid_map,
+ multi->num_stripes);
+
+ for (i = 0; i < multi->num_stripes; i++) {
+ struct extent_buffer *new_eb;
+ if (raid_map[i] < BTRFS_RAID5_P_STRIPE) {
+ ebs[i]->dev_bytenr = multi->stripes[i].physical;
+ ebs[i]->fd = multi->stripes[i].dev->fd;
+ multi->stripes[i].dev->total_ios++;
+ BUG_ON(ebs[i]->start != raid_map[i]);
+ continue;
+ }
+ new_eb = kmalloc(sizeof(*eb) + alloc_size, GFP_NOFS);
+ BUG_ON(!new_eb);
+ new_eb->dev_bytenr = multi->stripes[i].physical;
+ new_eb->fd = multi->stripes[i].dev->fd;
+ multi->stripes[i].dev->total_ios++;
+ new_eb->len = stripe_len;
+
+ if (raid_map[i] == BTRFS_RAID5_P_STRIPE)
+ p_eb = new_eb;
+ else if (raid_map[i] == BTRFS_RAID6_Q_STRIPE)
+ q_eb = new_eb;
+ }
+ if (q_eb) {
+ void **pointers;
+
+ pointers = kmalloc(sizeof(*pointers) * multi->num_stripes,
+ GFP_NOFS);
+ BUG_ON(!pointers);
+
+ ebs[multi->num_stripes - 2] = p_eb;
+ ebs[multi->num_stripes - 1] = q_eb;
+
+ for (i = 0; i < multi->num_stripes; i++)
+ pointers[i] = ebs[i]->data;
+
+ raid6_gen_syndrome(multi->num_stripes, stripe_len, pointers);
+ kfree(pointers);
+ } else {
+ ebs[multi->num_stripes - 1] = p_eb;
+ memcpy(p_eb->data, ebs[0]->data, stripe_len);
+ for (j = 1; j < multi->num_stripes - 1; j++) {
+ for (i = 0; i < stripe_len; i += sizeof(unsigned long)) {
+ *(unsigned long *)(p_eb->data + i) ^=
+ *(unsigned long *)(ebs[j]->data + i);
+ }
+ }
+ }
+
+ for (i = 0; i < multi->num_stripes; i++) {
+ ret = write_extent_to_disk(ebs[i]);
+ BUG_ON(ret);
+ if (ebs[i] != eb)
+ kfree(ebs[i]);
+ }
+
+ kfree(ebs);
+
+ return 0;
+}