/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include "kerncompat.h" #include #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "volumes.h" #include "transaction.h" #include "crc32c.h" #include "utils.h" #include "task-utils.h" #if BTRFSCONVERT_EXT2 #include #include #include #define INO_OFFSET (BTRFS_FIRST_FREE_OBJECTID - EXT2_ROOT_INO) /* * Compatibility code for e2fsprogs 1.41 which doesn't support RO compat flag * BIGALLOC. * Unlike normal RO compat flag, BIGALLOC affects how e2fsprogs check used * space, and btrfs-convert heavily relies on it. */ #ifdef HAVE_OLD_E2FSPROGS #define EXT2FS_CLUSTER_RATIO(fs) (1) #define EXT2_CLUSTERS_PER_GROUP(s) (EXT2_BLOCKS_PER_GROUP(s)) #define EXT2FS_B2C(fs, blk) (blk) #endif #endif #define CONV_IMAGE_SUBVOL_OBJECTID BTRFS_FIRST_FREE_OBJECTID struct task_ctx { uint32_t max_copy_inodes; uint32_t cur_copy_inodes; struct task_info *info; }; static void *print_copied_inodes(void *p) { struct task_ctx *priv = p; const char work_indicator[] = { '.', 'o', 'O', 'o' }; uint32_t count = 0; task_period_start(priv->info, 1000 /* 1s */); while (1) { count++; printf("copy inodes [%c] [%10d/%10d]\r", work_indicator[count % 4], priv->cur_copy_inodes, priv->max_copy_inodes); fflush(stdout); task_period_wait(priv->info); } return NULL; } static int after_copied_inodes(void *p) { printf("\n"); fflush(stdout); return 0; } struct btrfs_convert_context; struct btrfs_convert_operations { const char *name; int (*open_fs)(struct btrfs_convert_context *cctx, const char *devname); int (*read_used_space)(struct btrfs_convert_context *cctx); int (*copy_inodes)(struct btrfs_convert_context *cctx, struct btrfs_root *root, int datacsum, int packing, int noxattr, struct task_ctx *p); void (*close_fs)(struct btrfs_convert_context *cctx); }; static void init_convert_context(struct btrfs_convert_context *cctx) { cache_tree_init(&cctx->used); cache_tree_init(&cctx->data_chunks); cache_tree_init(&cctx->free); } static void clean_convert_context(struct btrfs_convert_context *cctx) { free_extent_cache_tree(&cctx->used); free_extent_cache_tree(&cctx->data_chunks); free_extent_cache_tree(&cctx->free); } static inline int copy_inodes(struct btrfs_convert_context *cctx, struct btrfs_root *root, int datacsum, int packing, int noxattr, struct task_ctx *p) { return cctx->convert_ops->copy_inodes(cctx, root, datacsum, packing, noxattr, p); } static inline void convert_close_fs(struct btrfs_convert_context *cctx) { cctx->convert_ops->close_fs(cctx); } static int intersect_with_sb(u64 bytenr, u64 num_bytes) { int i; u64 offset; for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { offset = btrfs_sb_offset(i); offset &= ~((u64)BTRFS_STRIPE_LEN - 1); if (bytenr < offset + BTRFS_STRIPE_LEN && bytenr + num_bytes > offset) return 1; } return 0; } static int convert_insert_dirent(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *name, size_t name_len, u64 dir, u64 objectid, u8 file_type, u64 index_cnt, struct btrfs_inode_item *inode) { int ret; u64 inode_size; struct btrfs_key location = { .objectid = objectid, .offset = 0, .type = BTRFS_INODE_ITEM_KEY, }; ret = btrfs_insert_dir_item(trans, root, name, name_len, dir, &location, file_type, index_cnt); if (ret) return ret; ret = btrfs_insert_inode_ref(trans, root, name, name_len, objectid, dir, index_cnt); if (ret) return ret; inode_size = btrfs_stack_inode_size(inode) + name_len * 2; btrfs_set_stack_inode_size(inode, inode_size); return 0; } static int read_disk_extent(struct btrfs_root *root, u64 bytenr, u32 num_bytes, char *buffer) { int ret; struct btrfs_fs_devices *fs_devs = root->fs_info->fs_devices; ret = pread(fs_devs->latest_bdev, buffer, num_bytes, bytenr); if (ret != num_bytes) goto fail; ret = 0; fail: if (ret > 0) ret = -1; return ret; } static int csum_disk_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 disk_bytenr, u64 num_bytes) { u32 blocksize = root->sectorsize; u64 offset; char *buffer; int ret = 0; buffer = malloc(blocksize); if (!buffer) return -ENOMEM; for (offset = 0; offset < num_bytes; offset += blocksize) { ret = read_disk_extent(root, disk_bytenr + offset, blocksize, buffer); if (ret) break; ret = btrfs_csum_file_block(trans, root->fs_info->csum_root, disk_bytenr + num_bytes, disk_bytenr + offset, buffer, blocksize); if (ret) break; } free(buffer); return ret; } struct blk_iterate_data { struct btrfs_trans_handle *trans; struct btrfs_root *root; struct btrfs_root *convert_root; struct btrfs_inode_item *inode; u64 convert_ino; u64 objectid; u64 first_block; u64 disk_block; u64 num_blocks; u64 boundary; int checksum; int errcode; }; static void init_blk_iterate_data(struct blk_iterate_data *data, struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_inode_item *inode, u64 objectid, int checksum) { struct btrfs_key key; data->trans = trans; data->root = root; data->inode = inode; data->objectid = objectid; data->first_block = 0; data->disk_block = 0; data->num_blocks = 0; data->boundary = (u64)-1; data->checksum = checksum; data->errcode = 0; key.objectid = CONV_IMAGE_SUBVOL_OBJECTID; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; data->convert_root = btrfs_read_fs_root(root->fs_info, &key); /* Impossible as we just opened it before */ BUG_ON(!data->convert_root || IS_ERR(data->convert_root)); data->convert_ino = BTRFS_FIRST_FREE_OBJECTID + 1; } /* * Record a file extent in original filesystem into btrfs one. * The special point is, old disk_block can point to a reserved range. * So here, we don't use disk_block directly but search convert_root * to get the real disk_bytenr. */ static int record_file_blocks(struct blk_iterate_data *data, u64 file_block, u64 disk_block, u64 num_blocks) { int ret = 0; struct btrfs_root *root = data->root; struct btrfs_root *convert_root = data->convert_root; struct btrfs_path *path; u64 file_pos = file_block * root->sectorsize; u64 old_disk_bytenr = disk_block * root->sectorsize; u64 num_bytes = num_blocks * root->sectorsize; u64 cur_off = old_disk_bytenr; /* Hole, pass it to record_file_extent directly */ if (old_disk_bytenr == 0) return btrfs_record_file_extent(data->trans, root, data->objectid, data->inode, file_pos, 0, num_bytes); path = btrfs_alloc_path(); if (!path) return -ENOMEM; /* * Search real disk bytenr from convert root */ while (cur_off < old_disk_bytenr + num_bytes) { struct btrfs_key key; struct btrfs_file_extent_item *fi; struct extent_buffer *node; int slot; u64 extent_disk_bytenr; u64 extent_num_bytes; u64 real_disk_bytenr; u64 cur_len; key.objectid = data->convert_ino; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = cur_off; ret = btrfs_search_slot(NULL, convert_root, &key, path, 0, 0); if (ret < 0) break; if (ret > 0) { ret = btrfs_previous_item(convert_root, path, data->convert_ino, BTRFS_EXTENT_DATA_KEY); if (ret < 0) break; if (ret > 0) { ret = -ENOENT; break; } } node = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(node, &key, slot); BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY || key.objectid != data->convert_ino || key.offset > cur_off); fi = btrfs_item_ptr(node, slot, struct btrfs_file_extent_item); extent_disk_bytenr = btrfs_file_extent_disk_bytenr(node, fi); extent_num_bytes = btrfs_file_extent_disk_num_bytes(node, fi); BUG_ON(cur_off - key.offset >= extent_num_bytes); btrfs_release_path(path); if (extent_disk_bytenr) real_disk_bytenr = cur_off - key.offset + extent_disk_bytenr; else real_disk_bytenr = 0; cur_len = min(key.offset + extent_num_bytes, old_disk_bytenr + num_bytes) - cur_off; ret = btrfs_record_file_extent(data->trans, data->root, data->objectid, data->inode, file_pos, real_disk_bytenr, cur_len); if (ret < 0) break; cur_off += cur_len; file_pos += cur_len; /* * No need to care about csum * As every byte of old fs image is calculated for csum, no * need to waste CPU cycles now. */ } btrfs_free_path(path); return ret; } static int block_iterate_proc(u64 disk_block, u64 file_block, struct blk_iterate_data *idata) { int ret = 0; int sb_region; int do_barrier; struct btrfs_root *root = idata->root; struct btrfs_block_group_cache *cache; u64 bytenr = disk_block * root->sectorsize; sb_region = intersect_with_sb(bytenr, root->sectorsize); do_barrier = sb_region || disk_block >= idata->boundary; if ((idata->num_blocks > 0 && do_barrier) || (file_block > idata->first_block + idata->num_blocks) || (disk_block != idata->disk_block + idata->num_blocks)) { if (idata->num_blocks > 0) { ret = record_file_blocks(idata, idata->first_block, idata->disk_block, idata->num_blocks); if (ret) goto fail; idata->first_block += idata->num_blocks; idata->num_blocks = 0; } if (file_block > idata->first_block) { ret = record_file_blocks(idata, idata->first_block, 0, file_block - idata->first_block); if (ret) goto fail; } if (sb_region) { bytenr += BTRFS_STRIPE_LEN - 1; bytenr &= ~((u64)BTRFS_STRIPE_LEN - 1); } else { cache = btrfs_lookup_block_group(root->fs_info, bytenr); BUG_ON(!cache); bytenr = cache->key.objectid + cache->key.offset; } idata->first_block = file_block; idata->disk_block = disk_block; idata->boundary = bytenr / root->sectorsize; } idata->num_blocks++; fail: return ret; } static int create_image_file_range(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct cache_tree *used, struct btrfs_inode_item *inode, u64 ino, u64 bytenr, u64 *ret_len, int datacsum) { struct cache_extent *cache; struct btrfs_block_group_cache *bg_cache; u64 len = *ret_len; u64 disk_bytenr; int i; int ret; BUG_ON(bytenr != round_down(bytenr, root->sectorsize)); BUG_ON(len != round_down(len, root->sectorsize)); len = min_t(u64, len, BTRFS_MAX_EXTENT_SIZE); /* * Skip sb ranges first * [0, 1M), [sb_offset(1), +64K), [sb_offset(2), +64K]. * * Or we will insert a hole into current image file, and later * migrate block will fail as there is already a file extent. */ if (bytenr < 1024 * 1024) { *ret_len = 1024 * 1024 - bytenr; return 0; } for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) { u64 cur = btrfs_sb_offset(i); if (bytenr >= cur && bytenr < cur + BTRFS_STRIPE_LEN) { *ret_len = cur + BTRFS_STRIPE_LEN - bytenr; return 0; } } for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) { u64 cur = btrfs_sb_offset(i); /* * |--reserved--| * |----range-------| * May still need to go through file extent inserts */ if (bytenr < cur && bytenr + len >= cur) { len = min_t(u64, len, cur - bytenr); break; } /* * |--reserved--| * |---range---| * Drop out, no need to insert anything */ if (bytenr >= cur && bytenr < cur + BTRFS_STRIPE_LEN) { *ret_len = cur + BTRFS_STRIPE_LEN - bytenr; return 0; } } cache = search_cache_extent(used, bytenr); if (cache) { if (cache->start <= bytenr) { /* * |///////Used///////| * |<--insert--->| * bytenr */ len = min_t(u64, len, cache->start + cache->size - bytenr); disk_bytenr = bytenr; } else { /* * |//Used//| * |<-insert-->| * bytenr */ len = min(len, cache->start - bytenr); disk_bytenr = 0; datacsum = 0; } } else { /* * |//Used//| |EOF * |<-insert-->| * bytenr */ disk_bytenr = 0; datacsum = 0; } if (disk_bytenr) { /* Check if the range is in a data block group */ bg_cache = btrfs_lookup_block_group(root->fs_info, bytenr); if (!bg_cache) return -ENOENT; if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_DATA)) return -EINVAL; /* The extent should never cross block group boundary */ len = min_t(u64, len, bg_cache->key.objectid + bg_cache->key.offset - bytenr); } BUG_ON(len != round_down(len, root->sectorsize)); ret = btrfs_record_file_extent(trans, root, ino, inode, bytenr, disk_bytenr, len); if (ret < 0) return ret; if (datacsum) ret = csum_disk_extent(trans, root, bytenr, len); *ret_len = len; return ret; } /* * Relocate old fs data in one reserved ranges * * Since all old fs data in reserved range is not covered by any chunk nor * data extent, we don't need to handle any reference but add new * extent/reference, which makes codes more clear */ static int migrate_one_reserved_range(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct cache_tree *used, struct btrfs_inode_item *inode, int fd, u64 ino, u64 start, u64 len, int datacsum) { u64 cur_off = start; u64 cur_len = len; u64 hole_start = start; u64 hole_len; struct cache_extent *cache; struct btrfs_key key; struct extent_buffer *eb; int ret = 0; while (cur_off < start + len) { cache = lookup_cache_extent(used, cur_off, cur_len); if (!cache) break; cur_off = max(cache->start, cur_off); cur_len = min(cache->start + cache->size, start + len) - cur_off; BUG_ON(cur_len < root->sectorsize); /* reserve extent for the data */ ret = btrfs_reserve_extent(trans, root, cur_len, 0, 0, (u64)-1, &key, 1); if (ret < 0) break; eb = malloc(sizeof(*eb) + cur_len); if (!eb) { ret = -ENOMEM; break; } ret = pread(fd, eb->data, cur_len, cur_off); if (ret < cur_len) { ret = (ret < 0 ? ret : -EIO); free(eb); break; } eb->start = key.objectid; eb->len = key.offset; /* Write the data */ ret = write_and_map_eb(trans, root, eb); free(eb); if (ret < 0) break; /* Now handle extent item and file extent things */ ret = btrfs_record_file_extent(trans, root, ino, inode, cur_off, key.objectid, key.offset); if (ret < 0) break; /* Finally, insert csum items */ if (datacsum) ret = csum_disk_extent(trans, root, key.objectid, key.offset); /* Don't forget to insert hole */ hole_len = cur_off - hole_start; if (hole_len) { ret = btrfs_record_file_extent(trans, root, ino, inode, hole_start, 0, hole_len); if (ret < 0) break; } cur_off += key.offset; hole_start = cur_off; cur_len = start + len - cur_off; } /* Last hole */ if (start + len - hole_start > 0) ret = btrfs_record_file_extent(trans, root, ino, inode, hole_start, 0, start + len - hole_start); return ret; } /* * Relocate the used ext2 data in reserved ranges * [0,1M) * [btrfs_sb_offset(1), +BTRFS_STRIPE_LEN) * [btrfs_sb_offset(2), +BTRFS_STRIPE_LEN) */ static int migrate_reserved_ranges(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct cache_tree *used, struct btrfs_inode_item *inode, int fd, u64 ino, u64 total_bytes, int datacsum) { u64 cur_off; u64 cur_len; int ret = 0; /* 0 ~ 1M */ cur_off = 0; cur_len = 1024 * 1024; ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino, cur_off, cur_len, datacsum); if (ret < 0) return ret; /* second sb(fisrt sb is included in 0~1M) */ cur_off = btrfs_sb_offset(1); cur_len = min(total_bytes, cur_off + BTRFS_STRIPE_LEN) - cur_off; if (cur_off > total_bytes) return ret; ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino, cur_off, cur_len, datacsum); if (ret < 0) return ret; /* Last sb */ cur_off = btrfs_sb_offset(2); cur_len = min(total_bytes, cur_off + BTRFS_STRIPE_LEN) - cur_off; if (cur_off > total_bytes) return ret; ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino, cur_off, cur_len, datacsum); return ret; } /* * Helper for expand and merge extent_cache for wipe_one_reserved_range() to * handle wiping a range that exists in cache. */ static int _expand_extent_cache(struct cache_tree *tree, struct cache_extent *entry, u64 min_stripe_size, int backward) { struct cache_extent *ce; int diff; if (entry->size >= min_stripe_size) return 0; diff = min_stripe_size - entry->size; if (backward) { ce = prev_cache_extent(entry); if (!ce) goto expand_back; if (ce->start + ce->size >= entry->start - diff) { /* Directly merge with previous extent */ ce->size = entry->start + entry->size - ce->start; remove_cache_extent(tree, entry); free(entry); return 0; } expand_back: /* No overlap, normal extent */ if (entry->start < diff) { error("cannot find space for data chunk layout"); return -ENOSPC; } entry->start -= diff; entry->size += diff; return 0; } ce = next_cache_extent(entry); if (!ce) goto expand_after; if (entry->start + entry->size + diff >= ce->start) { /* Directly merge with next extent */ entry->size = ce->start + ce->size - entry->start; remove_cache_extent(tree, ce); free(ce); return 0; } expand_after: entry->size += diff; return 0; } /* * Remove one reserve range from given cache tree * if min_stripe_size is non-zero, it will ensure for split case, * all its split cache extent is no smaller than @min_strip_size / 2. */ static int wipe_one_reserved_range(struct cache_tree *tree, u64 start, u64 len, u64 min_stripe_size, int ensure_size) { struct cache_extent *cache; int ret; BUG_ON(ensure_size && min_stripe_size == 0); /* * The logical here is simplified to handle special cases only * So we don't need to consider merge case for ensure_size */ BUG_ON(min_stripe_size && (min_stripe_size < len * 2 || min_stripe_size / 2 < BTRFS_STRIPE_LEN)); /* Also, wipe range should already be aligned */ BUG_ON(start != round_down(start, BTRFS_STRIPE_LEN) || start + len != round_up(start + len, BTRFS_STRIPE_LEN)); min_stripe_size /= 2; cache = lookup_cache_extent(tree, start, len); if (!cache) return 0; if (start <= cache->start) { /* * |--------cache---------| * |-wipe-| */ BUG_ON(start + len <= cache->start); /* * The wipe size is smaller than min_stripe_size / 2, * so the result length should still meet min_stripe_size * And no need to do alignment */ cache->size -= (start + len - cache->start); if (cache->size == 0) { remove_cache_extent(tree, cache); free(cache); return 0; } BUG_ON(ensure_size && cache->size < min_stripe_size); cache->start = start + len; return 0; } else if (start > cache->start && start + len < cache->start + cache->size) { /* * |-------cache-----| * |-wipe-| */ u64 old_start = cache->start; u64 old_len = cache->size; u64 insert_start = start + len; u64 insert_len; cache->size = start - cache->start; /* Expand the leading half part if needed */ if (ensure_size && cache->size < min_stripe_size) { ret = _expand_extent_cache(tree, cache, min_stripe_size, 1); if (ret < 0) return ret; } /* And insert the new one */ insert_len = old_start + old_len - start - len; ret = add_merge_cache_extent(tree, insert_start, insert_len); if (ret < 0) return ret; /* Expand the last half part if needed */ if (ensure_size && insert_len < min_stripe_size) { cache = lookup_cache_extent(tree, insert_start, insert_len); if (!cache || cache->start != insert_start || cache->size != insert_len) return -ENOENT; ret = _expand_extent_cache(tree, cache, min_stripe_size, 0); } return ret; } /* * |----cache-----| * |--wipe-| * Wipe len should be small enough and no need to expand the * remaining extent */ cache->size = start - cache->start; BUG_ON(ensure_size && cache->size < min_stripe_size); return 0; } /* * Remove reserved ranges from given cache_tree * * It will remove the following ranges * 1) 0~1M * 2) 2nd superblock, +64K (make sure chunks are 64K aligned) * 3) 3rd superblock, +64K * * @min_stripe must be given for safety check * and if @ensure_size is given, it will ensure affected cache_extent will be * larger than min_stripe_size */ static int wipe_reserved_ranges(struct cache_tree *tree, u64 min_stripe_size, int ensure_size) { int ret; ret = wipe_one_reserved_range(tree, 0, 1024 * 1024, min_stripe_size, ensure_size); if (ret < 0) return ret; ret = wipe_one_reserved_range(tree, btrfs_sb_offset(1), BTRFS_STRIPE_LEN, min_stripe_size, ensure_size); if (ret < 0) return ret; ret = wipe_one_reserved_range(tree, btrfs_sb_offset(2), BTRFS_STRIPE_LEN, min_stripe_size, ensure_size); return ret; } static int calculate_available_space(struct btrfs_convert_context *cctx) { struct cache_tree *used = &cctx->used; struct cache_tree *data_chunks = &cctx->data_chunks; struct cache_tree *free = &cctx->free; struct cache_extent *cache; u64 cur_off = 0; /* * Twice the minimal chunk size, to allow later wipe_reserved_ranges() * works without need to consider overlap */ u64 min_stripe_size = 2 * 16 * 1024 * 1024; int ret; /* Calculate data_chunks */ for (cache = first_cache_extent(used); cache; cache = next_cache_extent(cache)) { u64 cur_len; if (cache->start + cache->size < cur_off) continue; if (cache->start > cur_off + min_stripe_size) cur_off = cache->start; cur_len = max(cache->start + cache->size - cur_off, min_stripe_size); ret = add_merge_cache_extent(data_chunks, cur_off, cur_len); if (ret < 0) goto out; cur_off += cur_len; } /* * remove reserved ranges, so we won't ever bother relocating an old * filesystem extent to other place. */ ret = wipe_reserved_ranges(data_chunks, min_stripe_size, 1); if (ret < 0) goto out; cur_off = 0; /* * Calculate free space * Always round up the start bytenr, to avoid metadata extent corss * stripe boundary, as later mkfs_convert() won't have all the extent * allocation check */ for (cache = first_cache_extent(data_chunks); cache; cache = next_cache_extent(cache)) { if (cache->start < cur_off) continue; if (cache->start > cur_off) { u64 insert_start; u64 len; len = cache->start - round_up(cur_off, BTRFS_STRIPE_LEN); insert_start = round_up(cur_off, BTRFS_STRIPE_LEN); ret = add_merge_cache_extent(free, insert_start, len); if (ret < 0) goto out; } cur_off = cache->start + cache->size; } /* Don't forget the last range */ if (cctx->total_bytes > cur_off) { u64 len = cctx->total_bytes - cur_off; u64 insert_start; insert_start = round_up(cur_off, BTRFS_STRIPE_LEN); ret = add_merge_cache_extent(free, insert_start, len); if (ret < 0) goto out; } /* Remove reserved bytes */ ret = wipe_reserved_ranges(free, min_stripe_size, 0); out: return ret; } /* * Read used space, and since we have the used space, * calcuate data_chunks and free for later mkfs */ static int convert_read_used_space(struct btrfs_convert_context *cctx) { int ret; ret = cctx->convert_ops->read_used_space(cctx); if (ret) return ret; ret = calculate_available_space(cctx); return ret; } /* * Create the fs image file of old filesystem. * * This is completely fs independent as we have cctx->used, only * need to create file extents pointing to all the positions. */ static int create_image(struct btrfs_root *root, struct btrfs_mkfs_config *cfg, struct btrfs_convert_context *cctx, int fd, u64 size, char *name, int datacsum) { struct btrfs_inode_item buf; struct btrfs_trans_handle *trans; struct btrfs_path *path = NULL; struct btrfs_key key; struct cache_extent *cache; struct cache_tree used_tmp; u64 cur; u64 ino; u64 flags = BTRFS_INODE_READONLY; int ret; if (!datacsum) flags |= BTRFS_INODE_NODATASUM; trans = btrfs_start_transaction(root, 1); if (!trans) return -ENOMEM; cache_tree_init(&used_tmp); ret = btrfs_find_free_objectid(trans, root, BTRFS_FIRST_FREE_OBJECTID, &ino); if (ret < 0) goto out; ret = btrfs_new_inode(trans, root, ino, 0400 | S_IFREG); if (ret < 0) goto out; ret = btrfs_change_inode_flags(trans, root, ino, flags); if (ret < 0) goto out; ret = btrfs_add_link(trans, root, ino, BTRFS_FIRST_FREE_OBJECTID, name, strlen(name), BTRFS_FT_REG_FILE, NULL, 1); if (ret < 0) goto out; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } key.objectid = ino; key.type = BTRFS_INODE_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret) { ret = (ret > 0 ? -ENOENT : ret); goto out; } read_extent_buffer(path->nodes[0], &buf, btrfs_item_ptr_offset(path->nodes[0], path->slots[0]), sizeof(buf)); btrfs_release_path(path); /* * Create a new used space cache, which doesn't contain the reserved * range */ for (cache = first_cache_extent(&cctx->used); cache; cache = next_cache_extent(cache)) { ret = add_cache_extent(&used_tmp, cache->start, cache->size); if (ret < 0) goto out; } ret = wipe_reserved_ranges(&used_tmp, 0, 0); if (ret < 0) goto out; /* * Start from 1M, as 0~1M is reserved, and create_image_file_range() * can't handle bytenr 0(will consider it as a hole) */ cur = 1024 * 1024; while (cur < size) { u64 len = size - cur; ret = create_image_file_range(trans, root, &used_tmp, &buf, ino, cur, &len, datacsum); if (ret < 0) goto out; cur += len; } /* Handle the reserved ranges */ ret = migrate_reserved_ranges(trans, root, &cctx->used, &buf, fd, ino, cfg->num_bytes, datacsum); key.objectid = ino; key.type = BTRFS_INODE_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret) { ret = (ret > 0 ? -ENOENT : ret); goto out; } btrfs_set_stack_inode_size(&buf, cfg->num_bytes); write_extent_buffer(path->nodes[0], &buf, btrfs_item_ptr_offset(path->nodes[0], path->slots[0]), sizeof(buf)); out: free_extent_cache_tree(&used_tmp); btrfs_free_path(path); btrfs_commit_transaction(trans, root); return ret; } static struct btrfs_root* link_subvol(struct btrfs_root *root, const char *base, u64 root_objectid) { struct btrfs_trans_handle *trans; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *new_root = NULL; struct btrfs_path *path; struct btrfs_inode_item *inode_item; struct extent_buffer *leaf; struct btrfs_key key; u64 dirid = btrfs_root_dirid(&root->root_item); u64 index = 2; char buf[BTRFS_NAME_LEN + 1]; /* for snprintf null */ int len; int i; int ret; len = strlen(base); if (len == 0 || len > BTRFS_NAME_LEN) return NULL; path = btrfs_alloc_path(); if (!path) return NULL; key.objectid = dirid; key.type = BTRFS_DIR_INDEX_KEY; key.offset = (u64)-1; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret <= 0) { error("search for DIR_INDEX dirid %llu failed: %d", (unsigned long long)dirid, ret); goto fail; } if (path->slots[0] > 0) { path->slots[0]--; btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.objectid == dirid && key.type == BTRFS_DIR_INDEX_KEY) index = key.offset + 1; } btrfs_release_path(path); trans = btrfs_start_transaction(root, 1); if (!trans) { error("unable to start transaction"); goto fail; } key.objectid = dirid; key.offset = 0; key.type = BTRFS_INODE_ITEM_KEY; ret = btrfs_lookup_inode(trans, root, path, &key, 1); if (ret) { error("search for INODE_ITEM %llu failed: %d", (unsigned long long)dirid, ret); goto fail; } leaf = path->nodes[0]; inode_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); key.objectid = root_objectid; key.offset = (u64)-1; key.type = BTRFS_ROOT_ITEM_KEY; memcpy(buf, base, len); for (i = 0; i < 1024; i++) { ret = btrfs_insert_dir_item(trans, root, buf, len, dirid, &key, BTRFS_FT_DIR, index); if (ret != -EEXIST) break; len = snprintf(buf, ARRAY_SIZE(buf), "%s%d", base, i); if (len < 1 || len > BTRFS_NAME_LEN) { ret = -EINVAL; break; } } if (ret) goto fail; btrfs_set_inode_size(leaf, inode_item, len * 2 + btrfs_inode_size(leaf, inode_item)); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(path); /* add the backref first */ ret = btrfs_add_root_ref(trans, tree_root, root_objectid, BTRFS_ROOT_BACKREF_KEY, root->root_key.objectid, dirid, index, buf, len); if (ret) { error("unable to add root backref for %llu: %d", root->root_key.objectid, ret); goto fail; } /* now add the forward ref */ ret = btrfs_add_root_ref(trans, tree_root, root->root_key.objectid, BTRFS_ROOT_REF_KEY, root_objectid, dirid, index, buf, len); if (ret) { error("unable to add root ref for %llu: %d", root->root_key.objectid, ret); goto fail; } ret = btrfs_commit_transaction(trans, root); if (ret) { error("transaction commit failed: %d", ret); goto fail; } new_root = btrfs_read_fs_root(fs_info, &key); if (IS_ERR(new_root)) { error("unable to fs read root: %lu", PTR_ERR(new_root)); new_root = NULL; } fail: btrfs_free_path(path); return new_root; } static int create_subvol(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 root_objectid) { struct extent_buffer *tmp; struct btrfs_root *new_root; struct btrfs_key key; struct btrfs_root_item root_item; int ret; ret = btrfs_copy_root(trans, root, root->node, &tmp, root_objectid); if (ret) return ret; memcpy(&root_item, &root->root_item, sizeof(root_item)); btrfs_set_root_bytenr(&root_item, tmp->start); btrfs_set_root_level(&root_item, btrfs_header_level(tmp)); btrfs_set_root_generation(&root_item, trans->transid); free_extent_buffer(tmp); key.objectid = root_objectid; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = trans->transid; ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, &root_item); key.offset = (u64)-1; new_root = btrfs_read_fs_root(root->fs_info, &key); if (!new_root || IS_ERR(new_root)) { error("unable to fs read root: %lu", PTR_ERR(new_root)); return PTR_ERR(new_root); } ret = btrfs_make_root_dir(trans, new_root, BTRFS_FIRST_FREE_OBJECTID); return ret; } /* * New make_btrfs() has handle system and meta chunks quite well. * So only need to add remaining data chunks. */ static int make_convert_data_block_groups(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, struct btrfs_mkfs_config *cfg, struct btrfs_convert_context *cctx) { struct btrfs_root *extent_root = fs_info->extent_root; struct cache_tree *data_chunks = &cctx->data_chunks; struct cache_extent *cache; u64 max_chunk_size; int ret = 0; /* * Don't create data chunk over 10% of the convert device * And for single chunk, don't create chunk larger than 1G. */ max_chunk_size = cfg->num_bytes / 10; max_chunk_size = min((u64)(1024 * 1024 * 1024), max_chunk_size); max_chunk_size = round_down(max_chunk_size, extent_root->sectorsize); for (cache = first_cache_extent(data_chunks); cache; cache = next_cache_extent(cache)) { u64 cur = cache->start; while (cur < cache->start + cache->size) { u64 len; u64 cur_backup = cur; len = min(max_chunk_size, cache->start + cache->size - cur); ret = btrfs_alloc_data_chunk(trans, extent_root, &cur_backup, len, BTRFS_BLOCK_GROUP_DATA, 1); if (ret < 0) break; ret = btrfs_make_block_group(trans, extent_root, 0, BTRFS_BLOCK_GROUP_DATA, BTRFS_FIRST_CHUNK_TREE_OBJECTID, cur, len); if (ret < 0) break; cur += len; } } return ret; } /* * Init the temp btrfs to a operational status. * * It will fix the extent usage accounting(XXX: Do we really need?) and * insert needed data chunks, to ensure all old fs data extents are covered * by DATA chunks, preventing wrong chunks are allocated. * * And also create convert image subvolume and relocation tree. * (XXX: Not need again?) * But the convert image subvolume is *NOT* linked to fs tree yet. */ static int init_btrfs(struct btrfs_mkfs_config *cfg, struct btrfs_root *root, struct btrfs_convert_context *cctx, int datacsum, int packing, int noxattr) { struct btrfs_key location; struct btrfs_trans_handle *trans; struct btrfs_fs_info *fs_info = root->fs_info; int ret; /* * Don't alloc any metadata/system chunk, as we don't want * any meta/sys chunk allcated before all data chunks are inserted. * Or we screw up the chunk layout just like the old implement. */ fs_info->avoid_sys_chunk_alloc = 1; fs_info->avoid_meta_chunk_alloc = 1; trans = btrfs_start_transaction(root, 1); if (!trans) { error("unable to start transaction"); ret = -EINVAL; goto err; } ret = btrfs_fix_block_accounting(trans, root); if (ret) goto err; ret = make_convert_data_block_groups(trans, fs_info, cfg, cctx); if (ret) goto err; ret = btrfs_make_root_dir(trans, fs_info->tree_root, BTRFS_ROOT_TREE_DIR_OBJECTID); if (ret) goto err; memcpy(&location, &root->root_key, sizeof(location)); location.offset = (u64)-1; ret = btrfs_insert_dir_item(trans, fs_info->tree_root, "default", 7, btrfs_super_root_dir(fs_info->super_copy), &location, BTRFS_FT_DIR, 0); if (ret) goto err; ret = btrfs_insert_inode_ref(trans, fs_info->tree_root, "default", 7, location.objectid, btrfs_super_root_dir(fs_info->super_copy), 0); if (ret) goto err; btrfs_set_root_dirid(&fs_info->fs_root->root_item, BTRFS_FIRST_FREE_OBJECTID); /* subvol for fs image file */ ret = create_subvol(trans, root, CONV_IMAGE_SUBVOL_OBJECTID); if (ret < 0) { error("failed to create subvolume image root: %d", ret); goto err; } /* subvol for data relocation tree */ ret = create_subvol(trans, root, BTRFS_DATA_RELOC_TREE_OBJECTID); if (ret < 0) { error("failed to create DATA_RELOC root: %d", ret); goto err; } ret = btrfs_commit_transaction(trans, root); fs_info->avoid_sys_chunk_alloc = 0; fs_info->avoid_meta_chunk_alloc = 0; err: return ret; } /* * Migrate super block to its default position and zero 0 ~ 16k */ static int migrate_super_block(int fd, u64 old_bytenr, u32 sectorsize) { int ret; struct extent_buffer *buf; struct btrfs_super_block *super; u32 len; u32 bytenr; buf = malloc(sizeof(*buf) + sectorsize); if (!buf) return -ENOMEM; buf->len = sectorsize; ret = pread(fd, buf->data, sectorsize, old_bytenr); if (ret != sectorsize) goto fail; super = (struct btrfs_super_block *)buf->data; BUG_ON(btrfs_super_bytenr(super) != old_bytenr); btrfs_set_super_bytenr(super, BTRFS_SUPER_INFO_OFFSET); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, sectorsize, BTRFS_SUPER_INFO_OFFSET); if (ret != sectorsize) goto fail; ret = fsync(fd); if (ret) goto fail; memset(buf->data, 0, sectorsize); for (bytenr = 0; bytenr < BTRFS_SUPER_INFO_OFFSET; ) { len = BTRFS_SUPER_INFO_OFFSET - bytenr; if (len > sectorsize) len = sectorsize; ret = pwrite(fd, buf->data, len, bytenr); if (ret != len) { fprintf(stderr, "unable to zero fill device\n"); break; } bytenr += len; } ret = 0; fsync(fd); fail: free(buf); if (ret > 0) ret = -1; return ret; } static int prepare_system_chunk_sb(struct btrfs_super_block *super) { struct btrfs_chunk *chunk; struct btrfs_disk_key *key; u32 sectorsize = btrfs_super_sectorsize(super); key = (struct btrfs_disk_key *)(super->sys_chunk_array); chunk = (struct btrfs_chunk *)(super->sys_chunk_array + sizeof(struct btrfs_disk_key)); btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID); btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY); btrfs_set_disk_key_offset(key, 0); btrfs_set_stack_chunk_length(chunk, btrfs_super_total_bytes(super)); btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM); btrfs_set_stack_chunk_io_align(chunk, sectorsize); btrfs_set_stack_chunk_io_width(chunk, sectorsize); btrfs_set_stack_chunk_sector_size(chunk, sectorsize); btrfs_set_stack_chunk_num_stripes(chunk, 1); btrfs_set_stack_chunk_sub_stripes(chunk, 0); chunk->stripe.devid = super->dev_item.devid; btrfs_set_stack_stripe_offset(&chunk->stripe, 0); memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE); btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk)); return 0; } #if BTRFSCONVERT_EXT2 /* * Open Ext2fs in readonly mode, read block allocation bitmap and * inode bitmap into memory. */ static int ext2_open_fs(struct btrfs_convert_context *cctx, const char *name) { errcode_t ret; ext2_filsys ext2_fs; ext2_ino_t ino; u32 ro_feature; ret = ext2fs_open(name, 0, 0, 0, unix_io_manager, &ext2_fs); if (ret) { fprintf(stderr, "ext2fs_open: %s\n", error_message(ret)); return -1; } /* * We need to know exactly the used space, some RO compat flags like * BIGALLOC will affect how used space is present. * So we need manuall check any unsupported RO compat flags */ ro_feature = ext2_fs->super->s_feature_ro_compat; if (ro_feature & ~EXT2_LIB_FEATURE_RO_COMPAT_SUPP) { error( "unsupported RO features detected: %x, abort convert to avoid possible corruption", ro_feature & ~EXT2_LIB_FEATURE_COMPAT_SUPP); goto fail; } ret = ext2fs_read_inode_bitmap(ext2_fs); if (ret) { fprintf(stderr, "ext2fs_read_inode_bitmap: %s\n", error_message(ret)); goto fail; } ret = ext2fs_read_block_bitmap(ext2_fs); if (ret) { fprintf(stderr, "ext2fs_read_block_bitmap: %s\n", error_message(ret)); goto fail; } /* * search each block group for a free inode. this set up * uninit block/inode bitmaps appropriately. */ ino = 1; while (ino <= ext2_fs->super->s_inodes_count) { ext2_ino_t foo; ext2fs_new_inode(ext2_fs, ino, 0, NULL, &foo); ino += EXT2_INODES_PER_GROUP(ext2_fs->super); } if (!(ext2_fs->super->s_feature_incompat & EXT2_FEATURE_INCOMPAT_FILETYPE)) { fprintf(stderr, "filetype feature is missing\n"); goto fail; } cctx->fs_data = ext2_fs; cctx->blocksize = ext2_fs->blocksize; cctx->block_count = ext2_fs->super->s_blocks_count; cctx->total_bytes = ext2_fs->blocksize * ext2_fs->super->s_blocks_count; cctx->volume_name = strndup(ext2_fs->super->s_volume_name, 16); cctx->first_data_block = ext2_fs->super->s_first_data_block; cctx->inodes_count = ext2_fs->super->s_inodes_count; cctx->free_inodes_count = ext2_fs->super->s_free_inodes_count; return 0; fail: ext2fs_close(ext2_fs); return -1; } static int __ext2_add_one_block(ext2_filsys fs, char *bitmap, unsigned long group_nr, struct cache_tree *used) { unsigned long offset; unsigned i; int ret = 0; offset = fs->super->s_first_data_block; offset /= EXT2FS_CLUSTER_RATIO(fs); offset += group_nr * EXT2_CLUSTERS_PER_GROUP(fs->super); for (i = 0; i < EXT2_CLUSTERS_PER_GROUP(fs->super); i++) { if (ext2fs_test_bit(i, bitmap)) { u64 start; start = (i + offset) * EXT2FS_CLUSTER_RATIO(fs); start *= fs->blocksize; ret = add_merge_cache_extent(used, start, fs->blocksize); if (ret < 0) break; } } return ret; } /* * Read all used ext2 space into cctx->used cache tree */ static int ext2_read_used_space(struct btrfs_convert_context *cctx) { ext2_filsys fs = (ext2_filsys)cctx->fs_data; blk64_t blk_itr = EXT2FS_B2C(fs, fs->super->s_first_data_block); struct cache_tree *used_tree = &cctx->used; char *block_bitmap = NULL; unsigned long i; int block_nbytes; int ret = 0; block_nbytes = EXT2_CLUSTERS_PER_GROUP(fs->super) / 8; /* Shouldn't happen */ BUG_ON(!fs->block_map); block_bitmap = malloc(block_nbytes); if (!block_bitmap) return -ENOMEM; for (i = 0; i < fs->group_desc_count; i++) { ret = ext2fs_get_block_bitmap_range(fs->block_map, blk_itr, block_nbytes * 8, block_bitmap); if (ret) { error("fail to get bitmap from ext2, %s", strerror(-ret)); break; } ret = __ext2_add_one_block(fs, block_bitmap, i, used_tree); if (ret < 0) { error("fail to build used space tree, %s", strerror(-ret)); break; } blk_itr += EXT2_CLUSTERS_PER_GROUP(fs->super); } free(block_bitmap); return ret; } static void ext2_close_fs(struct btrfs_convert_context *cctx) { if (cctx->volume_name) { free(cctx->volume_name); cctx->volume_name = NULL; } ext2fs_close(cctx->fs_data); } struct dir_iterate_data { struct btrfs_trans_handle *trans; struct btrfs_root *root; struct btrfs_inode_item *inode; u64 objectid; u64 index_cnt; u64 parent; int errcode; }; static u8 ext2_filetype_conversion_table[EXT2_FT_MAX] = { [EXT2_FT_UNKNOWN] = BTRFS_FT_UNKNOWN, [EXT2_FT_REG_FILE] = BTRFS_FT_REG_FILE, [EXT2_FT_DIR] = BTRFS_FT_DIR, [EXT2_FT_CHRDEV] = BTRFS_FT_CHRDEV, [EXT2_FT_BLKDEV] = BTRFS_FT_BLKDEV, [EXT2_FT_FIFO] = BTRFS_FT_FIFO, [EXT2_FT_SOCK] = BTRFS_FT_SOCK, [EXT2_FT_SYMLINK] = BTRFS_FT_SYMLINK, }; static int ext2_dir_iterate_proc(ext2_ino_t dir, int entry, struct ext2_dir_entry *dirent, int offset, int blocksize, char *buf,void *priv_data) { int ret; int file_type; u64 objectid; char dotdot[] = ".."; struct dir_iterate_data *idata = (struct dir_iterate_data *)priv_data; int name_len; name_len = dirent->name_len & 0xFF; objectid = dirent->inode + INO_OFFSET; if (!strncmp(dirent->name, dotdot, name_len)) { if (name_len == 2) { BUG_ON(idata->parent != 0); idata->parent = objectid; } return 0; } if (dirent->inode < EXT2_GOOD_OLD_FIRST_INO) return 0; file_type = dirent->name_len >> 8; BUG_ON(file_type > EXT2_FT_SYMLINK); ret = convert_insert_dirent(idata->trans, idata->root, dirent->name, name_len, idata->objectid, objectid, ext2_filetype_conversion_table[file_type], idata->index_cnt, idata->inode); if (ret < 0) { idata->errcode = ret; return BLOCK_ABORT; } idata->index_cnt++; return 0; } static int ext2_create_dir_entries(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *btrfs_inode, ext2_filsys ext2_fs, ext2_ino_t ext2_ino) { int ret; errcode_t err; struct dir_iterate_data data = { .trans = trans, .root = root, .inode = btrfs_inode, .objectid = objectid, .index_cnt = 2, .parent = 0, .errcode = 0, }; err = ext2fs_dir_iterate2(ext2_fs, ext2_ino, 0, NULL, ext2_dir_iterate_proc, &data); if (err) goto error; ret = data.errcode; if (ret == 0 && data.parent == objectid) { ret = btrfs_insert_inode_ref(trans, root, "..", 2, objectid, objectid, 0); } return ret; error: fprintf(stderr, "ext2fs_dir_iterate2: %s\n", error_message(err)); return -1; } static int ext2_block_iterate_proc(ext2_filsys fs, blk_t *blocknr, e2_blkcnt_t blockcnt, blk_t ref_block, int ref_offset, void *priv_data) { int ret; struct blk_iterate_data *idata; idata = (struct blk_iterate_data *)priv_data; ret = block_iterate_proc(*blocknr, blockcnt, idata); if (ret) { idata->errcode = ret; return BLOCK_ABORT; } return 0; } /* * traverse file's data blocks, record these data blocks as file extents. */ static int ext2_create_file_extents(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *btrfs_inode, ext2_filsys ext2_fs, ext2_ino_t ext2_ino, int datacsum, int packing) { int ret; char *buffer = NULL; errcode_t err; u32 last_block; u32 sectorsize = root->sectorsize; u64 inode_size = btrfs_stack_inode_size(btrfs_inode); struct blk_iterate_data data; init_blk_iterate_data(&data, trans, root, btrfs_inode, objectid, datacsum); err = ext2fs_block_iterate2(ext2_fs, ext2_ino, BLOCK_FLAG_DATA_ONLY, NULL, ext2_block_iterate_proc, &data); if (err) goto error; ret = data.errcode; if (ret) goto fail; if (packing && data.first_block == 0 && data.num_blocks > 0 && inode_size <= BTRFS_MAX_INLINE_DATA_SIZE(root)) { u64 num_bytes = data.num_blocks * sectorsize; u64 disk_bytenr = data.disk_block * sectorsize; u64 nbytes; buffer = malloc(num_bytes); if (!buffer) return -ENOMEM; ret = read_disk_extent(root, disk_bytenr, num_bytes, buffer); if (ret) goto fail; if (num_bytes > inode_size) num_bytes = inode_size; ret = btrfs_insert_inline_extent(trans, root, objectid, 0, buffer, num_bytes); if (ret) goto fail; nbytes = btrfs_stack_inode_nbytes(btrfs_inode) + num_bytes; btrfs_set_stack_inode_nbytes(btrfs_inode, nbytes); } else if (data.num_blocks > 0) { ret = record_file_blocks(&data, data.first_block, data.disk_block, data.num_blocks); if (ret) goto fail; } data.first_block += data.num_blocks; last_block = (inode_size + sectorsize - 1) / sectorsize; if (last_block > data.first_block) { ret = record_file_blocks(&data, data.first_block, 0, last_block - data.first_block); } fail: free(buffer); return ret; error: fprintf(stderr, "ext2fs_block_iterate2: %s\n", error_message(err)); return -1; } static int ext2_create_symbol_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *btrfs_inode, ext2_filsys ext2_fs, ext2_ino_t ext2_ino, struct ext2_inode *ext2_inode) { int ret; char *pathname; u64 inode_size = btrfs_stack_inode_size(btrfs_inode); if (ext2fs_inode_data_blocks(ext2_fs, ext2_inode)) { btrfs_set_stack_inode_size(btrfs_inode, inode_size + 1); ret = ext2_create_file_extents(trans, root, objectid, btrfs_inode, ext2_fs, ext2_ino, 1, 1); btrfs_set_stack_inode_size(btrfs_inode, inode_size); return ret; } pathname = (char *)&(ext2_inode->i_block[0]); BUG_ON(pathname[inode_size] != 0); ret = btrfs_insert_inline_extent(trans, root, objectid, 0, pathname, inode_size + 1); btrfs_set_stack_inode_nbytes(btrfs_inode, inode_size + 1); return ret; } /* * Following xattr/acl related codes are based on codes in * fs/ext3/xattr.c and fs/ext3/acl.c */ #define EXT2_XATTR_BHDR(ptr) ((struct ext2_ext_attr_header *)(ptr)) #define EXT2_XATTR_BFIRST(ptr) \ ((struct ext2_ext_attr_entry *)(EXT2_XATTR_BHDR(ptr) + 1)) #define EXT2_XATTR_IHDR(inode) \ ((struct ext2_ext_attr_header *) ((void *)(inode) + \ EXT2_GOOD_OLD_INODE_SIZE + (inode)->i_extra_isize)) #define EXT2_XATTR_IFIRST(inode) \ ((struct ext2_ext_attr_entry *) ((void *)EXT2_XATTR_IHDR(inode) + \ sizeof(EXT2_XATTR_IHDR(inode)->h_magic))) static int ext2_xattr_check_names(struct ext2_ext_attr_entry *entry, const void *end) { struct ext2_ext_attr_entry *next; while (!EXT2_EXT_IS_LAST_ENTRY(entry)) { next = EXT2_EXT_ATTR_NEXT(entry); if ((void *)next >= end) return -EIO; entry = next; } return 0; } static int ext2_xattr_check_block(const char *buf, size_t size) { int error; struct ext2_ext_attr_header *header = EXT2_XATTR_BHDR(buf); if (header->h_magic != EXT2_EXT_ATTR_MAGIC || header->h_blocks != 1) return -EIO; error = ext2_xattr_check_names(EXT2_XATTR_BFIRST(buf), buf + size); return error; } static int ext2_xattr_check_entry(struct ext2_ext_attr_entry *entry, size_t size) { size_t value_size = entry->e_value_size; if (entry->e_value_block != 0 || value_size > size || entry->e_value_offs + value_size > size) return -EIO; return 0; } #define EXT2_ACL_VERSION 0x0001 /* 23.2.5 acl_tag_t values */ #define ACL_UNDEFINED_TAG (0x00) #define ACL_USER_OBJ (0x01) #define ACL_USER (0x02) #define ACL_GROUP_OBJ (0x04) #define ACL_GROUP (0x08) #define ACL_MASK (0x10) #define ACL_OTHER (0x20) /* 23.2.7 ACL qualifier constants */ #define ACL_UNDEFINED_ID ((id_t)-1) typedef struct { __le16 e_tag; __le16 e_perm; __le32 e_id; } ext2_acl_entry; typedef struct { __le16 e_tag; __le16 e_perm; } ext2_acl_entry_short; typedef struct { __le32 a_version; } ext2_acl_header; static inline int ext2_acl_count(size_t size) { ssize_t s; size -= sizeof(ext2_acl_header); s = size - 4 * sizeof(ext2_acl_entry_short); if (s < 0) { if (size % sizeof(ext2_acl_entry_short)) return -1; return size / sizeof(ext2_acl_entry_short); } else { if (s % sizeof(ext2_acl_entry)) return -1; return s / sizeof(ext2_acl_entry) + 4; } } #define ACL_EA_VERSION 0x0002 typedef struct { __le16 e_tag; __le16 e_perm; __le32 e_id; } acl_ea_entry; typedef struct { __le32 a_version; acl_ea_entry a_entries[0]; } acl_ea_header; static inline size_t acl_ea_size(int count) { return sizeof(acl_ea_header) + count * sizeof(acl_ea_entry); } static int ext2_acl_to_xattr(void *dst, const void *src, size_t dst_size, size_t src_size) { int i, count; const void *end = src + src_size; acl_ea_header *ext_acl = (acl_ea_header *)dst; acl_ea_entry *dst_entry = ext_acl->a_entries; ext2_acl_entry *src_entry; if (src_size < sizeof(ext2_acl_header)) goto fail; if (((ext2_acl_header *)src)->a_version != cpu_to_le32(EXT2_ACL_VERSION)) goto fail; src += sizeof(ext2_acl_header); count = ext2_acl_count(src_size); if (count <= 0) goto fail; BUG_ON(dst_size < acl_ea_size(count)); ext_acl->a_version = cpu_to_le32(ACL_EA_VERSION); for (i = 0; i < count; i++, dst_entry++) { src_entry = (ext2_acl_entry *)src; if (src + sizeof(ext2_acl_entry_short) > end) goto fail; dst_entry->e_tag = src_entry->e_tag; dst_entry->e_perm = src_entry->e_perm; switch (le16_to_cpu(src_entry->e_tag)) { case ACL_USER_OBJ: case ACL_GROUP_OBJ: case ACL_MASK: case ACL_OTHER: src += sizeof(ext2_acl_entry_short); dst_entry->e_id = cpu_to_le32(ACL_UNDEFINED_ID); break; case ACL_USER: case ACL_GROUP: src += sizeof(ext2_acl_entry); if (src > end) goto fail; dst_entry->e_id = src_entry->e_id; break; default: goto fail; } } if (src != end) goto fail; return 0; fail: return -EINVAL; } static char *xattr_prefix_table[] = { [1] = "user.", [2] = "system.posix_acl_access", [3] = "system.posix_acl_default", [4] = "trusted.", [6] = "security.", }; static int ext2_copy_single_xattr(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct ext2_ext_attr_entry *entry, const void *data, u32 datalen) { int ret = 0; int name_len; int name_index; void *databuf = NULL; char namebuf[XATTR_NAME_MAX + 1]; name_index = entry->e_name_index; if (name_index >= ARRAY_SIZE(xattr_prefix_table) || xattr_prefix_table[name_index] == NULL) return -EOPNOTSUPP; name_len = strlen(xattr_prefix_table[name_index]) + entry->e_name_len; if (name_len >= sizeof(namebuf)) return -ERANGE; if (name_index == 2 || name_index == 3) { size_t bufsize = acl_ea_size(ext2_acl_count(datalen)); databuf = malloc(bufsize); if (!databuf) return -ENOMEM; ret = ext2_acl_to_xattr(databuf, data, bufsize, datalen); if (ret) goto out; data = databuf; datalen = bufsize; } strncpy(namebuf, xattr_prefix_table[name_index], XATTR_NAME_MAX); strncat(namebuf, EXT2_EXT_ATTR_NAME(entry), entry->e_name_len); if (name_len + datalen > BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item) - sizeof(struct btrfs_dir_item)) { fprintf(stderr, "skip large xattr on inode %Lu name %.*s\n", objectid - INO_OFFSET, name_len, namebuf); goto out; } ret = btrfs_insert_xattr_item(trans, root, namebuf, name_len, data, datalen, objectid); out: free(databuf); return ret; } static int ext2_copy_extended_attrs(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *btrfs_inode, ext2_filsys ext2_fs, ext2_ino_t ext2_ino) { int ret = 0; int inline_ea = 0; errcode_t err; u32 datalen; u32 block_size = ext2_fs->blocksize; u32 inode_size = EXT2_INODE_SIZE(ext2_fs->super); struct ext2_inode_large *ext2_inode; struct ext2_ext_attr_entry *entry; void *data; char *buffer = NULL; char inode_buf[EXT2_GOOD_OLD_INODE_SIZE]; if (inode_size <= EXT2_GOOD_OLD_INODE_SIZE) { ext2_inode = (struct ext2_inode_large *)inode_buf; } else { ext2_inode = (struct ext2_inode_large *)malloc(inode_size); if (!ext2_inode) return -ENOMEM; } err = ext2fs_read_inode_full(ext2_fs, ext2_ino, (void *)ext2_inode, inode_size); if (err) { fprintf(stderr, "ext2fs_read_inode_full: %s\n", error_message(err)); ret = -1; goto out; } if (ext2_ino > ext2_fs->super->s_first_ino && inode_size > EXT2_GOOD_OLD_INODE_SIZE) { if (EXT2_GOOD_OLD_INODE_SIZE + ext2_inode->i_extra_isize > inode_size) { ret = -EIO; goto out; } if (ext2_inode->i_extra_isize != 0 && EXT2_XATTR_IHDR(ext2_inode)->h_magic == EXT2_EXT_ATTR_MAGIC) { inline_ea = 1; } } if (inline_ea) { int total; void *end = (void *)ext2_inode + inode_size; entry = EXT2_XATTR_IFIRST(ext2_inode); total = end - (void *)entry; ret = ext2_xattr_check_names(entry, end); if (ret) goto out; while (!EXT2_EXT_IS_LAST_ENTRY(entry)) { ret = ext2_xattr_check_entry(entry, total); if (ret) goto out; data = (void *)EXT2_XATTR_IFIRST(ext2_inode) + entry->e_value_offs; datalen = entry->e_value_size; ret = ext2_copy_single_xattr(trans, root, objectid, entry, data, datalen); if (ret) goto out; entry = EXT2_EXT_ATTR_NEXT(entry); } } if (ext2_inode->i_file_acl == 0) goto out; buffer = malloc(block_size); if (!buffer) { ret = -ENOMEM; goto out; } err = ext2fs_read_ext_attr(ext2_fs, ext2_inode->i_file_acl, buffer); if (err) { fprintf(stderr, "ext2fs_read_ext_attr: %s\n", error_message(err)); ret = -1; goto out; } ret = ext2_xattr_check_block(buffer, block_size); if (ret) goto out; entry = EXT2_XATTR_BFIRST(buffer); while (!EXT2_EXT_IS_LAST_ENTRY(entry)) { ret = ext2_xattr_check_entry(entry, block_size); if (ret) goto out; data = buffer + entry->e_value_offs; datalen = entry->e_value_size; ret = ext2_copy_single_xattr(trans, root, objectid, entry, data, datalen); if (ret) goto out; entry = EXT2_EXT_ATTR_NEXT(entry); } out: free(buffer); if ((void *)ext2_inode != inode_buf) free(ext2_inode); return ret; } #define MINORBITS 20 #define MKDEV(ma, mi) (((ma) << MINORBITS) | (mi)) static inline dev_t old_decode_dev(u16 val) { return MKDEV((val >> 8) & 255, val & 255); } static inline dev_t new_decode_dev(u32 dev) { unsigned major = (dev & 0xfff00) >> 8; unsigned minor = (dev & 0xff) | ((dev >> 12) & 0xfff00); return MKDEV(major, minor); } static void ext2_copy_inode_item(struct btrfs_inode_item *dst, struct ext2_inode *src, u32 blocksize) { btrfs_set_stack_inode_generation(dst, 1); btrfs_set_stack_inode_sequence(dst, 0); btrfs_set_stack_inode_transid(dst, 1); btrfs_set_stack_inode_size(dst, src->i_size); btrfs_set_stack_inode_nbytes(dst, 0); btrfs_set_stack_inode_block_group(dst, 0); btrfs_set_stack_inode_nlink(dst, src->i_links_count); btrfs_set_stack_inode_uid(dst, src->i_uid | (src->i_uid_high << 16)); btrfs_set_stack_inode_gid(dst, src->i_gid | (src->i_gid_high << 16)); btrfs_set_stack_inode_mode(dst, src->i_mode); btrfs_set_stack_inode_rdev(dst, 0); btrfs_set_stack_inode_flags(dst, 0); btrfs_set_stack_timespec_sec(&dst->atime, src->i_atime); btrfs_set_stack_timespec_nsec(&dst->atime, 0); btrfs_set_stack_timespec_sec(&dst->ctime, src->i_ctime); btrfs_set_stack_timespec_nsec(&dst->ctime, 0); btrfs_set_stack_timespec_sec(&dst->mtime, src->i_mtime); btrfs_set_stack_timespec_nsec(&dst->mtime, 0); btrfs_set_stack_timespec_sec(&dst->otime, 0); btrfs_set_stack_timespec_nsec(&dst->otime, 0); if (S_ISDIR(src->i_mode)) { btrfs_set_stack_inode_size(dst, 0); btrfs_set_stack_inode_nlink(dst, 1); } if (S_ISREG(src->i_mode)) { btrfs_set_stack_inode_size(dst, (u64)src->i_size_high << 32 | (u64)src->i_size); } if (!S_ISREG(src->i_mode) && !S_ISDIR(src->i_mode) && !S_ISLNK(src->i_mode)) { if (src->i_block[0]) { btrfs_set_stack_inode_rdev(dst, old_decode_dev(src->i_block[0])); } else { btrfs_set_stack_inode_rdev(dst, new_decode_dev(src->i_block[1])); } } memset(&dst->reserved, 0, sizeof(dst->reserved)); } /* * copy a single inode. do all the required works, such as cloning * inode item, creating file extents and creating directory entries. */ static int ext2_copy_single_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, ext2_filsys ext2_fs, ext2_ino_t ext2_ino, struct ext2_inode *ext2_inode, int datacsum, int packing, int noxattr) { int ret; struct btrfs_inode_item btrfs_inode; if (ext2_inode->i_links_count == 0) return 0; ext2_copy_inode_item(&btrfs_inode, ext2_inode, ext2_fs->blocksize); if (!datacsum && S_ISREG(ext2_inode->i_mode)) { u32 flags = btrfs_stack_inode_flags(&btrfs_inode) | BTRFS_INODE_NODATASUM; btrfs_set_stack_inode_flags(&btrfs_inode, flags); } switch (ext2_inode->i_mode & S_IFMT) { case S_IFREG: ret = ext2_create_file_extents(trans, root, objectid, &btrfs_inode, ext2_fs, ext2_ino, datacsum, packing); break; case S_IFDIR: ret = ext2_create_dir_entries(trans, root, objectid, &btrfs_inode, ext2_fs, ext2_ino); break; case S_IFLNK: ret = ext2_create_symbol_link(trans, root, objectid, &btrfs_inode, ext2_fs, ext2_ino, ext2_inode); break; default: ret = 0; break; } if (ret) return ret; if (!noxattr) { ret = ext2_copy_extended_attrs(trans, root, objectid, &btrfs_inode, ext2_fs, ext2_ino); if (ret) return ret; } return btrfs_insert_inode(trans, root, objectid, &btrfs_inode); } /* * scan ext2's inode bitmap and copy all used inodes. */ static int ext2_copy_inodes(struct btrfs_convert_context *cctx, struct btrfs_root *root, int datacsum, int packing, int noxattr, struct task_ctx *p) { ext2_filsys ext2_fs = cctx->fs_data; int ret; errcode_t err; ext2_inode_scan ext2_scan; struct ext2_inode ext2_inode; ext2_ino_t ext2_ino; u64 objectid; struct btrfs_trans_handle *trans; trans = btrfs_start_transaction(root, 1); if (!trans) return -ENOMEM; err = ext2fs_open_inode_scan(ext2_fs, 0, &ext2_scan); if (err) { fprintf(stderr, "ext2fs_open_inode_scan: %s\n", error_message(err)); return -1; } while (!(err = ext2fs_get_next_inode(ext2_scan, &ext2_ino, &ext2_inode))) { /* no more inodes */ if (ext2_ino == 0) break; /* skip special inode in ext2fs */ if (ext2_ino < EXT2_GOOD_OLD_FIRST_INO && ext2_ino != EXT2_ROOT_INO) continue; objectid = ext2_ino + INO_OFFSET; ret = ext2_copy_single_inode(trans, root, objectid, ext2_fs, ext2_ino, &ext2_inode, datacsum, packing, noxattr); p->cur_copy_inodes++; if (ret) return ret; if (trans->blocks_used >= 4096) { ret = btrfs_commit_transaction(trans, root); BUG_ON(ret); trans = btrfs_start_transaction(root, 1); BUG_ON(!trans); } } if (err) { fprintf(stderr, "ext2fs_get_next_inode: %s\n", error_message(err)); return -1; } ret = btrfs_commit_transaction(trans, root); BUG_ON(ret); ext2fs_close_inode_scan(ext2_scan); return ret; } static const struct btrfs_convert_operations ext2_convert_ops = { .name = "ext2", .open_fs = ext2_open_fs, .read_used_space = ext2_read_used_space, .copy_inodes = ext2_copy_inodes, .close_fs = ext2_close_fs, }; #endif static const struct btrfs_convert_operations *convert_operations[] = { #if BTRFSCONVERT_EXT2 &ext2_convert_ops, #endif }; static int convert_open_fs(const char *devname, struct btrfs_convert_context *cctx) { int i; memset(cctx, 0, sizeof(*cctx)); for (i = 0; i < ARRAY_SIZE(convert_operations); i++) { int ret = convert_operations[i]->open_fs(cctx, devname); if (ret == 0) { cctx->convert_ops = convert_operations[i]; return ret; } } fprintf(stderr, "No file system found to convert.\n"); return -1; } static int do_convert(const char *devname, int datacsum, int packing, int noxattr, u32 nodesize, int copylabel, const char *fslabel, int progress, u64 features) { int ret; int fd = -1; u32 blocksize; u64 total_bytes; struct btrfs_root *root; struct btrfs_root *image_root; struct btrfs_convert_context cctx; struct btrfs_key key; char *subvol_name = NULL; struct task_ctx ctx; char features_buf[64]; struct btrfs_mkfs_config mkfs_cfg; init_convert_context(&cctx); ret = convert_open_fs(devname, &cctx); if (ret) goto fail; ret = convert_read_used_space(&cctx); if (ret) goto fail; blocksize = cctx.blocksize; total_bytes = (u64)blocksize * (u64)cctx.block_count; if (blocksize < 4096) { error("block size is too small: %u < 4096", blocksize); goto fail; } if (btrfs_check_nodesize(nodesize, blocksize, features)) goto fail; fd = open(devname, O_RDWR); if (fd < 0) { error("unable to open %s: %s", devname, strerror(errno)); goto fail; } btrfs_parse_features_to_string(features_buf, features); if (features == BTRFS_MKFS_DEFAULT_FEATURES) strcat(features_buf, " (default)"); printf("create btrfs filesystem:\n"); printf("\tblocksize: %u\n", blocksize); printf("\tnodesize: %u\n", nodesize); printf("\tfeatures: %s\n", features_buf); mkfs_cfg.label = cctx.volume_name; mkfs_cfg.num_bytes = total_bytes; mkfs_cfg.nodesize = nodesize; mkfs_cfg.sectorsize = blocksize; mkfs_cfg.stripesize = blocksize; mkfs_cfg.features = features; /* New convert need these space */ mkfs_cfg.fs_uuid = malloc(BTRFS_UUID_UNPARSED_SIZE); mkfs_cfg.chunk_uuid = malloc(BTRFS_UUID_UNPARSED_SIZE); *(mkfs_cfg.fs_uuid) = '\0'; *(mkfs_cfg.chunk_uuid) = '\0'; ret = make_btrfs(fd, &mkfs_cfg, &cctx); if (ret) { error("unable to create initial ctree: %s", strerror(-ret)); goto fail; } root = open_ctree_fd(fd, devname, mkfs_cfg.super_bytenr, OPEN_CTREE_WRITES | OPEN_CTREE_FS_PARTIAL); if (!root) { error("unable to open ctree"); goto fail; } ret = init_btrfs(&mkfs_cfg, root, &cctx, datacsum, packing, noxattr); if (ret) { error("unable to setup the root tree: %d", ret); goto fail; } printf("creating %s image file\n", cctx.convert_ops->name); ret = asprintf(&subvol_name, "%s_saved", cctx.convert_ops->name); if (ret < 0) { error("memory allocation failure for subvolume name: %s_saved", cctx.convert_ops->name); goto fail; } key.objectid = CONV_IMAGE_SUBVOL_OBJECTID; key.offset = (u64)-1; key.type = BTRFS_ROOT_ITEM_KEY; image_root = btrfs_read_fs_root(root->fs_info, &key); if (!image_root) { error("unable to create image subvolume"); goto fail; } ret = create_image(image_root, &mkfs_cfg, &cctx, fd, mkfs_cfg.num_bytes, "image", datacsum); if (ret) { error("failed to create %s/image: %d", subvol_name, ret); goto fail; } printf("creating btrfs metadata"); ctx.max_copy_inodes = (cctx.inodes_count - cctx.free_inodes_count); ctx.cur_copy_inodes = 0; if (progress) { ctx.info = task_init(print_copied_inodes, after_copied_inodes, &ctx); task_start(ctx.info); } ret = copy_inodes(&cctx, root, datacsum, packing, noxattr, &ctx); if (ret) { error("error during copy_inodes %d", ret); goto fail; } if (progress) { task_stop(ctx.info); task_deinit(ctx.info); } image_root = link_subvol(root, subvol_name, CONV_IMAGE_SUBVOL_OBJECTID); if (!image_root) { error("unable to link subvolume %s", subvol_name); goto fail; } free(subvol_name); memset(root->fs_info->super_copy->label, 0, BTRFS_LABEL_SIZE); if (copylabel == 1) { __strncpy_null(root->fs_info->super_copy->label, cctx.volume_name, BTRFS_LABEL_SIZE - 1); printf("copy label '%s'\n", root->fs_info->super_copy->label); } else if (copylabel == -1) { strcpy(root->fs_info->super_copy->label, fslabel); printf("set label to '%s'\n", fslabel); } ret = close_ctree(root); if (ret) { error("close_ctree failed: %d", ret); goto fail; } convert_close_fs(&cctx); clean_convert_context(&cctx); /* * If this step succeed, we get a mountable btrfs. Otherwise * the source fs is left unchanged. */ ret = migrate_super_block(fd, mkfs_cfg.super_bytenr, blocksize); if (ret) { error("unable to migrate super block: %d", ret); goto fail; } root = open_ctree_fd(fd, devname, 0, OPEN_CTREE_WRITES | OPEN_CTREE_FS_PARTIAL); if (!root) { error("unable to open ctree for finalization"); goto fail; } root->fs_info->finalize_on_close = 1; close_ctree(root); close(fd); printf("conversion complete"); return 0; fail: clean_convert_context(&cctx); if (fd != -1) close(fd); warning( "an error occurred during conversion, filesystem is partially created but not finalized and not mountable"); return -1; } /* * Check if a non 1:1 mapped chunk can be rolled back. * For new convert, it's OK while for old convert it's not. */ static int may_rollback_chunk(struct btrfs_fs_info *fs_info, u64 bytenr) { struct btrfs_block_group_cache *bg; struct btrfs_key key; struct btrfs_path path; struct btrfs_root *extent_root = fs_info->extent_root; u64 bg_start; u64 bg_end; int ret; bg = btrfs_lookup_first_block_group(fs_info, bytenr); if (!bg) return -ENOENT; bg_start = bg->key.objectid; bg_end = bg->key.objectid + bg->key.offset; key.objectid = bg_end; key.type = BTRFS_METADATA_ITEM_KEY; key.offset = 0; btrfs_init_path(&path); ret = btrfs_search_slot(NULL, extent_root, &key, &path, 0, 0); if (ret < 0) return ret; while (1) { struct btrfs_extent_item *ei; ret = btrfs_previous_extent_item(extent_root, &path, bg_start); if (ret > 0) { ret = 0; break; } if (ret < 0) break; btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); if (key.type == BTRFS_METADATA_ITEM_KEY) continue; /* Now it's EXTENT_ITEM_KEY only */ ei = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_extent_item); /* * Found data extent, means this is old convert must follow 1:1 * mapping. */ if (btrfs_extent_flags(path.nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { ret = -EINVAL; break; } } btrfs_release_path(&path); return ret; } static int may_rollback(struct btrfs_root *root) { struct btrfs_fs_info *info = root->fs_info; struct btrfs_multi_bio *multi = NULL; u64 bytenr; u64 length; u64 physical; u64 total_bytes; int num_stripes; int ret; if (btrfs_super_num_devices(info->super_copy) != 1) goto fail; bytenr = BTRFS_SUPER_INFO_OFFSET; total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy); while (1) { ret = btrfs_map_block(&info->mapping_tree, WRITE, bytenr, &length, &multi, 0, NULL); if (ret) { if (ret == -ENOENT) { /* removed block group at the tail */ if (length == (u64)-1) break; /* removed block group in the middle */ goto next; } goto fail; } num_stripes = multi->num_stripes; physical = multi->stripes[0].physical; kfree(multi); if (num_stripes != 1) { error("num stripes for bytenr %llu is not 1", bytenr); goto fail; } /* * Extra check for new convert, as metadata chunk from new * convert is much more free than old convert, it doesn't need * to do 1:1 mapping. */ if (physical != bytenr) { /* * Check if it's a metadata chunk and has only metadata * extent. */ ret = may_rollback_chunk(info, bytenr); if (ret < 0) goto fail; } next: bytenr += length; if (bytenr >= total_bytes) break; } return 0; fail: return -1; } static int do_rollback(const char *devname) { int fd = -1; int ret; int i; struct btrfs_root *root; struct btrfs_root *image_root; struct btrfs_root *chunk_root; struct btrfs_dir_item *dir; struct btrfs_inode_item *inode; struct btrfs_file_extent_item *fi; struct btrfs_trans_handle *trans; struct extent_buffer *leaf; struct btrfs_block_group_cache *cache1; struct btrfs_block_group_cache *cache2; struct btrfs_key key; struct btrfs_path path; struct extent_io_tree io_tree; char *buf = NULL; char *name; u64 bytenr; u64 num_bytes; u64 root_dir; u64 objectid; u64 offset; u64 start; u64 end; u64 sb_bytenr; u64 first_free; u64 total_bytes; u32 sectorsize; extent_io_tree_init(&io_tree); fd = open(devname, O_RDWR); if (fd < 0) { error("unable to open %s: %s", devname, strerror(errno)); goto fail; } root = open_ctree_fd(fd, devname, 0, OPEN_CTREE_WRITES); if (!root) { error("unable to open ctree"); goto fail; } ret = may_rollback(root); if (ret < 0) { error("unable to do rollback: %d", ret); goto fail; } sectorsize = root->sectorsize; buf = malloc(sectorsize); if (!buf) { error("unable to allocate memory"); goto fail; } btrfs_init_path(&path); key.objectid = CONV_IMAGE_SUBVOL_OBJECTID; key.type = BTRFS_ROOT_BACKREF_KEY; key.offset = BTRFS_FS_TREE_OBJECTID; ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, &path, 0, 0); btrfs_release_path(&path); if (ret > 0) { error("unable to convert ext2 image subvolume, is it deleted?"); goto fail; } else if (ret < 0) { error("unable to open ext2_saved, id %llu: %s", (unsigned long long)key.objectid, strerror(-ret)); goto fail; } key.objectid = CONV_IMAGE_SUBVOL_OBJECTID; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; image_root = btrfs_read_fs_root(root->fs_info, &key); if (!image_root || IS_ERR(image_root)) { error("unable to open subvolume %llu: %ld", (unsigned long long)key.objectid, PTR_ERR(image_root)); goto fail; } name = "image"; root_dir = btrfs_root_dirid(&root->root_item); dir = btrfs_lookup_dir_item(NULL, image_root, &path, root_dir, name, strlen(name), 0); if (!dir || IS_ERR(dir)) { error("unable to find file %s: %ld", name, PTR_ERR(dir)); goto fail; } leaf = path.nodes[0]; btrfs_dir_item_key_to_cpu(leaf, dir, &key); btrfs_release_path(&path); objectid = key.objectid; ret = btrfs_lookup_inode(NULL, image_root, &path, &key, 0); if (ret) { error("unable to find inode item: %d", ret); goto fail; } leaf = path.nodes[0]; inode = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_inode_item); total_bytes = btrfs_inode_size(leaf, inode); btrfs_release_path(&path); key.objectid = objectid; key.offset = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); ret = btrfs_search_slot(NULL, image_root, &key, &path, 0, 0); if (ret != 0) { error("unable to find first file extent: %d", ret); btrfs_release_path(&path); goto fail; } /* build mapping tree for the relocated blocks */ for (offset = 0; offset < total_bytes; ) { leaf = path.nodes[0]; if (path.slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, &path); if (ret != 0) break; continue; } btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.objectid != objectid || key.offset != offset || btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) break; fi = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_file_extent_item); if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) break; if (btrfs_file_extent_compression(leaf, fi) || btrfs_file_extent_encryption(leaf, fi) || btrfs_file_extent_other_encoding(leaf, fi)) break; bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); /* skip holes and direct mapped extents */ if (bytenr == 0 || bytenr == offset) goto next_extent; bytenr += btrfs_file_extent_offset(leaf, fi); num_bytes = btrfs_file_extent_num_bytes(leaf, fi); cache1 = btrfs_lookup_block_group(root->fs_info, offset); cache2 = btrfs_lookup_block_group(root->fs_info, offset + num_bytes - 1); /* * Here we must take consideration of old and new convert * behavior. * For old convert case, sign, there is no consist chunk type * that will cover the extent. META/DATA/SYS are all possible. * Just ensure relocate one is in SYS chunk. * For new convert case, they are all covered by DATA chunk. * * So, there is not valid chunk type check for it now. */ if (cache1 != cache2) break; set_extent_bits(&io_tree, offset, offset + num_bytes - 1, EXTENT_LOCKED, GFP_NOFS); set_state_private(&io_tree, offset, bytenr); next_extent: offset += btrfs_file_extent_num_bytes(leaf, fi); path.slots[0]++; } btrfs_release_path(&path); if (offset < total_bytes) { error("unable to build extent mapping (offset %llu, total_bytes %llu)", (unsigned long long)offset, (unsigned long long)total_bytes); error("converted filesystem after balance is unable to rollback"); goto fail; } first_free = BTRFS_SUPER_INFO_OFFSET + 2 * sectorsize - 1; first_free &= ~((u64)sectorsize - 1); /* backup for extent #0 should exist */ if(!test_range_bit(&io_tree, 0, first_free - 1, EXTENT_LOCKED, 1)) { error("no backup for the first extent"); goto fail; } /* force no allocation from system block group */ root->fs_info->system_allocs = -1; trans = btrfs_start_transaction(root, 1); BUG_ON(!trans); /* * recow the whole chunk tree, this will remove all chunk tree blocks * from system block group */ chunk_root = root->fs_info->chunk_root; memset(&key, 0, sizeof(key)); while (1) { ret = btrfs_search_slot(trans, chunk_root, &key, &path, 0, 1); if (ret < 0) break; ret = btrfs_next_leaf(chunk_root, &path); if (ret) break; btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); btrfs_release_path(&path); } btrfs_release_path(&path); offset = 0; num_bytes = 0; while(1) { cache1 = btrfs_lookup_block_group(root->fs_info, offset); if (!cache1) break; if (cache1->flags & BTRFS_BLOCK_GROUP_SYSTEM) num_bytes += btrfs_block_group_used(&cache1->item); offset = cache1->key.objectid + cache1->key.offset; } /* only extent #0 left in system block group? */ if (num_bytes > first_free) { error( "unable to empty system block group (num_bytes %llu, first_free %llu", (unsigned long long)num_bytes, (unsigned long long)first_free); goto fail; } /* create a system chunk that maps the whole device */ ret = prepare_system_chunk_sb(root->fs_info->super_copy); if (ret) { error("unable to update system chunk: %d", ret); goto fail; } ret = btrfs_commit_transaction(trans, root); BUG_ON(ret); ret = close_ctree(root); if (ret) { error("close_ctree failed: %d", ret); goto fail; } /* zero btrfs super block mirrors */ memset(buf, 0, sectorsize); for (i = 1 ; i < BTRFS_SUPER_MIRROR_MAX; i++) { bytenr = btrfs_sb_offset(i); if (bytenr >= total_bytes) break; ret = pwrite(fd, buf, sectorsize, bytenr); if (ret != sectorsize) { error("zeroing superblock mirror %d failed: %d", i, ret); goto fail; } } sb_bytenr = (u64)-1; /* copy all relocated blocks back */ while(1) { ret = find_first_extent_bit(&io_tree, 0, &start, &end, EXTENT_LOCKED); if (ret) break; ret = get_state_private(&io_tree, start, &bytenr); BUG_ON(ret); clear_extent_bits(&io_tree, start, end, EXTENT_LOCKED, GFP_NOFS); while (start <= end) { if (start == BTRFS_SUPER_INFO_OFFSET) { sb_bytenr = bytenr; goto next_sector; } ret = pread(fd, buf, sectorsize, bytenr); if (ret < 0) { error("reading superblock at %llu failed: %d", (unsigned long long)bytenr, ret); goto fail; } BUG_ON(ret != sectorsize); ret = pwrite(fd, buf, sectorsize, start); if (ret < 0) { error("writing superblock at %llu failed: %d", (unsigned long long)start, ret); goto fail; } BUG_ON(ret != sectorsize); next_sector: start += sectorsize; bytenr += sectorsize; } } ret = fsync(fd); if (ret < 0) { error("fsync failed: %s", strerror(errno)); goto fail; } /* * finally, overwrite btrfs super block. */ ret = pread(fd, buf, sectorsize, sb_bytenr); if (ret < 0) { error("reading primary superblock failed: %s", strerror(errno)); goto fail; } BUG_ON(ret != sectorsize); ret = pwrite(fd, buf, sectorsize, BTRFS_SUPER_INFO_OFFSET); if (ret < 0) { error("writing primary superblock failed: %s", strerror(errno)); goto fail; } BUG_ON(ret != sectorsize); ret = fsync(fd); if (ret < 0) { error("fsync failed: %s", strerror(errno)); goto fail; } close(fd); free(buf); extent_io_tree_cleanup(&io_tree); printf("rollback complete\n"); return 0; fail: if (fd != -1) close(fd); free(buf); error("rollback aborted"); return -1; } static void print_usage(void) { printf("usage: btrfs-convert [options] device\n"); printf("options:\n"); printf("\t-d|--no-datasum disable data checksum, sets NODATASUM\n"); printf("\t-i|--no-xattr ignore xattrs and ACLs\n"); printf("\t-n|--no-inline disable inlining of small files to metadata\n"); printf("\t-N|--nodesize SIZE set filesystem metadata nodesize\n"); printf("\t-r|--rollback roll back to the original filesystem\n"); printf("\t-l|--label LABEL set filesystem label\n"); printf("\t-L|--copy-label use label from converted filesystem\n"); printf("\t-p|--progress show converting progress (default)\n"); printf("\t-O|--features LIST comma separated list of filesystem features\n"); printf("\t--no-progress show only overview, not the detailed progress\n"); printf("\n"); printf("Suported filesystems:\n"); printf("\text2/3/4: %s\n", BTRFSCONVERT_EXT2 ? "yes" : "no"); } int main(int argc, char *argv[]) { int ret; int packing = 1; int noxattr = 0; int datacsum = 1; u32 nodesize = max_t(u32, sysconf(_SC_PAGESIZE), BTRFS_MKFS_DEFAULT_NODE_SIZE); int rollback = 0; int copylabel = 0; int usage_error = 0; int progress = 1; char *file; char fslabel[BTRFS_LABEL_SIZE]; u64 features = BTRFS_MKFS_DEFAULT_FEATURES; while(1) { enum { GETOPT_VAL_NO_PROGRESS = 256 }; static const struct option long_options[] = { { "no-progress", no_argument, NULL, GETOPT_VAL_NO_PROGRESS }, { "no-datasum", no_argument, NULL, 'd' }, { "no-inline", no_argument, NULL, 'n' }, { "no-xattr", no_argument, NULL, 'i' }, { "rollback", no_argument, NULL, 'r' }, { "features", required_argument, NULL, 'O' }, { "progress", no_argument, NULL, 'p' }, { "label", required_argument, NULL, 'l' }, { "copy-label", no_argument, NULL, 'L' }, { "nodesize", required_argument, NULL, 'N' }, { "help", no_argument, NULL, GETOPT_VAL_HELP}, { NULL, 0, NULL, 0 } }; int c = getopt_long(argc, argv, "dinN:rl:LpO:", long_options, NULL); if (c < 0) break; switch(c) { case 'd': datacsum = 0; break; case 'i': noxattr = 1; break; case 'n': packing = 0; break; case 'N': nodesize = parse_size(optarg); break; case 'r': rollback = 1; break; case 'l': copylabel = -1; if (strlen(optarg) >= BTRFS_LABEL_SIZE) { fprintf(stderr, "WARNING: label too long, trimmed to %d bytes\n", BTRFS_LABEL_SIZE - 1); } __strncpy_null(fslabel, optarg, BTRFS_LABEL_SIZE - 1); break; case 'L': copylabel = 1; break; case 'p': progress = 1; break; case 'O': { char *orig = strdup(optarg); char *tmp = orig; tmp = btrfs_parse_fs_features(tmp, &features); if (tmp) { fprintf(stderr, "Unrecognized filesystem feature '%s'\n", tmp); free(orig); exit(1); } free(orig); if (features & BTRFS_FEATURE_LIST_ALL) { btrfs_list_all_fs_features( ~BTRFS_CONVERT_ALLOWED_FEATURES); exit(0); } if (features & ~BTRFS_CONVERT_ALLOWED_FEATURES) { char buf[64]; btrfs_parse_features_to_string(buf, features & ~BTRFS_CONVERT_ALLOWED_FEATURES); fprintf(stderr, "ERROR: features not allowed for convert: %s\n", buf); exit(1); } break; } case GETOPT_VAL_NO_PROGRESS: progress = 0; break; case GETOPT_VAL_HELP: default: print_usage(); return c != GETOPT_VAL_HELP; } } set_argv0(argv); if (check_argc_exact(argc - optind, 1)) { print_usage(); return 1; } if (rollback && (!datacsum || noxattr || !packing)) { fprintf(stderr, "Usage error: -d, -i, -n options do not apply to rollback\n"); usage_error++; } if (usage_error) { print_usage(); return 1; } file = argv[optind]; ret = check_mounted(file); if (ret < 0) { fprintf(stderr, "Could not check mount status: %s\n", strerror(-ret)); return 1; } else if (ret) { fprintf(stderr, "%s is mounted\n", file); return 1; } if (rollback) { ret = do_rollback(file); } else { ret = do_convert(file, datacsum, packing, noxattr, nodesize, copylabel, fslabel, progress, features); } if (ret) return 1; return 0; }