/* * Copyright (C) 2011 Red Hat. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include "kerncompat.h" #include "ctree.h" #include "disk-io.h" #include "print-tree.h" #include "transaction.h" #include "list.h" #include "volumes.h" #include "utils.h" static int verbose = 0; static int no_pretty = 0; struct seek { u64 distance; u64 count; struct rb_node n; }; struct root_stats { u64 total_nodes; u64 total_leaves; u64 total_bytes; u64 total_inline; u64 total_seeks; u64 forward_seeks; u64 backward_seeks; u64 total_seek_len; u64 max_seek_len; u64 total_clusters; u64 total_cluster_size; u64 min_cluster_size; u64 max_cluster_size; u64 lowest_bytenr; u64 highest_bytenr; struct rb_root seek_root; int total_levels; }; static int add_seek(struct rb_root *root, u64 dist) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct seek *seek = NULL; while (*p) { parent = *p; seek = rb_entry(parent, struct seek, n); if (dist < seek->distance) { p = &(*p)->rb_left; } else if (dist > seek->distance) { p = &(*p)->rb_right; } else { seek->count++; return 0; } } seek = malloc(sizeof(struct seek)); if (!seek) return -ENOMEM; seek->distance = dist; seek->count = 1; rb_link_node(&seek->n, parent, p); rb_insert_color(&seek->n, root); return 0; } static int walk_leaf(struct btrfs_root *root, struct btrfs_path *path, struct root_stats *stat, int find_inline) { struct extent_buffer *b = path->nodes[0]; struct btrfs_file_extent_item *fi; struct btrfs_key found_key; int i; stat->total_bytes += root->leafsize; stat->total_leaves++; if (!find_inline) return 0; for (i = 0; i < btrfs_header_nritems(b); i++) { btrfs_item_key_to_cpu(b, &found_key, i); if (found_key.type != BTRFS_EXTENT_DATA_KEY) continue; fi = btrfs_item_ptr(b, i, struct btrfs_file_extent_item); if (btrfs_file_extent_type(b, fi) == BTRFS_FILE_EXTENT_INLINE) stat->total_inline += btrfs_file_extent_inline_item_len(b, btrfs_item_nr(i)); } return 0; } static u64 calc_distance(u64 block1, u64 block2) { if (block1 < block2) return block2 - block1; return block1 - block2; } static int walk_nodes(struct btrfs_root *root, struct btrfs_path *path, struct root_stats *stat, int level, int find_inline) { struct extent_buffer *b = path->nodes[level]; u64 last_block; u64 cluster_size = root->leafsize; int i; int ret = 0; stat->total_bytes += root->nodesize; stat->total_nodes++; last_block = btrfs_header_bytenr(b); for (i = 0; i < btrfs_header_nritems(b); i++) { struct extent_buffer *tmp = NULL; u64 cur_blocknr = btrfs_node_blockptr(b, i); path->slots[level] = i; if ((level - 1) > 0 || find_inline) { tmp = read_tree_block(root, cur_blocknr, btrfs_level_size(root, level - 1), btrfs_node_ptr_generation(b, i)); if (!extent_buffer_uptodate(tmp)) { fprintf(stderr, "Failed to read blocknr %Lu\n", btrfs_node_blockptr(b, i)); continue; } path->nodes[level - 1] = tmp; } if (level - 1) ret = walk_nodes(root, path, stat, level - 1, find_inline); else ret = walk_leaf(root, path, stat, find_inline); if (last_block + root->leafsize != cur_blocknr) { u64 distance = calc_distance(last_block + root->leafsize, cur_blocknr); stat->total_seeks++; stat->total_seek_len += distance; if (stat->max_seek_len < distance) stat->max_seek_len = distance; if (add_seek(&stat->seek_root, distance)) { fprintf(stderr, "Error adding new seek\n"); ret = -ENOMEM; break; } if (last_block < cur_blocknr) stat->forward_seeks++; else stat->backward_seeks++; if (cluster_size != root->leafsize) { stat->total_cluster_size += cluster_size; stat->total_clusters++; if (cluster_size < stat->min_cluster_size) stat->min_cluster_size = cluster_size; if (cluster_size > stat->max_cluster_size) stat->max_cluster_size = cluster_size; } cluster_size = root->leafsize; } else { cluster_size += root->leafsize; } last_block = cur_blocknr; if (cur_blocknr < stat->lowest_bytenr) stat->lowest_bytenr = cur_blocknr; if (cur_blocknr > stat->highest_bytenr) stat->highest_bytenr = cur_blocknr; free_extent_buffer(tmp); if (ret) { fprintf(stderr, "Error walking down path\n"); break; } } return ret; } static void print_seek_histogram(struct root_stats *stat) { struct rb_node *n = rb_first(&stat->seek_root); struct seek *seek; u64 tick_interval; u64 group_start = 0; u64 group_count = 0; u64 group_end = 0; u64 i; u64 max_seek = stat->max_seek_len; int digits = 1; if (stat->total_seeks < 20) return; while ((max_seek /= 10)) digits++; /* Make a tick count as 5% of the total seeks */ tick_interval = stat->total_seeks / 20; printf("\tSeek histogram\n"); for (; n; n = rb_next(n)) { u64 ticks, gticks = 0; seek = rb_entry(n, struct seek, n); ticks = seek->count / tick_interval; if (group_count) gticks = group_count / tick_interval; if (ticks <= 2 && gticks <= 2) { if (group_count == 0) group_start = seek->distance; group_end = seek->distance; group_count += seek->count; continue; } if (group_count) { gticks = group_count / tick_interval; printf("\t\t%*Lu - %*Lu: %*Lu ", digits, group_start, digits, group_end, digits, group_count); if (gticks) { for (i = 0; i < gticks; i++) printf("#"); printf("\n"); } else { printf("|\n"); } group_count = 0; } if (ticks <= 2) continue; printf("\t\t%*Lu - %*Lu: %*Lu ", digits, seek->distance, digits, seek->distance, digits, seek->count); for (i = 0; i < ticks; i++) printf("#"); printf("\n"); } if (group_count) { u64 gticks; gticks = group_count / tick_interval; printf("\t\t%*Lu - %*Lu: %*Lu ", digits, group_start, digits, group_end, digits, group_count); if (gticks) { for (i = 0; i < gticks; i++) printf("#"); printf("\n"); } else { printf("|\n"); } group_count = 0; } } static void timeval_subtract(struct timeval *result,struct timeval *x, struct timeval *y) { if (x->tv_usec < y->tv_usec) { int nsec = (y->tv_usec - x->tv_usec) / 1000000 + 1; y->tv_usec -= 1000000 * nsec; y->tv_sec += nsec; } if (x->tv_usec - y->tv_usec > 1000000) { int nsec = (x->tv_usec - y->tv_usec) / 1000000; y->tv_usec += 1000000 * nsec; y->tv_sec -= nsec; } result->tv_sec = x->tv_sec - y->tv_sec; result->tv_usec = x->tv_usec - y->tv_usec; } static int calc_root_size(struct btrfs_root *tree_root, struct btrfs_key *key, int find_inline) { struct btrfs_root *root; struct btrfs_path *path; struct rb_node *n; struct timeval start, end, diff = {0}; struct root_stats stat; int level; int ret = 0; int size_fail = 0; root = btrfs_read_fs_root(tree_root->fs_info, key); if (IS_ERR(root)) { fprintf(stderr, "Failed to read root %Lu\n", key->objectid); return 1; } path = btrfs_alloc_path(); if (!path) { fprintf(stderr, "Could not allocate path\n"); return 1; } memset(&stat, 0, sizeof(stat)); level = btrfs_header_level(root->node); stat.lowest_bytenr = btrfs_header_bytenr(root->node); stat.highest_bytenr = stat.lowest_bytenr; stat.min_cluster_size = (u64)-1; stat.max_cluster_size = root->leafsize; path->nodes[level] = root->node; if (gettimeofday(&start, NULL)) { fprintf(stderr, "Error getting time: %d\n", errno); goto out; } if (!level) { ret = walk_leaf(root, path, &stat, find_inline); if (ret) goto out; goto out_print; } ret = walk_nodes(root, path, &stat, level, find_inline); if (ret) goto out; if (gettimeofday(&end, NULL)) { fprintf(stderr, "Error getting time: %d\n", errno); goto out; } timeval_subtract(&diff, &end, &start); out_print: if (stat.min_cluster_size == (u64)-1) { stat.min_cluster_size = 0; stat.total_clusters = 1; } if (no_pretty || size_fail) { printf("\tTotal size: %Lu\n", stat.total_bytes); printf("\t\tInline data: %Lu\n", stat.total_inline); printf("\tTotal seeks: %Lu\n", stat.total_seeks); printf("\t\tForward seeks: %Lu\n", stat.forward_seeks); printf("\t\tBackward seeks: %Lu\n", stat.backward_seeks); printf("\t\tAvg seek len: %llu\n", stat.total_seeks ? stat.total_seek_len / stat.total_seeks : 0); print_seek_histogram(&stat); printf("\tTotal clusters: %Lu\n", stat.total_clusters); printf("\t\tAvg cluster size: %Lu\n", stat.total_cluster_size / stat.total_clusters); printf("\t\tMin cluster size: %Lu\n", stat.min_cluster_size); printf("\t\tMax cluster size: %Lu\n", stat.max_cluster_size); printf("\tTotal disk spread: %Lu\n", stat.highest_bytenr - stat.lowest_bytenr); printf("\tTotal read time: %d s %d us\n", (int)diff.tv_sec, (int)diff.tv_usec); printf("\tLevels: %d\n", level + 1); } else { printf("\tTotal size: %s\n", pretty_size(stat.total_bytes)); printf("\t\tInline data: %s\n", pretty_size(stat.total_inline)); printf("\tTotal seeks: %Lu\n", stat.total_seeks); printf("\t\tForward seeks: %Lu\n", stat.forward_seeks); printf("\t\tBackward seeks: %Lu\n", stat.backward_seeks); printf("\t\tAvg seek len: %s\n", stat.total_seeks ? pretty_size(stat.total_seek_len / stat.total_seeks) : pretty_size(0)); print_seek_histogram(&stat); printf("\tTotal clusters: %Lu\n", stat.total_clusters); printf("\t\tAvg cluster size: %s\n", pretty_size((stat.total_cluster_size / stat.total_clusters))); printf("\t\tMin cluster size: %s\n", pretty_size(stat.min_cluster_size)); printf("\t\tMax cluster size: %s\n", pretty_size(stat.max_cluster_size)); printf("\tTotal disk spread: %s\n", pretty_size(stat.highest_bytenr - stat.lowest_bytenr)); printf("\tTotal read time: %d s %d us\n", (int)diff.tv_sec, (int)diff.tv_usec); printf("\tLevels: %d\n", level + 1); } out: while ((n = rb_first(&stat.seek_root)) != NULL) { struct seek *seek = rb_entry(n, struct seek, n); rb_erase(n, &stat.seek_root); free(seek); } /* * We only use path to save node data in iterating, * without holding eb's ref_cnt in path. * Don't use btrfs_free_path() here, it will free these * eb again, and cause many problems, as negative ref_cnt * or invalid memory access. */ free(path); return ret; } static void usage(void) { fprintf(stderr, "Usage: calc-size [-v] [-b] \n"); } int main(int argc, char **argv) { struct btrfs_key key; struct btrfs_root *root; int opt; int ret = 0; while ((opt = getopt(argc, argv, "vb")) != -1) { switch (opt) { case 'v': verbose++; break; case 'b': no_pretty = 1; break; default: usage(); exit(1); } } set_argv0(argv); argc = argc - optind; if (check_argc_min(argc, 1)) { usage(); exit(1); } /* if ((ret = check_mounted(argv[optind])) < 0) { fprintf(stderr, "Could not check mount status: %d\n", ret); if (ret == -EACCES) fprintf(stderr, "Maybe you need to run as root?\n"); return ret; } else if (ret) { fprintf(stderr, "%s is currently mounted. Aborting.\n", argv[optind]); return -EBUSY; } */ root = open_ctree(argv[optind], 0, 0); if (!root) { fprintf(stderr, "Couldn't open ctree\n"); exit(1); } printf("Calculating size of root tree\n"); key.objectid = BTRFS_ROOT_TREE_OBJECTID; ret = calc_root_size(root, &key, 0); if (ret) goto out; printf("Calculating size of extent tree\n"); key.objectid = BTRFS_EXTENT_TREE_OBJECTID; ret = calc_root_size(root, &key, 0); if (ret) goto out; printf("Calculating size of csum tree\n"); key.objectid = BTRFS_CSUM_TREE_OBJECTID; ret = calc_root_size(root, &key, 0); if (ret) goto out; key.objectid = BTRFS_FS_TREE_OBJECTID; key.offset = (u64)-1; printf("Calculatin' size of fs tree\n"); ret = calc_root_size(root, &key, 1); if (ret) goto out; out: close_ctree(root); btrfs_close_all_devices(); return ret; }