/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #define _XOPEN_SOURCE 600 #define _GNU_SOURCE 1 #include "kerncompat.h" #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "volumes.h" #include "transaction.h" #include "crc32c.h" #include "utils.h" #include #include #include #define INO_OFFSET (BTRFS_FIRST_FREE_OBJECTID - EXT2_ROOT_INO) #define EXT2_IMAGE_SUBVOL_OBJECTID BTRFS_FIRST_FREE_OBJECTID /* * Open Ext2fs in readonly mode, read block allocation bitmap and * inode bitmap into memory. */ static int open_ext2fs(const char *name, ext2_filsys *ret_fs) { errcode_t ret; ext2_filsys ext2_fs; ext2_ino_t ino; ret = ext2fs_open(name, 0, 0, 0, unix_io_manager, &ext2_fs); if (ret) { fprintf(stderr, "ext2fs_open: %s\n", error_message(ret)); goto fail; } ret = ext2fs_read_inode_bitmap(ext2_fs); if (ret) { fprintf(stderr, "ext2fs_read_inode_bitmap: %s\n", error_message(ret)); goto fail; } ret = ext2fs_read_block_bitmap(ext2_fs); if (ret) { fprintf(stderr, "ext2fs_read_block_bitmap: %s\n", error_message(ret)); goto fail; } /* * search each block group for a free inode. this set up * uninit block/inode bitmaps appropriately. */ ino = 1; while (ino <= ext2_fs->super->s_inodes_count) { ext2_ino_t foo; ext2fs_new_inode(ext2_fs, ino, 0, NULL, &foo); ino += EXT2_INODES_PER_GROUP(ext2_fs->super); } *ret_fs = ext2_fs; return 0; fail: return -1; } static int close_ext2fs(ext2_filsys fs) { ext2fs_close(fs); return 0; } static int ext2_alloc_block(ext2_filsys fs, u64 goal, u64 *block_ret) { blk_t block; if (!ext2fs_new_block(fs, goal, NULL, &block)) { ext2fs_fast_mark_block_bitmap(fs->block_map, block); *block_ret = block; return 0; } return -ENOSPC; } static int ext2_free_block(ext2_filsys fs, u64 block) { BUG_ON(block != (blk_t)block); ext2fs_fast_unmark_block_bitmap(fs->block_map, block); return 0; } static int cache_free_extents(struct btrfs_root *root, ext2_filsys ext2_fs) { int i, ret = 0; blk_t block; u64 bytenr; u64 blocksize = ext2_fs->blocksize; block = ext2_fs->super->s_first_data_block; for (; block < ext2_fs->super->s_blocks_count; block++) { if (ext2fs_fast_test_block_bitmap(ext2_fs->block_map, block)) continue; bytenr = block * blocksize; ret = set_extent_dirty(&root->fs_info->free_space_cache, bytenr, bytenr + blocksize - 1, 0); BUG_ON(ret); } for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { bytenr = btrfs_sb_offset(i); bytenr &= ~((u64)BTRFS_STRIPE_LEN - 1); if (bytenr >= blocksize * ext2_fs->super->s_blocks_count) break; clear_extent_dirty(&root->fs_info->free_space_cache, bytenr, bytenr + BTRFS_STRIPE_LEN - 1, 0); } clear_extent_dirty(&root->fs_info->free_space_cache, 0, BTRFS_SUPER_INFO_OFFSET - 1, 0); return 0; } static int custom_alloc_extent(struct btrfs_root *root, u64 num_bytes, u64 hint_byte, struct btrfs_key *ins) { u64 start; u64 end; u64 last = hint_byte; int ret; int wrapped = 0; struct btrfs_block_group_cache *cache; while(1) { ret = find_first_extent_bit(&root->fs_info->free_space_cache, last, &start, &end, EXTENT_DIRTY); if (ret) { if (wrapped++ == 0) { last = 0; continue; } else { goto fail; } } start = max(last, start); last = end + 1; if (last - start < num_bytes) continue; last = start + num_bytes; if (test_range_bit(&root->fs_info->pinned_extents, start, last - 1, EXTENT_DIRTY, 0)) continue; cache = btrfs_lookup_block_group(root->fs_info, start); BUG_ON(!cache); if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM || last > cache->key.objectid + cache->key.offset) { last = cache->key.objectid + cache->key.offset; continue; } clear_extent_dirty(&root->fs_info->free_space_cache, start, start + num_bytes - 1, 0); ins->objectid = start; ins->offset = num_bytes; ins->type = BTRFS_EXTENT_ITEM_KEY; return 0; } fail: fprintf(stderr, "not enough free space\n"); return -ENOSPC; } static int intersect_with_sb(u64 bytenr, u64 num_bytes) { int i; u64 offset; for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { offset = btrfs_sb_offset(i); offset &= ~((u64)BTRFS_STRIPE_LEN - 1); if (bytenr < offset + BTRFS_STRIPE_LEN && bytenr + num_bytes > offset) return 1; } return 0; } static int custom_free_extent(struct btrfs_root *root, u64 bytenr, u64 num_bytes) { return intersect_with_sb(bytenr, num_bytes); } static struct btrfs_extent_ops extent_ops = { .alloc_extent = custom_alloc_extent, .free_extent = custom_free_extent, }; struct dir_iterate_data { struct btrfs_trans_handle *trans; struct btrfs_root *root; struct btrfs_inode_item *inode; u64 objectid; u64 index_cnt; u64 parent; int errcode; }; static u8 filetype_conversion_table[EXT2_FT_MAX] = { [EXT2_FT_UNKNOWN] = BTRFS_FT_UNKNOWN, [EXT2_FT_REG_FILE] = BTRFS_FT_REG_FILE, [EXT2_FT_DIR] = BTRFS_FT_DIR, [EXT2_FT_CHRDEV] = BTRFS_FT_CHRDEV, [EXT2_FT_BLKDEV] = BTRFS_FT_BLKDEV, [EXT2_FT_FIFO] = BTRFS_FT_FIFO, [EXT2_FT_SOCK] = BTRFS_FT_SOCK, [EXT2_FT_SYMLINK] = BTRFS_FT_SYMLINK, }; static int dir_iterate_proc(ext2_ino_t dir, int entry, struct ext2_dir_entry *dirent, int offset, int blocksize, char *buf,void *priv_data) { int ret; int file_type; u64 objectid; u64 inode_size; char dotdot[] = ".."; struct btrfs_key location; struct dir_iterate_data *idata = (struct dir_iterate_data *)priv_data; int name_len; name_len = dirent->name_len & 0xFF; objectid = dirent->inode + INO_OFFSET; if (!strncmp(dirent->name, dotdot, name_len)) { if (name_len == 2) { BUG_ON(idata->parent != 0); idata->parent = objectid; } return 0; } if (dirent->inode < EXT2_GOOD_OLD_FIRST_INO) return 0; location.objectid = objectid; location.offset = 0; btrfs_set_key_type(&location, BTRFS_INODE_ITEM_KEY); file_type = dirent->name_len >> 8; BUG_ON(file_type > EXT2_FT_SYMLINK); ret = btrfs_insert_dir_item(idata->trans, idata->root, dirent->name, name_len, idata->objectid, &location, filetype_conversion_table[file_type], idata->index_cnt); if (ret) goto fail; ret = btrfs_insert_inode_ref(idata->trans, idata->root, dirent->name, name_len, objectid, idata->objectid, idata->index_cnt); if (ret) goto fail; idata->index_cnt++; inode_size = btrfs_stack_inode_size(idata->inode) + name_len * 2; btrfs_set_stack_inode_size(idata->inode, inode_size); return 0; fail: idata->errcode = ret; return BLOCK_ABORT; } static int create_dir_entries(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *btrfs_inode, ext2_filsys ext2_fs, ext2_ino_t ext2_ino) { int ret; errcode_t err; struct dir_iterate_data data = { .trans = trans, .root = root, .inode = btrfs_inode, .objectid = objectid, .index_cnt = 2, .parent = 0, .errcode = 0, }; err = ext2fs_dir_iterate2(ext2_fs, ext2_ino, 0, NULL, dir_iterate_proc, &data); if (err) goto error; ret = data.errcode; if (ret == 0 && data.parent == objectid) { ret = btrfs_insert_inode_ref(trans, root, "..", 2, objectid, objectid, 0); } return ret; error: fprintf(stderr, "ext2fs_dir_iterate2: %s\n", error_message(err)); return -1; } static int read_disk_extent(struct btrfs_root *root, u64 bytenr, u32 num_bytes, char *buffer) { int ret; struct btrfs_fs_devices *fs_devs = root->fs_info->fs_devices; ret = pread(fs_devs->latest_bdev, buffer, num_bytes, bytenr); if (ret != num_bytes) goto fail; ret = 0; fail: if (ret > 0) ret = -1; return ret; } static int csum_disk_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 disk_bytenr, u64 num_bytes) { u32 blocksize = root->sectorsize; u64 offset; char *buffer; int ret = 0; buffer = malloc(blocksize); if (!buffer) return -ENOMEM; for (offset = 0; offset < num_bytes; offset += blocksize) { ret = read_disk_extent(root, disk_bytenr + offset, blocksize, buffer); if (ret) break; ret = btrfs_csum_file_block(trans, root->fs_info->csum_root, disk_bytenr + num_bytes, disk_bytenr + offset, buffer, blocksize); if (ret) break; } free(buffer); return ret; } static int record_file_blocks(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *inode, u64 file_block, u64 disk_block, u64 num_blocks, int checksum) { int ret; u64 file_pos = file_block * root->sectorsize; u64 disk_bytenr = disk_block * root->sectorsize; u64 num_bytes = num_blocks * root->sectorsize; ret = btrfs_record_file_extent(trans, root, objectid, inode, file_pos, disk_bytenr, num_bytes); if (ret || !checksum) return ret; return csum_disk_extent(trans, root, disk_bytenr, num_bytes); } struct blk_iterate_data { struct btrfs_trans_handle *trans; struct btrfs_root *root; struct btrfs_inode_item *inode; u64 objectid; u64 first_block; u64 disk_block; u64 num_blocks; u64 boundary; int checksum; int errcode; }; static int block_iterate_proc(ext2_filsys ext2_fs, u64 disk_block, u64 file_block, struct blk_iterate_data *idata) { int ret; int sb_region; int do_barrier; struct btrfs_root *root = idata->root; struct btrfs_trans_handle *trans = idata->trans; struct btrfs_block_group_cache *cache; u64 bytenr = disk_block * root->sectorsize; sb_region = intersect_with_sb(bytenr, root->sectorsize); do_barrier = sb_region || disk_block >= idata->boundary; if ((idata->num_blocks > 0 && do_barrier) || (file_block > idata->first_block + idata->num_blocks) || (disk_block != idata->disk_block + idata->num_blocks)) { if (idata->num_blocks > 0) { ret = record_file_blocks(trans, root, idata->objectid, idata->inode, idata->first_block, idata->disk_block, idata->num_blocks, idata->checksum); if (ret) goto fail; idata->first_block += idata->num_blocks; idata->num_blocks = 0; } if (file_block > idata->first_block) { ret = record_file_blocks(trans, root, idata->objectid, idata->inode, idata->first_block, 0, file_block - idata->first_block, idata->checksum); if (ret) goto fail; } if (sb_region) { bytenr += BTRFS_STRIPE_LEN - 1; bytenr &= ~((u64)BTRFS_STRIPE_LEN - 1); } else { cache = btrfs_lookup_block_group(root->fs_info, bytenr); BUG_ON(!cache); bytenr = cache->key.objectid + cache->key.offset; } idata->first_block = file_block; idata->disk_block = disk_block; idata->boundary = bytenr / root->sectorsize; } idata->num_blocks++; return 0; fail: idata->errcode = ret; return BLOCK_ABORT; } static int __block_iterate_proc(ext2_filsys fs, blk_t *blocknr, e2_blkcnt_t blockcnt, blk_t ref_block, int ref_offset, void *priv_data) { struct blk_iterate_data *idata; idata = (struct blk_iterate_data *)priv_data; return block_iterate_proc(fs, *blocknr, blockcnt, idata); } /* * traverse file's data blocks, record these data blocks as file extents. */ static int create_file_extents(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *btrfs_inode, ext2_filsys ext2_fs, ext2_ino_t ext2_ino, int datacsum, int packing) { int ret; char *buffer = NULL; errcode_t err; u32 last_block; u32 sectorsize = root->sectorsize; u64 inode_size = btrfs_stack_inode_size(btrfs_inode); struct blk_iterate_data data = { .trans = trans, .root = root, .inode = btrfs_inode, .objectid = objectid, .first_block = 0, .disk_block = 0, .num_blocks = 0, .boundary = (u64)-1, .checksum = datacsum, .errcode = 0, }; err = ext2fs_block_iterate2(ext2_fs, ext2_ino, BLOCK_FLAG_DATA_ONLY, NULL, __block_iterate_proc, &data); if (err) goto error; ret = data.errcode; if (ret) goto fail; if (packing && data.first_block == 0 && data.num_blocks > 0 && inode_size <= BTRFS_MAX_INLINE_DATA_SIZE(root)) { u64 num_bytes = data.num_blocks * sectorsize; u64 disk_bytenr = data.disk_block * sectorsize; u64 nbytes; buffer = malloc(num_bytes); if (!buffer) return -ENOMEM; ret = read_disk_extent(root, disk_bytenr, num_bytes, buffer); if (ret) goto fail; if (num_bytes > inode_size) num_bytes = inode_size; ret = btrfs_insert_inline_extent(trans, root, objectid, 0, buffer, num_bytes); if (ret) goto fail; nbytes = btrfs_stack_inode_nbytes(btrfs_inode) + num_bytes; btrfs_set_stack_inode_nbytes(btrfs_inode, nbytes); } else if (data.num_blocks > 0) { ret = record_file_blocks(trans, root, objectid, btrfs_inode, data.first_block, data.disk_block, data.num_blocks, data.checksum); if (ret) goto fail; } data.first_block += data.num_blocks; last_block = (inode_size + sectorsize - 1) / sectorsize; if (last_block > data.first_block) { ret = record_file_blocks(trans, root, objectid, btrfs_inode, data.first_block, 0, last_block - data.first_block, data.checksum); } fail: free(buffer); return ret; error: fprintf(stderr, "ext2fs_block_iterate2: %s\n", error_message(err)); return -1; } static int create_symbol_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *btrfs_inode, ext2_filsys ext2_fs, ext2_ino_t ext2_ino, struct ext2_inode *ext2_inode) { int ret; char *pathname; u64 inode_size = btrfs_stack_inode_size(btrfs_inode); if (ext2fs_inode_data_blocks(ext2_fs, ext2_inode)) { btrfs_set_stack_inode_size(btrfs_inode, inode_size + 1); ret = create_file_extents(trans, root, objectid, btrfs_inode, ext2_fs, ext2_ino, 1, 1); btrfs_set_stack_inode_size(btrfs_inode, inode_size); return ret; } pathname = (char *)&(ext2_inode->i_block[0]); BUG_ON(pathname[inode_size] != 0); ret = btrfs_insert_inline_extent(trans, root, objectid, 0, pathname, inode_size + 1); btrfs_set_stack_inode_nbytes(btrfs_inode, inode_size + 1); return ret; } /* * Following xattr/acl related codes are based on codes in * fs/ext3/xattr.c and fs/ext3/acl.c */ #define EXT2_XATTR_BHDR(ptr) ((struct ext2_ext_attr_header *)(ptr)) #define EXT2_XATTR_BFIRST(ptr) \ ((struct ext2_ext_attr_entry *)(EXT2_XATTR_BHDR(ptr) + 1)) #define EXT2_XATTR_IHDR(inode) \ ((struct ext2_ext_attr_header *) ((void *)(inode) + \ EXT2_GOOD_OLD_INODE_SIZE + (inode)->i_extra_isize)) #define EXT2_XATTR_IFIRST(inode) \ ((struct ext2_ext_attr_entry *) ((void *)EXT2_XATTR_IHDR(inode) + \ sizeof(EXT2_XATTR_IHDR(inode)->h_magic))) static int ext2_xattr_check_names(struct ext2_ext_attr_entry *entry, const void *end) { struct ext2_ext_attr_entry *next; while (!EXT2_EXT_IS_LAST_ENTRY(entry)) { next = EXT2_EXT_ATTR_NEXT(entry); if ((void *)next >= end) return -EIO; entry = next; } return 0; } static int ext2_xattr_check_block(const char *buf, size_t size) { int error; struct ext2_ext_attr_header *header = EXT2_XATTR_BHDR(buf); if (header->h_magic != EXT2_EXT_ATTR_MAGIC || header->h_blocks != 1) return -EIO; error = ext2_xattr_check_names(EXT2_XATTR_BFIRST(buf), buf + size); return error; } static int ext2_xattr_check_entry(struct ext2_ext_attr_entry *entry, size_t size) { size_t value_size = entry->e_value_size; if (entry->e_value_block != 0 || value_size > size || entry->e_value_offs + value_size > size) return -EIO; return 0; } #define EXT2_ACL_VERSION 0x0001 typedef struct { __le16 e_tag; __le16 e_perm; __le32 e_id; } ext2_acl_entry; typedef struct { __le16 e_tag; __le16 e_perm; } ext2_acl_entry_short; typedef struct { __le32 a_version; } ext2_acl_header; static inline int ext2_acl_count(size_t size) { ssize_t s; size -= sizeof(ext2_acl_header); s = size - 4 * sizeof(ext2_acl_entry_short); if (s < 0) { if (size % sizeof(ext2_acl_entry_short)) return -1; return size / sizeof(ext2_acl_entry_short); } else { if (s % sizeof(ext2_acl_entry)) return -1; return s / sizeof(ext2_acl_entry) + 4; } } #define ACL_EA_VERSION 0x0002 typedef struct { __le16 e_tag; __le16 e_perm; __le32 e_id; } acl_ea_entry; typedef struct { __le32 a_version; acl_ea_entry a_entries[0]; } acl_ea_header; static inline size_t acl_ea_size(int count) { return sizeof(acl_ea_header) + count * sizeof(acl_ea_entry); } static int ext2_acl_to_xattr(void *dst, const void *src, size_t dst_size, size_t src_size) { int i, count; const void *end = src + src_size; acl_ea_header *ext_acl = (acl_ea_header *)dst; acl_ea_entry *dst_entry = ext_acl->a_entries; ext2_acl_entry *src_entry; if (src_size < sizeof(ext2_acl_header)) goto fail; if (((ext2_acl_header *)src)->a_version != cpu_to_le32(EXT2_ACL_VERSION)) goto fail; src += sizeof(ext2_acl_header); count = ext2_acl_count(src_size); if (count <= 0) goto fail; BUG_ON(dst_size < acl_ea_size(count)); ext_acl->a_version = cpu_to_le32(ACL_EA_VERSION); for (i = 0; i < count; i++, dst_entry++) { src_entry = (ext2_acl_entry *)src; if (src + sizeof(ext2_acl_entry_short) > end) goto fail; dst_entry->e_tag = src_entry->e_tag; dst_entry->e_perm = src_entry->e_perm; switch (le16_to_cpu(src_entry->e_tag)) { case ACL_USER_OBJ: case ACL_GROUP_OBJ: case ACL_MASK: case ACL_OTHER: src += sizeof(ext2_acl_entry_short); dst_entry->e_id = cpu_to_le32(ACL_UNDEFINED_ID); break; case ACL_USER: case ACL_GROUP: src += sizeof(ext2_acl_entry); if (src > end) goto fail; dst_entry->e_id = src_entry->e_id; break; default: goto fail; } } if (src != end) goto fail; return 0; fail: return -EINVAL; } static char *xattr_prefix_table[] = { [1] = "user.", [2] = "system.posix_acl_access", [3] = "system.posix_acl_default", [4] = "trusted.", [6] = "security.", }; static int copy_single_xattr(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct ext2_ext_attr_entry *entry, const void *data, u32 datalen) { int ret = 0; int name_len; int name_index; void *databuf = NULL; char namebuf[XATTR_NAME_MAX + 1]; name_index = entry->e_name_index; if (name_index >= ARRAY_SIZE(xattr_prefix_table) || xattr_prefix_table[name_index] == NULL) return -EOPNOTSUPP; name_len = strlen(xattr_prefix_table[name_index]) + entry->e_name_len; if (name_len >= sizeof(namebuf)) return -ERANGE; if (name_index == 2 || name_index == 3) { size_t bufsize = acl_ea_size(ext2_acl_count(datalen)); databuf = malloc(bufsize); if (!databuf) return -ENOMEM; ret = ext2_acl_to_xattr(databuf, data, bufsize, datalen); if (ret) goto out; data = databuf; datalen = bufsize; } strncpy(namebuf, xattr_prefix_table[name_index], XATTR_NAME_MAX); strncat(namebuf, EXT2_EXT_ATTR_NAME(entry), entry->e_name_len); if (name_len + datalen > BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item) - sizeof(struct btrfs_dir_item)) { fprintf(stderr, "skip large xattr on inode %Lu name %.*s\n", objectid - INO_OFFSET, name_len, namebuf); goto out; } ret = btrfs_insert_xattr_item(trans, root, namebuf, name_len, data, datalen, objectid); out: free(databuf); return ret; } static int copy_extended_attrs(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *btrfs_inode, ext2_filsys ext2_fs, ext2_ino_t ext2_ino) { int ret = 0; int inline_ea = 0; errcode_t err; u32 datalen; u32 block_size = ext2_fs->blocksize; u32 inode_size = EXT2_INODE_SIZE(ext2_fs->super); struct ext2_inode_large *ext2_inode; struct ext2_ext_attr_entry *entry; void *data; char *buffer = NULL; char inode_buf[EXT2_GOOD_OLD_INODE_SIZE]; if (inode_size <= EXT2_GOOD_OLD_INODE_SIZE) { ext2_inode = (struct ext2_inode_large *)inode_buf; } else { ext2_inode = (struct ext2_inode_large *)malloc(inode_size); if (!ext2_inode) return -ENOMEM; } err = ext2fs_read_inode_full(ext2_fs, ext2_ino, (void *)ext2_inode, inode_size); if (err) { fprintf(stderr, "ext2fs_read_inode_full: %s\n", error_message(err)); ret = -1; goto out; } if (ext2_ino > ext2_fs->super->s_first_ino && inode_size > EXT2_GOOD_OLD_INODE_SIZE) { if (EXT2_GOOD_OLD_INODE_SIZE + ext2_inode->i_extra_isize > inode_size) { ret = -EIO; goto out; } if (ext2_inode->i_extra_isize != 0 && EXT2_XATTR_IHDR(ext2_inode)->h_magic == EXT2_EXT_ATTR_MAGIC) { inline_ea = 1; } } if (inline_ea) { int total; void *end = (void *)ext2_inode + inode_size; entry = EXT2_XATTR_IFIRST(ext2_inode); total = end - (void *)entry; ret = ext2_xattr_check_names(entry, end); if (ret) goto out; while (!EXT2_EXT_IS_LAST_ENTRY(entry)) { ret = ext2_xattr_check_entry(entry, total); if (ret) goto out; data = (void *)EXT2_XATTR_IFIRST(ext2_inode) + entry->e_value_offs; datalen = entry->e_value_size; ret = copy_single_xattr(trans, root, objectid, entry, data, datalen); if (ret) goto out; entry = EXT2_EXT_ATTR_NEXT(entry); } } if (ext2_inode->i_file_acl == 0) goto out; buffer = malloc(block_size); if (!buffer) { ret = -ENOMEM; goto out; } err = ext2fs_read_ext_attr(ext2_fs, ext2_inode->i_file_acl, buffer); if (err) { fprintf(stderr, "ext2fs_read_ext_attr: %s\n", error_message(err)); ret = -1; goto out; } ret = ext2_xattr_check_block(buffer, block_size); if (ret) goto out; entry = EXT2_XATTR_BFIRST(buffer); while (!EXT2_EXT_IS_LAST_ENTRY(entry)) { ret = ext2_xattr_check_entry(entry, block_size); if (ret) goto out; data = buffer + entry->e_value_offs; datalen = entry->e_value_size; ret = copy_single_xattr(trans, root, objectid, entry, data, datalen); if (ret) goto out; entry = EXT2_EXT_ATTR_NEXT(entry); } out: free(buffer); if ((void *)ext2_inode != inode_buf) free(ext2_inode); return ret; } #define MINORBITS 20 #define MKDEV(ma, mi) (((ma) << MINORBITS) | (mi)) static inline dev_t old_decode_dev(u16 val) { return MKDEV((val >> 8) & 255, val & 255); } static inline dev_t new_decode_dev(u32 dev) { unsigned major = (dev & 0xfff00) >> 8; unsigned minor = (dev & 0xff) | ((dev >> 12) & 0xfff00); return MKDEV(major, minor); } static int copy_inode_item(struct btrfs_inode_item *dst, struct ext2_inode *src, u32 blocksize) { btrfs_set_stack_inode_generation(dst, 1); btrfs_set_stack_inode_size(dst, src->i_size); btrfs_set_stack_inode_nbytes(dst, 0); btrfs_set_stack_inode_block_group(dst, 0); btrfs_set_stack_inode_nlink(dst, src->i_links_count); btrfs_set_stack_inode_uid(dst, src->i_uid | (src->i_uid_high << 16)); btrfs_set_stack_inode_gid(dst, src->i_gid | (src->i_gid_high << 16)); btrfs_set_stack_inode_mode(dst, src->i_mode); btrfs_set_stack_inode_rdev(dst, 0); btrfs_set_stack_inode_flags(dst, 0); btrfs_set_stack_timespec_sec(&dst->atime, src->i_atime); btrfs_set_stack_timespec_nsec(&dst->atime, 0); btrfs_set_stack_timespec_sec(&dst->ctime, src->i_ctime); btrfs_set_stack_timespec_nsec(&dst->ctime, 0); btrfs_set_stack_timespec_sec(&dst->mtime, src->i_mtime); btrfs_set_stack_timespec_nsec(&dst->mtime, 0); btrfs_set_stack_timespec_sec(&dst->otime, 0); btrfs_set_stack_timespec_nsec(&dst->otime, 0); if (S_ISDIR(src->i_mode)) { btrfs_set_stack_inode_size(dst, 0); btrfs_set_stack_inode_nlink(dst, 1); } if (S_ISREG(src->i_mode)) { btrfs_set_stack_inode_size(dst, (u64)src->i_size_high << 32 | (u64)src->i_size); } if (!S_ISREG(src->i_mode) && !S_ISDIR(src->i_mode) && !S_ISLNK(src->i_mode)) { if (src->i_block[0]) { btrfs_set_stack_inode_rdev(dst, old_decode_dev(src->i_block[0])); } else { btrfs_set_stack_inode_rdev(dst, new_decode_dev(src->i_block[1])); } } return 0; } /* * copy a single inode. do all the required works, such as cloning * inode item, creating file extents and creating directory entries. */ static int copy_single_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, ext2_filsys ext2_fs, ext2_ino_t ext2_ino, struct ext2_inode *ext2_inode, int datacsum, int packing, int noxattr) { int ret; struct btrfs_key inode_key; struct btrfs_inode_item btrfs_inode; if (ext2_inode->i_links_count == 0) return 0; copy_inode_item(&btrfs_inode, ext2_inode, ext2_fs->blocksize); if (!datacsum && S_ISREG(ext2_inode->i_mode)) { u32 flags = btrfs_stack_inode_flags(&btrfs_inode) | BTRFS_INODE_NODATASUM; btrfs_set_stack_inode_flags(&btrfs_inode, flags); } switch (ext2_inode->i_mode & S_IFMT) { case S_IFREG: ret = create_file_extents(trans, root, objectid, &btrfs_inode, ext2_fs, ext2_ino, datacsum, packing); break; case S_IFDIR: ret = create_dir_entries(trans, root, objectid, &btrfs_inode, ext2_fs, ext2_ino); break; case S_IFLNK: ret = create_symbol_link(trans, root, objectid, &btrfs_inode, ext2_fs, ext2_ino, ext2_inode); break; default: ret = 0; break; } if (ret) return ret; if (!noxattr) { ret = copy_extended_attrs(trans, root, objectid, &btrfs_inode, ext2_fs, ext2_ino); if (ret) return ret; } inode_key.objectid = objectid; inode_key.offset = 0; btrfs_set_key_type(&inode_key, BTRFS_INODE_ITEM_KEY); ret = btrfs_insert_inode(trans, root, objectid, &btrfs_inode); return ret; } static int copy_disk_extent(struct btrfs_root *root, u64 dst_bytenr, u64 src_bytenr, u32 num_bytes) { int ret; char *buffer; struct btrfs_fs_devices *fs_devs = root->fs_info->fs_devices; buffer = malloc(num_bytes); if (!buffer) return -ENOMEM; ret = pread(fs_devs->latest_bdev, buffer, num_bytes, src_bytenr); if (ret != num_bytes) goto fail; ret = pwrite(fs_devs->latest_bdev, buffer, num_bytes, dst_bytenr); if (ret != num_bytes) goto fail; ret = 0; fail: free(buffer); if (ret > 0) ret = -1; return ret; } /* * scan ext2's inode bitmap and copy all used inodes. */ static int copy_inodes(struct btrfs_root *root, ext2_filsys ext2_fs, int datacsum, int packing, int noxattr) { int ret; errcode_t err; ext2_inode_scan ext2_scan; struct ext2_inode ext2_inode; ext2_ino_t ext2_ino; u64 objectid; struct btrfs_trans_handle *trans; trans = btrfs_start_transaction(root, 1); if (!trans) return -ENOMEM; err = ext2fs_open_inode_scan(ext2_fs, 0, &ext2_scan); if (err) { fprintf(stderr, "ext2fs_open_inode_scan: %s\n", error_message(err)); return -1; } while (!(err = ext2fs_get_next_inode(ext2_scan, &ext2_ino, &ext2_inode))) { /* no more inodes */ if (ext2_ino == 0) break; /* skip special inode in ext2fs */ if (ext2_ino < EXT2_GOOD_OLD_FIRST_INO && ext2_ino != EXT2_ROOT_INO) continue; objectid = ext2_ino + INO_OFFSET; ret = copy_single_inode(trans, root, objectid, ext2_fs, ext2_ino, &ext2_inode, datacsum, packing, noxattr); if (ret) return ret; if (trans->blocks_used >= 4096) { ret = btrfs_commit_transaction(trans, root); BUG_ON(ret); trans = btrfs_start_transaction(root, 1); BUG_ON(!trans); } } if (err) { fprintf(stderr, "ext2fs_get_next_inode: %s\n", error_message(err)); return -1; } ret = btrfs_commit_transaction(trans, root); BUG_ON(ret); return ret; } /* * Construct a range of ext2fs image file. * scan block allocation bitmap, find all blocks used by the ext2fs * in this range and create file extents that point to these blocks. * * Note: Before calling the function, no file extent points to blocks * in this range */ static int create_image_file_range(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *inode, u64 start_byte, u64 end_byte, ext2_filsys ext2_fs) { u32 blocksize = ext2_fs->blocksize; u32 block = start_byte / blocksize; u32 last_block = (end_byte + blocksize - 1) / blocksize; int ret = 0; struct blk_iterate_data data = { .trans = trans, .root = root, .inode = inode, .objectid = objectid, .first_block = block, .disk_block = 0, .num_blocks = 0, .boundary = (u64)-1, .checksum = 0, .errcode = 0, }; for (; start_byte < end_byte; block++, start_byte += blocksize) { if (!ext2fs_fast_test_block_bitmap(ext2_fs->block_map, block)) continue; ret = block_iterate_proc(NULL, block, block, &data); if (ret & BLOCK_ABORT) { ret = data.errcode; goto fail; } } if (data.num_blocks > 0) { ret = record_file_blocks(trans, root, objectid, inode, data.first_block, data.disk_block, data.num_blocks, 0); if (ret) goto fail; data.first_block += data.num_blocks; } if (last_block > data.first_block) { ret = record_file_blocks(trans, root, objectid, inode, data.first_block, 0, last_block - data.first_block, 0); if (ret) goto fail; } fail: return ret; } /* * Create the ext2fs image file. */ static int create_ext2_image(struct btrfs_root *root, ext2_filsys ext2_fs, const char *name) { int ret; struct btrfs_key key; struct btrfs_key location; struct btrfs_path path; struct btrfs_inode_item btrfs_inode; struct btrfs_inode_item *inode_item; struct extent_buffer *leaf; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_root *extent_root = fs_info->extent_root; struct btrfs_trans_handle *trans; struct btrfs_extent_item *ei; struct btrfs_extent_inline_ref *iref; struct btrfs_extent_data_ref *dref; u64 bytenr; u64 num_bytes; u64 objectid; u64 last_byte; u64 first_free; u64 total_bytes; u32 sectorsize = root->sectorsize; total_bytes = btrfs_super_total_bytes(fs_info->super_copy); first_free = BTRFS_SUPER_INFO_OFFSET + sectorsize * 2 - 1; first_free &= ~((u64)sectorsize - 1); memset(&btrfs_inode, 0, sizeof(btrfs_inode)); btrfs_set_stack_inode_generation(&btrfs_inode, 1); btrfs_set_stack_inode_size(&btrfs_inode, total_bytes); btrfs_set_stack_inode_nlink(&btrfs_inode, 1); btrfs_set_stack_inode_nbytes(&btrfs_inode, 0); btrfs_set_stack_inode_mode(&btrfs_inode, S_IFREG | 0400); btrfs_set_stack_inode_flags(&btrfs_inode, BTRFS_INODE_NODATASUM | BTRFS_INODE_READONLY); btrfs_init_path(&path); trans = btrfs_start_transaction(root, 1); BUG_ON(!trans); objectid = btrfs_root_dirid(&root->root_item); ret = btrfs_find_free_objectid(trans, root, objectid, &objectid); if (ret) goto fail; /* * copy blocks covered by extent #0 to new positions. extent #0 is * special, we can't rely on relocate_extents_range to relocate it. */ for (last_byte = 0; last_byte < first_free; last_byte += sectorsize) { ret = custom_alloc_extent(root, sectorsize, 0, &key); if (ret) goto fail; ret = copy_disk_extent(root, key.objectid, last_byte, sectorsize); if (ret) goto fail; ret = btrfs_record_file_extent(trans, root, objectid, &btrfs_inode, last_byte, key.objectid, sectorsize); if (ret) goto fail; } while(1) { key.objectid = last_byte; key.offset = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); ret = btrfs_search_slot(trans, fs_info->extent_root, &key, &path, 0, 0); if (ret < 0) goto fail; next: leaf = path.nodes[0]; if (path.slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(extent_root, &path); if (ret < 0) goto fail; if (ret > 0) break; leaf = path.nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (last_byte > key.objectid || key.type != BTRFS_EXTENT_ITEM_KEY) { path.slots[0]++; goto next; } bytenr = key.objectid; num_bytes = key.offset; ei = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_extent_item); if (!(btrfs_extent_flags(leaf, ei) & BTRFS_EXTENT_FLAG_DATA)) { path.slots[0]++; goto next; } BUG_ON(btrfs_item_size_nr(leaf, path.slots[0]) != sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)); iref = (struct btrfs_extent_inline_ref *)(ei + 1); key.type = btrfs_extent_inline_ref_type(leaf, iref); BUG_ON(key.type != BTRFS_EXTENT_DATA_REF_KEY); dref = (struct btrfs_extent_data_ref *)(&iref->offset); if (btrfs_extent_data_ref_root(leaf, dref) != BTRFS_FS_TREE_OBJECTID) { path.slots[0]++; goto next; } if (bytenr > last_byte) { ret = create_image_file_range(trans, root, objectid, &btrfs_inode, last_byte, bytenr, ext2_fs); if (ret) goto fail; } ret = btrfs_record_file_extent(trans, root, objectid, &btrfs_inode, bytenr, bytenr, num_bytes); if (ret) goto fail; last_byte = bytenr + num_bytes; btrfs_release_path(&path); if (trans->blocks_used >= 4096) { ret = btrfs_commit_transaction(trans, root); BUG_ON(ret); trans = btrfs_start_transaction(root, 1); BUG_ON(!trans); } } btrfs_release_path(&path); if (total_bytes > last_byte) { ret = create_image_file_range(trans, root, objectid, &btrfs_inode, last_byte, total_bytes, ext2_fs); if (ret) goto fail; } ret = btrfs_insert_inode(trans, root, objectid, &btrfs_inode); if (ret) goto fail; location.objectid = objectid; location.offset = 0; btrfs_set_key_type(&location, BTRFS_INODE_ITEM_KEY); ret = btrfs_insert_dir_item(trans, root, name, strlen(name), btrfs_root_dirid(&root->root_item), &location, EXT2_FT_REG_FILE, objectid); if (ret) goto fail; ret = btrfs_insert_inode_ref(trans, root, name, strlen(name), objectid, btrfs_root_dirid(&root->root_item), objectid); if (ret) goto fail; location.objectid = btrfs_root_dirid(&root->root_item); location.offset = 0; btrfs_set_key_type(&location, BTRFS_INODE_ITEM_KEY); ret = btrfs_lookup_inode(trans, root, &path, &location, 1); if (ret) goto fail; leaf = path.nodes[0]; inode_item = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_inode_item); btrfs_set_inode_size(leaf, inode_item, strlen(name) * 2 + btrfs_inode_size(leaf, inode_item)); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(&path); ret = btrfs_commit_transaction(trans, root); BUG_ON(ret); fail: btrfs_release_path(&path); return ret; } static struct btrfs_root * link_subvol(struct btrfs_root *root, const char *base, u64 root_objectid) { struct btrfs_trans_handle *trans; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *new_root = NULL; struct btrfs_path *path; struct btrfs_inode_item *inode_item; struct extent_buffer *leaf; struct btrfs_key key; u64 dirid = btrfs_root_dirid(&root->root_item); u64 index = 2; char buf[BTRFS_NAME_LEN + 1]; /* for snprintf null */ int len; int i; int ret; len = strlen(base); if (len < 1 || len > BTRFS_NAME_LEN) return NULL; path = btrfs_alloc_path(); BUG_ON(!path); key.objectid = dirid; key.type = BTRFS_DIR_INDEX_KEY; key.offset = (u64)-1; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); BUG_ON(ret <= 0); if (path->slots[0] > 0) { path->slots[0]--; btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.objectid == dirid && key.type == BTRFS_DIR_INDEX_KEY) index = key.offset + 1; } btrfs_release_path(path); trans = btrfs_start_transaction(root, 1); BUG_ON(!trans); key.objectid = dirid; key.offset = 0; key.type = BTRFS_INODE_ITEM_KEY; ret = btrfs_lookup_inode(trans, root, path, &key, 1); BUG_ON(ret); leaf = path->nodes[0]; inode_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); key.objectid = root_objectid; key.offset = (u64)-1; key.type = BTRFS_ROOT_ITEM_KEY; memcpy(buf, base, len); for (i = 0; i < 1024; i++) { ret = btrfs_insert_dir_item(trans, root, buf, len, dirid, &key, BTRFS_FT_DIR, index); if (ret != -EEXIST) break; len = snprintf(buf, ARRAY_SIZE(buf), "%s%d", base, i); if (len < 1 || len > BTRFS_NAME_LEN) { ret = -EINVAL; break; } } if (ret) goto fail; btrfs_set_inode_size(leaf, inode_item, len * 2 + btrfs_inode_size(leaf, inode_item)); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(path); /* add the backref first */ ret = btrfs_add_root_ref(trans, tree_root, root_objectid, BTRFS_ROOT_BACKREF_KEY, root->root_key.objectid, dirid, index, buf, len); BUG_ON(ret); /* now add the forward ref */ ret = btrfs_add_root_ref(trans, tree_root, root->root_key.objectid, BTRFS_ROOT_REF_KEY, root_objectid, dirid, index, buf, len); ret = btrfs_commit_transaction(trans, root); BUG_ON(ret); new_root = btrfs_read_fs_root(fs_info, &key); if (IS_ERR(new_root)) new_root = NULL; fail: btrfs_free_path(path); return new_root; } static int create_chunk_mapping(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_fs_info *info = root->fs_info; struct btrfs_root *chunk_root = info->chunk_root; struct btrfs_root *extent_root = info->extent_root; struct btrfs_device *device; struct btrfs_block_group_cache *cache; struct btrfs_dev_extent *extent; struct extent_buffer *leaf; struct btrfs_chunk chunk; struct btrfs_key key; struct btrfs_path path; u64 cur_start; u64 total_bytes; u64 chunk_objectid; int ret; btrfs_init_path(&path); total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy); chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; BUG_ON(list_empty(&info->fs_devices->devices)); device = list_entry(info->fs_devices->devices.next, struct btrfs_device, dev_list); BUG_ON(device->devid != info->fs_devices->latest_devid); /* delete device extent created by make_btrfs */ key.objectid = device->devid; key.offset = 0; key.type = BTRFS_DEV_EXTENT_KEY; ret = btrfs_search_slot(trans, device->dev_root, &key, &path, -1, 1); if (ret < 0) goto err; BUG_ON(ret > 0); ret = btrfs_del_item(trans, device->dev_root, &path); if (ret) goto err; btrfs_release_path(&path); /* delete chunk item created by make_btrfs */ key.objectid = chunk_objectid; key.offset = 0; key.type = BTRFS_CHUNK_ITEM_KEY; ret = btrfs_search_slot(trans, chunk_root, &key, &path, -1, 1); if (ret < 0) goto err; BUG_ON(ret > 0); ret = btrfs_del_item(trans, chunk_root, &path); if (ret) goto err; btrfs_release_path(&path); /* for each block group, create device extent and chunk item */ cur_start = 0; while (cur_start < total_bytes) { cache = btrfs_lookup_block_group(root->fs_info, cur_start); BUG_ON(!cache); /* insert device extent */ key.objectid = device->devid; key.offset = cache->key.objectid; key.type = BTRFS_DEV_EXTENT_KEY; ret = btrfs_insert_empty_item(trans, device->dev_root, &path, &key, sizeof(*extent)); if (ret) goto err; leaf = path.nodes[0]; extent = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_dev_extent); btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_root->root_key.objectid); btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); btrfs_set_dev_extent_chunk_offset(leaf, extent, cache->key.objectid); btrfs_set_dev_extent_length(leaf, extent, cache->key.offset); write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(&path); /* insert chunk item */ btrfs_set_stack_chunk_length(&chunk, cache->key.offset); btrfs_set_stack_chunk_owner(&chunk, extent_root->root_key.objectid); btrfs_set_stack_chunk_stripe_len(&chunk, BTRFS_STRIPE_LEN); btrfs_set_stack_chunk_type(&chunk, cache->flags); btrfs_set_stack_chunk_io_align(&chunk, device->io_align); btrfs_set_stack_chunk_io_width(&chunk, device->io_width); btrfs_set_stack_chunk_sector_size(&chunk, device->sector_size); btrfs_set_stack_chunk_num_stripes(&chunk, 1); btrfs_set_stack_chunk_sub_stripes(&chunk, 0); btrfs_set_stack_stripe_devid(&chunk.stripe, device->devid); btrfs_set_stack_stripe_offset(&chunk.stripe, cache->key.objectid); memcpy(&chunk.stripe.dev_uuid, device->uuid, BTRFS_UUID_SIZE); key.objectid = chunk_objectid; key.offset = cache->key.objectid; key.type = BTRFS_CHUNK_ITEM_KEY; ret = btrfs_insert_item(trans, chunk_root, &key, &chunk, btrfs_chunk_item_size(1)); if (ret) goto err; cur_start = cache->key.objectid + cache->key.offset; } device->bytes_used = total_bytes; ret = btrfs_update_device(trans, device); err: btrfs_release_path(&path); return ret; } static int create_subvol(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 root_objectid) { struct extent_buffer *tmp; struct btrfs_root *new_root; struct btrfs_key key; struct btrfs_root_item root_item; int ret; ret = btrfs_copy_root(trans, root, root->node, &tmp, root_objectid); BUG_ON(ret); memcpy(&root_item, &root->root_item, sizeof(root_item)); btrfs_set_root_bytenr(&root_item, tmp->start); btrfs_set_root_level(&root_item, btrfs_header_level(tmp)); btrfs_set_root_generation(&root_item, trans->transid); free_extent_buffer(tmp); key.objectid = root_objectid; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = trans->transid; ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, &root_item); key.offset = (u64)-1; new_root = btrfs_read_fs_root(root->fs_info, &key); BUG_ON(!new_root || IS_ERR(new_root)); ret = btrfs_make_root_dir(trans, new_root, BTRFS_FIRST_FREE_OBJECTID); BUG_ON(ret); return 0; } static int init_btrfs(struct btrfs_root *root) { int ret; struct btrfs_key location; struct btrfs_trans_handle *trans; struct btrfs_fs_info *fs_info = root->fs_info; struct extent_buffer *tmp; trans = btrfs_start_transaction(root, 1); BUG_ON(!trans); ret = btrfs_make_block_groups(trans, root); if (ret) goto err; ret = btrfs_fix_block_accounting(trans, root); if (ret) goto err; ret = create_chunk_mapping(trans, root); if (ret) goto err; ret = btrfs_make_root_dir(trans, fs_info->tree_root, BTRFS_ROOT_TREE_DIR_OBJECTID); if (ret) goto err; memcpy(&location, &root->root_key, sizeof(location)); location.offset = (u64)-1; ret = btrfs_insert_dir_item(trans, fs_info->tree_root, "default", 7, btrfs_super_root_dir(fs_info->super_copy), &location, BTRFS_FT_DIR, 0); if (ret) goto err; ret = btrfs_insert_inode_ref(trans, fs_info->tree_root, "default", 7, location.objectid, btrfs_super_root_dir(fs_info->super_copy), 0); if (ret) goto err; btrfs_set_root_dirid(&fs_info->fs_root->root_item, BTRFS_FIRST_FREE_OBJECTID); /* subvol for ext2 image file */ ret = create_subvol(trans, root, EXT2_IMAGE_SUBVOL_OBJECTID); BUG_ON(ret); /* subvol for data relocation */ ret = create_subvol(trans, root, BTRFS_DATA_RELOC_TREE_OBJECTID); BUG_ON(ret); extent_buffer_get(fs_info->csum_root->node); ret = __btrfs_cow_block(trans, fs_info->csum_root, fs_info->csum_root->node, NULL, 0, &tmp, 0, 0); BUG_ON(ret); free_extent_buffer(tmp); ret = btrfs_commit_transaction(trans, root); BUG_ON(ret); err: return ret; } /* * Migrate super block to it's default position and zero 0 ~ 16k */ static int migrate_super_block(int fd, u64 old_bytenr, u32 sectorsize) { int ret; struct extent_buffer *buf; struct btrfs_super_block *super; u32 len; u32 bytenr; BUG_ON(sectorsize < sizeof(*super)); buf = malloc(sizeof(*buf) + sectorsize); if (!buf) return -ENOMEM; buf->len = sectorsize; ret = pread(fd, buf->data, sectorsize, old_bytenr); if (ret != sectorsize) goto fail; super = (struct btrfs_super_block *)buf->data; BUG_ON(btrfs_super_bytenr(super) != old_bytenr); btrfs_set_super_bytenr(super, BTRFS_SUPER_INFO_OFFSET); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, sectorsize, BTRFS_SUPER_INFO_OFFSET); if (ret != sectorsize) goto fail; ret = fsync(fd); if (ret) goto fail; memset(buf->data, 0, sectorsize); for (bytenr = 0; bytenr < BTRFS_SUPER_INFO_OFFSET; ) { len = BTRFS_SUPER_INFO_OFFSET - bytenr; if (len > sectorsize) len = sectorsize; ret = pwrite(fd, buf->data, len, bytenr); if (ret != len) { fprintf(stderr, "unable to zero fill device\n"); break; } bytenr += len; } ret = 0; fsync(fd); fail: free(buf); if (ret > 0) ret = -1; return ret; } static int prepare_system_chunk_sb(struct btrfs_super_block *super) { struct btrfs_chunk *chunk; struct btrfs_disk_key *key; u32 sectorsize = btrfs_super_sectorsize(super); key = (struct btrfs_disk_key *)(super->sys_chunk_array); chunk = (struct btrfs_chunk *)(super->sys_chunk_array + sizeof(struct btrfs_disk_key)); btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID); btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY); btrfs_set_disk_key_offset(key, 0); btrfs_set_stack_chunk_length(chunk, btrfs_super_total_bytes(super)); btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM); btrfs_set_stack_chunk_io_align(chunk, sectorsize); btrfs_set_stack_chunk_io_width(chunk, sectorsize); btrfs_set_stack_chunk_sector_size(chunk, sectorsize); btrfs_set_stack_chunk_num_stripes(chunk, 1); btrfs_set_stack_chunk_sub_stripes(chunk, 0); chunk->stripe.devid = super->dev_item.devid; btrfs_set_stack_stripe_offset(&chunk->stripe, 0); memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE); btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk)); return 0; } static int prepare_system_chunk(int fd, u64 sb_bytenr, u32 sectorsize) { int ret; struct extent_buffer *buf; struct btrfs_super_block *super; BUG_ON(sectorsize < sizeof(*super)); buf = malloc(sizeof(*buf) + sectorsize); if (!buf) return -ENOMEM; buf->len = sectorsize; ret = pread(fd, buf->data, sectorsize, sb_bytenr); if (ret != sectorsize) goto fail; super = (struct btrfs_super_block *)buf->data; BUG_ON(btrfs_super_bytenr(super) != sb_bytenr); BUG_ON(btrfs_super_num_devices(super) != 1); ret = prepare_system_chunk_sb(super); if (ret) goto fail; csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, sectorsize, sb_bytenr); if (ret != sectorsize) goto fail; ret = 0; fail: free(buf); if (ret > 0) ret = -1; return ret; } static int relocate_one_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 extent_start, u64 extent_size, struct btrfs_key *extent_key, struct extent_io_tree *reloc_tree) { struct extent_buffer *leaf; struct btrfs_file_extent_item *fi; struct btrfs_key key; struct btrfs_path path; struct btrfs_inode_item inode; struct blk_iterate_data data; u64 bytenr; u64 num_bytes; u64 cur_offset; u64 new_pos; u64 nbytes; u64 sector_end; u32 sectorsize = root->sectorsize; unsigned long ptr; int datacsum; int fd; int ret; btrfs_init_path(&path); ret = btrfs_search_slot(trans, root, extent_key, &path, -1, 1); if (ret) goto fail; leaf = path.nodes[0]; fi = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_file_extent_item); BUG_ON(btrfs_file_extent_offset(leaf, fi) > 0); if (extent_start != btrfs_file_extent_disk_bytenr(leaf, fi) || extent_size != btrfs_file_extent_disk_num_bytes(leaf, fi)) { ret = 1; goto fail; } bytenr = extent_start + btrfs_file_extent_offset(leaf, fi); num_bytes = btrfs_file_extent_num_bytes(leaf, fi); ret = btrfs_del_item(trans, root, &path); if (ret) goto fail; ret = btrfs_free_extent(trans, root, extent_start, extent_size, 0, root->root_key.objectid, extent_key->objectid, extent_key->offset); if (ret) goto fail; btrfs_release_path(&path); key.objectid = extent_key->objectid; key.offset = 0; key.type = BTRFS_INODE_ITEM_KEY; ret = btrfs_lookup_inode(trans, root, &path, &key, 0); if (ret) goto fail; leaf = path.nodes[0]; ptr = btrfs_item_ptr_offset(leaf, path.slots[0]); read_extent_buffer(leaf, &inode, ptr, sizeof(inode)); btrfs_release_path(&path); BUG_ON(num_bytes & (sectorsize - 1)); nbytes = btrfs_stack_inode_nbytes(&inode) - num_bytes; btrfs_set_stack_inode_nbytes(&inode, nbytes); datacsum = !(btrfs_stack_inode_flags(&inode) & BTRFS_INODE_NODATASUM); data = (struct blk_iterate_data) { .trans = trans, .root = root, .inode = &inode, .objectid = extent_key->objectid, .first_block = extent_key->offset / sectorsize, .disk_block = 0, .num_blocks = 0, .boundary = (u64)-1, .checksum = datacsum, .errcode = 0, }; cur_offset = extent_key->offset; while (num_bytes > 0) { sector_end = bytenr + sectorsize - 1; if (test_range_bit(reloc_tree, bytenr, sector_end, EXTENT_LOCKED, 1)) { ret = get_state_private(reloc_tree, bytenr, &new_pos); BUG_ON(ret); } else { ret = custom_alloc_extent(root, sectorsize, 0, &key); if (ret) goto fail; new_pos = key.objectid; if (cur_offset == extent_key->offset) { fd = root->fs_info->fs_devices->latest_bdev; readahead(fd, bytenr, num_bytes); } ret = copy_disk_extent(root, new_pos, bytenr, sectorsize); if (ret) goto fail; ret = set_extent_bits(reloc_tree, bytenr, sector_end, EXTENT_LOCKED, GFP_NOFS); BUG_ON(ret); ret = set_state_private(reloc_tree, bytenr, new_pos); BUG_ON(ret); } ret = block_iterate_proc(NULL, new_pos / sectorsize, cur_offset / sectorsize, &data); if (ret & BLOCK_ABORT) { ret = data.errcode; goto fail; } cur_offset += sectorsize; bytenr += sectorsize; num_bytes -= sectorsize; } if (data.num_blocks > 0) { ret = record_file_blocks(trans, root, extent_key->objectid, &inode, data.first_block, data.disk_block, data.num_blocks, datacsum); if (ret) goto fail; } key.objectid = extent_key->objectid; key.offset = 0; key.type = BTRFS_INODE_ITEM_KEY; ret = btrfs_lookup_inode(trans, root, &path, &key, 1); if (ret) goto fail; leaf = path.nodes[0]; ptr = btrfs_item_ptr_offset(leaf, path.slots[0]); write_extent_buffer(leaf, &inode, ptr, sizeof(inode)); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(&path); fail: btrfs_release_path(&path); return ret; } static int relocate_extents_range(struct btrfs_root *fs_root, struct btrfs_root *ext2_root, u64 start_byte, u64 end_byte) { struct btrfs_fs_info *info = fs_root->fs_info; struct btrfs_root *extent_root = info->extent_root; struct btrfs_root *cur_root = NULL; struct btrfs_trans_handle *trans; struct btrfs_extent_data_ref *dref; struct btrfs_extent_inline_ref *iref; struct btrfs_extent_item *ei; struct extent_buffer *leaf; struct btrfs_key key; struct btrfs_key extent_key; struct btrfs_path path; struct extent_io_tree reloc_tree; unsigned long ptr; unsigned long end; u64 cur_byte; u64 num_bytes; u64 ref_root; u64 num_extents; int pass = 0; int ret; btrfs_init_path(&path); extent_io_tree_init(&reloc_tree); key.objectid = start_byte; key.offset = 0; key.type = BTRFS_EXTENT_ITEM_KEY; ret = btrfs_search_slot(NULL, extent_root, &key, &path, 0, 0); if (ret < 0) goto fail; if (ret > 0) { ret = btrfs_previous_item(extent_root, &path, 0, BTRFS_EXTENT_ITEM_KEY); if (ret < 0) goto fail; if (ret == 0) { leaf = path.nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.objectid + key.offset > start_byte) start_byte = key.objectid; } } btrfs_release_path(&path); again: cur_root = (pass % 2 == 0) ? ext2_root : fs_root; num_extents = 0; trans = btrfs_start_transaction(cur_root, 1); BUG_ON(!trans); cur_byte = start_byte; while (1) { key.objectid = cur_byte; key.offset = 0; key.type = BTRFS_EXTENT_ITEM_KEY; ret = btrfs_search_slot(trans, extent_root, &key, &path, 0, 0); if (ret < 0) goto fail; next: leaf = path.nodes[0]; if (path.slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(extent_root, &path); if (ret < 0) goto fail; if (ret > 0) break; leaf = path.nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.objectid < cur_byte || key.type != BTRFS_EXTENT_ITEM_KEY) { path.slots[0]++; goto next; } if (key.objectid >= end_byte) break; num_extents++; cur_byte = key.objectid; num_bytes = key.offset; ei = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_extent_item); BUG_ON(!(btrfs_extent_flags(leaf, ei) & BTRFS_EXTENT_FLAG_DATA)); ptr = btrfs_item_ptr_offset(leaf, path.slots[0]); end = ptr + btrfs_item_size_nr(leaf, path.slots[0]); ptr += sizeof(struct btrfs_extent_item); while (ptr < end) { iref = (struct btrfs_extent_inline_ref *)ptr; key.type = btrfs_extent_inline_ref_type(leaf, iref); BUG_ON(key.type != BTRFS_EXTENT_DATA_REF_KEY); dref = (struct btrfs_extent_data_ref *)(&iref->offset); ref_root = btrfs_extent_data_ref_root(leaf, dref); extent_key.objectid = btrfs_extent_data_ref_objectid(leaf, dref); extent_key.offset = btrfs_extent_data_ref_offset(leaf, dref); extent_key.type = BTRFS_EXTENT_DATA_KEY; BUG_ON(btrfs_extent_data_ref_count(leaf, dref) != 1); if (ref_root == cur_root->root_key.objectid) break; ptr += btrfs_extent_inline_ref_size(key.type); } if (ptr >= end) { path.slots[0]++; goto next; } ret = relocate_one_reference(trans, cur_root, cur_byte, num_bytes, &extent_key, &reloc_tree); if (ret < 0) goto fail; cur_byte += num_bytes; btrfs_release_path(&path); if (trans->blocks_used >= 4096) { ret = btrfs_commit_transaction(trans, cur_root); BUG_ON(ret); trans = btrfs_start_transaction(cur_root, 1); BUG_ON(!trans); } } btrfs_release_path(&path); ret = btrfs_commit_transaction(trans, cur_root); BUG_ON(ret); if (num_extents > 0 && pass++ < 16) goto again; ret = (num_extents > 0) ? -1 : 0; fail: btrfs_release_path(&path); extent_io_tree_cleanup(&reloc_tree); return ret; } /* * relocate data in system chunk */ static int cleanup_sys_chunk(struct btrfs_root *fs_root, struct btrfs_root *ext2_root) { struct btrfs_block_group_cache *cache; int i, ret = 0; u64 offset = 0; u64 end_byte; while(1) { cache = btrfs_lookup_block_group(fs_root->fs_info, offset); if (!cache) break; end_byte = cache->key.objectid + cache->key.offset; if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { ret = relocate_extents_range(fs_root, ext2_root, cache->key.objectid, end_byte); if (ret) goto fail; } offset = end_byte; } for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { offset = btrfs_sb_offset(i); offset &= ~((u64)BTRFS_STRIPE_LEN - 1); ret = relocate_extents_range(fs_root, ext2_root, offset, offset + BTRFS_STRIPE_LEN); if (ret) goto fail; } ret = 0; fail: return ret; } static int fixup_chunk_mapping(struct btrfs_root *root) { struct btrfs_trans_handle *trans; struct btrfs_fs_info *info = root->fs_info; struct btrfs_root *chunk_root = info->chunk_root; struct extent_buffer *leaf; struct btrfs_key key; struct btrfs_path path; struct btrfs_chunk chunk; unsigned long ptr; u32 size; u64 type; int ret; btrfs_init_path(&path); trans = btrfs_start_transaction(root, 1); BUG_ON(!trans); /* * recow the whole chunk tree. this will move all chunk tree blocks * into system block group. */ memset(&key, 0, sizeof(key)); while (1) { ret = btrfs_search_slot(trans, chunk_root, &key, &path, 0, 1); if (ret < 0) goto err; ret = btrfs_next_leaf(chunk_root, &path); if (ret < 0) goto err; if (ret > 0) break; btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); btrfs_release_path(&path); } btrfs_release_path(&path); /* fixup the system chunk array in super block */ btrfs_set_super_sys_array_size(info->super_copy, 0); key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; key.offset = 0; key.type = BTRFS_CHUNK_ITEM_KEY; ret = btrfs_search_slot(trans, chunk_root, &key, &path, 0, 0); if (ret < 0) goto err; BUG_ON(ret != 0); while(1) { leaf = path.nodes[0]; if (path.slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(chunk_root, &path); if (ret < 0) goto err; if (ret > 0) break; leaf = path.nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.type != BTRFS_CHUNK_ITEM_KEY) goto next; ptr = btrfs_item_ptr_offset(leaf, path.slots[0]); size = btrfs_item_size_nr(leaf, path.slots[0]); BUG_ON(size != sizeof(chunk)); read_extent_buffer(leaf, &chunk, ptr, size); type = btrfs_stack_chunk_type(&chunk); if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) goto next; ret = btrfs_add_system_chunk(trans, chunk_root, &key, &chunk, size); if (ret) goto err; next: path.slots[0]++; } ret = btrfs_commit_transaction(trans, root); BUG_ON(ret); err: btrfs_release_path(&path); return ret; } static int do_convert(const char *devname, int datacsum, int packing, int noxattr) { int i, ret; int fd = -1; u32 blocksize; u64 blocks[7]; u64 total_bytes; u64 super_bytenr; ext2_filsys ext2_fs; struct btrfs_root *root; struct btrfs_root *ext2_root; ret = open_ext2fs(devname, &ext2_fs); if (ret) { fprintf(stderr, "unable to open the Ext2fs\n"); goto fail; } blocksize = ext2_fs->blocksize; total_bytes = (u64)ext2_fs->super->s_blocks_count * blocksize; if (blocksize < 4096) { fprintf(stderr, "block size is too small\n"); goto fail; } if (!(ext2_fs->super->s_feature_incompat & EXT2_FEATURE_INCOMPAT_FILETYPE)) { fprintf(stderr, "filetype feature is missing\n"); goto fail; } for (i = 0; i < 7; i++) { ret = ext2_alloc_block(ext2_fs, 0, blocks + i); if (ret) { fprintf(stderr, "not enough free space\n"); goto fail; } blocks[i] *= blocksize; } super_bytenr = blocks[0]; fd = open(devname, O_RDWR); if (fd < 0) { fprintf(stderr, "unable to open %s\n", devname); goto fail; } ret = make_btrfs(fd, devname, ext2_fs->super->s_volume_name, blocks, total_bytes, blocksize, blocksize, blocksize, blocksize, 0); if (ret) { fprintf(stderr, "unable to create initial ctree: %s\n", strerror(-ret)); goto fail; } /* create a system chunk that maps the whole device */ ret = prepare_system_chunk(fd, super_bytenr, blocksize); if (ret) { fprintf(stderr, "unable to update system chunk\n"); goto fail; } root = open_ctree_fd(fd, devname, super_bytenr, OPEN_CTREE_WRITES); if (!root) { fprintf(stderr, "unable to open ctree\n"); goto fail; } ret = cache_free_extents(root, ext2_fs); if (ret) { fprintf(stderr, "error during cache_free_extents %d\n", ret); goto fail; } root->fs_info->extent_ops = &extent_ops; /* recover block allocation bitmap */ for (i = 0; i < 7; i++) { blocks[i] /= blocksize; ext2_free_block(ext2_fs, blocks[i]); } ret = init_btrfs(root); if (ret) { fprintf(stderr, "unable to setup the root tree\n"); goto fail; } printf("creating btrfs metadata.\n"); ret = copy_inodes(root, ext2_fs, datacsum, packing, noxattr); if (ret) { fprintf(stderr, "error during copy_inodes %d\n", ret); goto fail; } printf("creating ext2fs image file.\n"); ext2_root = link_subvol(root, "ext2_saved", EXT2_IMAGE_SUBVOL_OBJECTID); if (!ext2_root) { fprintf(stderr, "unable to create subvol\n"); goto fail; } ret = create_ext2_image(ext2_root, ext2_fs, "image"); if (ret) { fprintf(stderr, "error during create_ext2_image %d\n", ret); goto fail; } printf("cleaning up system chunk.\n"); ret = cleanup_sys_chunk(root, ext2_root); if (ret) { fprintf(stderr, "error during cleanup_sys_chunk %d\n", ret); goto fail; } ret = close_ctree(root); if (ret) { fprintf(stderr, "error during close_ctree %d\n", ret); goto fail; } close_ext2fs(ext2_fs); /* * If this step succeed, we get a mountable btrfs. Otherwise * the ext2fs is left unchanged. */ ret = migrate_super_block(fd, super_bytenr, blocksize); if (ret) { fprintf(stderr, "unable to migrate super block\n"); goto fail; } root = open_ctree_fd(fd, devname, 0, OPEN_CTREE_WRITES); if (!root) { fprintf(stderr, "unable to open ctree\n"); goto fail; } /* move chunk tree into system chunk. */ ret = fixup_chunk_mapping(root); if (ret) { fprintf(stderr, "error during fixup_chunk_tree\n"); goto fail; } ret = close_ctree(root); close(fd); printf("conversion complete.\n"); return 0; fail: if (fd != -1) close(fd); fprintf(stderr, "conversion aborted.\n"); return -1; } static int may_rollback(struct btrfs_root *root) { struct btrfs_fs_info *info = root->fs_info; struct btrfs_multi_bio *multi = NULL; u64 bytenr; u64 length; u64 physical; u64 total_bytes; int num_stripes; int ret; if (btrfs_super_num_devices(info->super_copy) != 1) goto fail; bytenr = BTRFS_SUPER_INFO_OFFSET; total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy); while (1) { ret = btrfs_map_block(&info->mapping_tree, WRITE, bytenr, &length, &multi, 0, NULL); if (ret) goto fail; num_stripes = multi->num_stripes; physical = multi->stripes[0].physical; kfree(multi); if (num_stripes != 1 || physical != bytenr) goto fail; bytenr += length; if (bytenr >= total_bytes) break; } return 0; fail: return -1; } static int do_rollback(const char *devname, int force) { int fd = -1; int ret; int i; struct btrfs_root *root; struct btrfs_root *ext2_root; struct btrfs_root *chunk_root; struct btrfs_dir_item *dir; struct btrfs_inode_item *inode; struct btrfs_file_extent_item *fi; struct btrfs_trans_handle *trans; struct extent_buffer *leaf; struct btrfs_block_group_cache *cache1; struct btrfs_block_group_cache *cache2; struct btrfs_key key; struct btrfs_path path; struct extent_io_tree io_tree; char *buf = NULL; char *name; u64 bytenr; u64 num_bytes; u64 root_dir; u64 objectid; u64 offset; u64 start; u64 end; u64 sb_bytenr; u64 first_free; u64 total_bytes; u32 sectorsize; extent_io_tree_init(&io_tree); fd = open(devname, O_RDWR); if (fd < 0) { fprintf(stderr, "unable to open %s\n", devname); goto fail; } root = open_ctree_fd(fd, devname, 0, OPEN_CTREE_WRITES); if (!root) { fprintf(stderr, "unable to open ctree\n"); goto fail; } ret = may_rollback(root); if (ret < 0) { fprintf(stderr, "unable to do rollback\n"); goto fail; } sectorsize = root->sectorsize; buf = malloc(sectorsize); if (!buf) { fprintf(stderr, "unable to allocate memory\n"); goto fail; } btrfs_init_path(&path); key.objectid = EXT2_IMAGE_SUBVOL_OBJECTID; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; ext2_root = btrfs_read_fs_root(root->fs_info, &key); if (!ext2_root || IS_ERR(ext2_root)) { fprintf(stderr, "unable to open subvol %llu\n", key.objectid); goto fail; } name = "image"; root_dir = btrfs_root_dirid(&root->root_item); dir = btrfs_lookup_dir_item(NULL, ext2_root, &path, root_dir, name, strlen(name), 0); if (!dir || IS_ERR(dir)) { fprintf(stderr, "unable to find file %s\n", name); goto fail; } leaf = path.nodes[0]; btrfs_dir_item_key_to_cpu(leaf, dir, &key); btrfs_release_path(&path); objectid = key.objectid; ret = btrfs_lookup_inode(NULL, ext2_root, &path, &key, 0); if (ret) { fprintf(stderr, "unable to find inode item\n"); goto fail; } leaf = path.nodes[0]; inode = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_inode_item); total_bytes = btrfs_inode_size(leaf, inode); btrfs_release_path(&path); key.objectid = objectid; key.offset = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); ret = btrfs_search_slot(NULL, ext2_root, &key, &path, 0, 0); if (ret != 0) { fprintf(stderr, "unable to find first file extent\n"); btrfs_release_path(&path); goto fail; } /* build mapping tree for the relocated blocks */ for (offset = 0; offset < total_bytes; ) { leaf = path.nodes[0]; if (path.slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, &path); if (ret != 0) break; continue; } btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.objectid != objectid || key.offset != offset || btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) break; fi = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_file_extent_item); if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) break; if (btrfs_file_extent_compression(leaf, fi) || btrfs_file_extent_encryption(leaf, fi) || btrfs_file_extent_other_encoding(leaf, fi)) break; bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); /* skip holes and direct mapped extents */ if (bytenr == 0 || bytenr == offset) goto next_extent; bytenr += btrfs_file_extent_offset(leaf, fi); num_bytes = btrfs_file_extent_num_bytes(leaf, fi); cache1 = btrfs_lookup_block_group(root->fs_info, offset); cache2 = btrfs_lookup_block_group(root->fs_info, offset + num_bytes - 1); if (!cache1 || cache1 != cache2 || (!(cache1->flags & BTRFS_BLOCK_GROUP_SYSTEM) && !intersect_with_sb(offset, num_bytes))) break; set_extent_bits(&io_tree, offset, offset + num_bytes - 1, EXTENT_LOCKED, GFP_NOFS); set_state_private(&io_tree, offset, bytenr); next_extent: offset += btrfs_file_extent_num_bytes(leaf, fi); path.slots[0]++; } btrfs_release_path(&path); if (offset < total_bytes) { fprintf(stderr, "unable to build extent mapping\n"); goto fail; } first_free = BTRFS_SUPER_INFO_OFFSET + 2 * sectorsize - 1; first_free &= ~((u64)sectorsize - 1); /* backup for extent #0 should exist */ if(!test_range_bit(&io_tree, 0, first_free - 1, EXTENT_LOCKED, 1)) { fprintf(stderr, "no backup for the first extent\n"); goto fail; } /* force no allocation from system block group */ root->fs_info->system_allocs = -1; trans = btrfs_start_transaction(root, 1); BUG_ON(!trans); /* * recow the whole chunk tree, this will remove all chunk tree blocks * from system block group */ chunk_root = root->fs_info->chunk_root; memset(&key, 0, sizeof(key)); while (1) { ret = btrfs_search_slot(trans, chunk_root, &key, &path, 0, 1); if (ret < 0) break; ret = btrfs_next_leaf(chunk_root, &path); if (ret) break; btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); btrfs_release_path(&path); } btrfs_release_path(&path); offset = 0; num_bytes = 0; while(1) { cache1 = btrfs_lookup_block_group(root->fs_info, offset); if (!cache1) break; if (cache1->flags & BTRFS_BLOCK_GROUP_SYSTEM) num_bytes += btrfs_block_group_used(&cache1->item); offset = cache1->key.objectid + cache1->key.offset; } /* only extent #0 left in system block group? */ if (num_bytes > first_free) { fprintf(stderr, "unable to empty system block group\n"); goto fail; } /* create a system chunk that maps the whole device */ ret = prepare_system_chunk_sb(root->fs_info->super_copy); if (ret) { fprintf(stderr, "unable to update system chunk\n"); goto fail; } ret = btrfs_commit_transaction(trans, root); BUG_ON(ret); ret = close_ctree(root); if (ret) { fprintf(stderr, "error during close_ctree %d\n", ret); goto fail; } /* zero btrfs super block mirrors */ memset(buf, 0, sectorsize); for (i = 1 ; i < BTRFS_SUPER_MIRROR_MAX; i++) { bytenr = btrfs_sb_offset(i); if (bytenr >= total_bytes) break; ret = pwrite(fd, buf, sectorsize, bytenr); } sb_bytenr = (u64)-1; /* copy all relocated blocks back */ while(1) { ret = find_first_extent_bit(&io_tree, 0, &start, &end, EXTENT_LOCKED); if (ret) break; ret = get_state_private(&io_tree, start, &bytenr); BUG_ON(ret); clear_extent_bits(&io_tree, start, end, EXTENT_LOCKED, GFP_NOFS); while (start <= end) { if (start == BTRFS_SUPER_INFO_OFFSET) { sb_bytenr = bytenr; goto next_sector; } ret = pread(fd, buf, sectorsize, bytenr); if (ret < 0) { fprintf(stderr, "error during pread %d\n", ret); goto fail; } BUG_ON(ret != sectorsize); ret = pwrite(fd, buf, sectorsize, start); if (ret < 0) { fprintf(stderr, "error during pwrite %d\n", ret); goto fail; } BUG_ON(ret != sectorsize); next_sector: start += sectorsize; bytenr += sectorsize; } } ret = fsync(fd); if (ret) { fprintf(stderr, "error during fsync %d\n", ret); goto fail; } /* * finally, overwrite btrfs super block. */ ret = pread(fd, buf, sectorsize, sb_bytenr); if (ret < 0) { fprintf(stderr, "error during pread %d\n", ret); goto fail; } BUG_ON(ret != sectorsize); ret = pwrite(fd, buf, sectorsize, BTRFS_SUPER_INFO_OFFSET); if (ret < 0) { fprintf(stderr, "error during pwrite %d\n", ret); goto fail; } BUG_ON(ret != sectorsize); ret = fsync(fd); if (ret) { fprintf(stderr, "error during fsync %d\n", ret); goto fail; } close(fd); free(buf); extent_io_tree_cleanup(&io_tree); printf("rollback complete.\n"); return 0; fail: if (fd != -1) close(fd); free(buf); fprintf(stderr, "rollback aborted.\n"); return -1; } static void print_usage(void) { printf("usage: btrfs-convert [-d] [-i] [-n] [-r] device\n"); printf("\t-d disable data checksum\n"); printf("\t-i ignore xattrs and ACLs\n"); printf("\t-n disable packing of small files\n"); printf("\t-r roll back to ext2fs\n"); } int main(int argc, char *argv[]) { int ret; int packing = 1; int noxattr = 0; int datacsum = 1; int rollback = 0; char *file; while(1) { int c = getopt(argc, argv, "dinr"); if (c < 0) break; switch(c) { case 'd': datacsum = 0; break; case 'i': noxattr = 1; break; case 'n': packing = 0; break; case 'r': rollback = 1; break; default: print_usage(); return 1; } } argc = argc - optind; if (argc != 1) { print_usage(); return 1; } file = argv[optind]; ret = check_mounted(file); if (ret < 0) { fprintf(stderr, "Could not check mount status: %s\n", strerror(-ret)); return 1; } else if (ret) { fprintf(stderr, "%s is mounted\n", file); return 1; } if (rollback) { ret = do_rollback(file, 0); } else { ret = do_convert(file, datacsum, packing, noxattr); } if (ret) return 1; return 0; }