/* * Copyright (C) 2008 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #define _XOPEN_SOURCE 500 #define _GNU_SOURCE 1 #include #include #include #include #include #include #include #include #include #include "kerncompat.h" #include "crc32c.h" #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "utils.h" #include "version.h" #include "volumes.h" #define HEADER_MAGIC 0xbd5c25e27295668bULL #define MAX_PENDING_SIZE (256 * 1024) #define BLOCK_SIZE 1024 #define BLOCK_MASK (BLOCK_SIZE - 1) #define COMPRESS_NONE 0 #define COMPRESS_ZLIB 1 struct meta_cluster_item { __le64 bytenr; __le32 size; } __attribute__ ((__packed__)); struct meta_cluster_header { __le64 magic; __le64 bytenr; __le32 nritems; u8 compress; } __attribute__ ((__packed__)); /* cluster header + index items + buffers */ struct meta_cluster { struct meta_cluster_header header; struct meta_cluster_item items[]; } __attribute__ ((__packed__)); #define ITEMS_PER_CLUSTER ((BLOCK_SIZE - sizeof(struct meta_cluster)) / \ sizeof(struct meta_cluster_item)) struct async_work { struct list_head list; struct list_head ordered; u64 start; u64 size; u8 *buffer; size_t bufsize; int error; }; struct metadump_struct { struct btrfs_root *root; FILE *out; struct meta_cluster *cluster; pthread_t *threads; size_t num_threads; pthread_mutex_t mutex; pthread_cond_t cond; struct list_head list; struct list_head ordered; size_t num_items; size_t num_ready; u64 pending_start; u64 pending_size; int compress_level; int done; int data; }; struct mdrestore_struct { FILE *in; FILE *out; pthread_t *threads; size_t num_threads; pthread_mutex_t mutex; pthread_cond_t cond; struct list_head list; size_t num_items; u64 leafsize; u64 devid; u8 uuid[BTRFS_UUID_SIZE]; u8 fsid[BTRFS_FSID_SIZE]; int compress_method; int done; int error; int old_restore; }; static void csum_block(u8 *buf, size_t len) { char result[BTRFS_CRC32_SIZE]; u32 crc = ~(u32)0; crc = crc32c(crc, buf + BTRFS_CSUM_SIZE, len - BTRFS_CSUM_SIZE); btrfs_csum_final(crc, result); memcpy(buf, result, BTRFS_CRC32_SIZE); } /* * zero inline extents and csum items */ static void zero_items(u8 *dst, struct extent_buffer *src) { struct btrfs_file_extent_item *fi; struct btrfs_item *item; struct btrfs_key key; u32 nritems = btrfs_header_nritems(src); size_t size; unsigned long ptr; int i, extent_type; for (i = 0; i < nritems; i++) { item = btrfs_item_nr(src, i); btrfs_item_key_to_cpu(src, &key, i); if (key.type == BTRFS_CSUM_ITEM_KEY) { size = btrfs_item_size_nr(src, i); memset(dst + btrfs_leaf_data(src) + btrfs_item_offset_nr(src, i), 0, size); continue; } if (key.type != BTRFS_EXTENT_DATA_KEY) continue; fi = btrfs_item_ptr(src, i, struct btrfs_file_extent_item); extent_type = btrfs_file_extent_type(src, fi); if (extent_type != BTRFS_FILE_EXTENT_INLINE) continue; ptr = btrfs_file_extent_inline_start(fi); size = btrfs_file_extent_inline_item_len(src, item); memset(dst + ptr, 0, size); } } /* * copy buffer and zero useless data in the buffer */ static void copy_buffer(u8 *dst, struct extent_buffer *src) { int level; size_t size; u32 nritems; memcpy(dst, src->data, src->len); if (src->start == BTRFS_SUPER_INFO_OFFSET) return; level = btrfs_header_level(src); nritems = btrfs_header_nritems(src); if (nritems == 0) { size = sizeof(struct btrfs_header); memset(dst + size, 0, src->len - size); } else if (level == 0) { size = btrfs_leaf_data(src) + btrfs_item_offset_nr(src, nritems - 1) - btrfs_item_nr_offset(nritems); memset(dst + btrfs_item_nr_offset(nritems), 0, size); zero_items(dst, src); } else { size = offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nritems; memset(dst + size, 0, src->len - size); } csum_block(dst, src->len); } static void *dump_worker(void *data) { struct metadump_struct *md = (struct metadump_struct *)data; struct async_work *async; int ret; while (1) { pthread_mutex_lock(&md->mutex); while (list_empty(&md->list)) { if (md->done) { pthread_mutex_unlock(&md->mutex); goto out; } pthread_cond_wait(&md->cond, &md->mutex); } async = list_entry(md->list.next, struct async_work, list); list_del_init(&async->list); pthread_mutex_unlock(&md->mutex); if (md->compress_level > 0) { u8 *orig = async->buffer; async->bufsize = compressBound(async->size); async->buffer = malloc(async->bufsize); ret = compress2(async->buffer, (unsigned long *)&async->bufsize, orig, async->size, md->compress_level); if (ret != Z_OK) async->error = 1; free(orig); } pthread_mutex_lock(&md->mutex); md->num_ready++; pthread_mutex_unlock(&md->mutex); } out: pthread_exit(NULL); } static void meta_cluster_init(struct metadump_struct *md, u64 start) { struct meta_cluster_header *header; md->num_items = 0; md->num_ready = 0; header = &md->cluster->header; header->magic = cpu_to_le64(HEADER_MAGIC); header->bytenr = cpu_to_le64(start); header->nritems = cpu_to_le32(0); header->compress = md->compress_level > 0 ? COMPRESS_ZLIB : COMPRESS_NONE; } static int metadump_init(struct metadump_struct *md, struct btrfs_root *root, FILE *out, int num_threads, int compress_level) { int i, ret = 0; memset(md, 0, sizeof(*md)); pthread_cond_init(&md->cond, NULL); pthread_mutex_init(&md->mutex, NULL); INIT_LIST_HEAD(&md->list); INIT_LIST_HEAD(&md->ordered); md->root = root; md->out = out; md->pending_start = (u64)-1; md->compress_level = compress_level; md->cluster = calloc(1, BLOCK_SIZE); if (!md->cluster) { pthread_cond_destroy(&md->cond); pthread_mutex_destroy(&md->mutex); return -ENOMEM; } meta_cluster_init(md, 0); if (!num_threads) return 0; md->num_threads = num_threads; md->threads = calloc(num_threads, sizeof(pthread_t)); if (!md->threads) { free(md->cluster); pthread_cond_destroy(&md->cond); pthread_mutex_destroy(&md->mutex); return -ENOMEM; } for (i = 0; i < num_threads; i++) { ret = pthread_create(md->threads + i, NULL, dump_worker, md); if (ret) break; } if (ret) { pthread_mutex_lock(&md->mutex); md->done = 1; pthread_cond_broadcast(&md->cond); pthread_mutex_unlock(&md->mutex); for (i--; i >= 0; i--) pthread_join(md->threads[i], NULL); pthread_cond_destroy(&md->cond); pthread_mutex_destroy(&md->mutex); free(md->cluster); free(md->threads); } return ret; } static void metadump_destroy(struct metadump_struct *md) { int i; pthread_mutex_lock(&md->mutex); md->done = 1; pthread_cond_broadcast(&md->cond); pthread_mutex_unlock(&md->mutex); for (i = 0; i < md->num_threads; i++) pthread_join(md->threads[i], NULL); pthread_cond_destroy(&md->cond); pthread_mutex_destroy(&md->mutex); free(md->threads); free(md->cluster); } static int write_zero(FILE *out, size_t size) { static char zero[BLOCK_SIZE]; return fwrite(zero, size, 1, out); } static int write_buffers(struct metadump_struct *md, u64 *next) { struct meta_cluster_header *header = &md->cluster->header; struct meta_cluster_item *item; struct async_work *async; u64 bytenr = 0; u32 nritems = 0; int ret; int err = 0; if (list_empty(&md->ordered)) goto out; /* wait until all buffers are compressed */ while (md->num_items > md->num_ready) { struct timespec ts = { .tv_sec = 0, .tv_nsec = 10000000, }; pthread_mutex_unlock(&md->mutex); nanosleep(&ts, NULL); pthread_mutex_lock(&md->mutex); } /* setup and write index block */ list_for_each_entry(async, &md->ordered, ordered) { item = md->cluster->items + nritems; item->bytenr = cpu_to_le64(async->start); item->size = cpu_to_le32(async->bufsize); nritems++; } header->nritems = cpu_to_le32(nritems); ret = fwrite(md->cluster, BLOCK_SIZE, 1, md->out); if (ret != 1) { fprintf(stderr, "Error writing out cluster: %d\n", errno); return -EIO; } /* write buffers */ bytenr += le64_to_cpu(header->bytenr) + BLOCK_SIZE; while (!list_empty(&md->ordered)) { async = list_entry(md->ordered.next, struct async_work, ordered); list_del_init(&async->ordered); bytenr += async->bufsize; if (!err) ret = fwrite(async->buffer, async->bufsize, 1, md->out); if (ret != 1) { err = -EIO; ret = 0; fprintf(stderr, "Error writing out cluster: %d\n", errno); } free(async->buffer); free(async); } /* zero unused space in the last block */ if (!err && bytenr & BLOCK_MASK) { size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK); bytenr += size; ret = write_zero(md->out, size); if (ret != 1) { fprintf(stderr, "Error zeroing out buffer: %d\n", errno); err = -EIO; } } out: *next = bytenr; return err; } static int read_data_extent(struct metadump_struct *md, struct async_work *async) { struct btrfs_multi_bio *multi = NULL; struct btrfs_device *device; u64 bytes_left = async->size; u64 logical = async->start; u64 offset = 0; u64 bytenr; u64 read_len; ssize_t done; int fd; int ret; while (bytes_left) { read_len = bytes_left; ret = btrfs_map_block(&md->root->fs_info->mapping_tree, READ, logical, &read_len, &multi, 0, NULL); if (ret) { fprintf(stderr, "Couldn't map data block %d\n", ret); return ret; } device = multi->stripes[0].dev; if (device->fd == 0) { fprintf(stderr, "Device we need to read from is not open\n"); free(multi); return -EIO; } fd = device->fd; bytenr = multi->stripes[0].physical; free(multi); read_len = min(read_len, bytes_left); done = pread64(fd, async->buffer+offset, read_len, bytenr); if (done < read_len) { if (done < 0) fprintf(stderr, "Error reading extent %d\n", errno); else fprintf(stderr, "Short read\n"); return -EIO; } bytes_left -= done; offset += done; logical += done; } return 0; } static int flush_pending(struct metadump_struct *md, int done) { struct async_work *async = NULL; struct extent_buffer *eb; u64 blocksize = md->root->nodesize; u64 start; u64 size; size_t offset; int ret = 0; if (md->pending_size) { async = calloc(1, sizeof(*async)); if (!async) return -ENOMEM; async->start = md->pending_start; async->size = md->pending_size; async->bufsize = async->size; async->buffer = malloc(async->bufsize); if (!async->buffer) { free(async); return -ENOMEM; } offset = 0; start = async->start; size = async->size; if (md->data) { ret = read_data_extent(md, async); if (ret) { free(async->buffer); free(async); return ret; } } while (!md->data && size > 0) { u64 this_read = min(blocksize, size); eb = read_tree_block(md->root, start, this_read, 0); if (!eb) { free(async->buffer); free(async); fprintf(stderr, "Error reading metadata block\n"); return -EIO; } copy_buffer(async->buffer + offset, eb); free_extent_buffer(eb); start += this_read; offset += this_read; size -= this_read; } md->pending_start = (u64)-1; md->pending_size = 0; } else if (!done) { return 0; } pthread_mutex_lock(&md->mutex); if (async) { list_add_tail(&async->ordered, &md->ordered); md->num_items++; if (md->compress_level > 0) { list_add_tail(&async->list, &md->list); pthread_cond_signal(&md->cond); } else { md->num_ready++; } } if (md->num_items >= ITEMS_PER_CLUSTER || done) { ret = write_buffers(md, &start); if (ret) fprintf(stderr, "Error writing buffers %d\n", errno); else meta_cluster_init(md, start); } pthread_mutex_unlock(&md->mutex); return ret; } static int add_extent(u64 start, u64 size, struct metadump_struct *md, int data) { int ret; if (md->data != data || md->pending_size + size > MAX_PENDING_SIZE || md->pending_start + md->pending_size != start) { ret = flush_pending(md, 0); if (ret) return ret; md->pending_start = start; } readahead_tree_block(md->root, start, size, 0); md->pending_size += size; md->data = data; return 0; } #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 static int is_tree_block(struct btrfs_root *extent_root, struct btrfs_path *path, u64 bytenr) { struct extent_buffer *leaf; struct btrfs_key key; u64 ref_objectid; int ret; leaf = path->nodes[0]; while (1) { struct btrfs_extent_ref_v0 *ref_item; path->slots[0]++; if (path->slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(extent_root, path); if (ret < 0) return ret; if (ret > 0) break; leaf = path->nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != bytenr) break; if (key.type != BTRFS_EXTENT_REF_V0_KEY) continue; ref_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref_v0); ref_objectid = btrfs_ref_objectid_v0(leaf, ref_item); if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) return 1; break; } return 0; } #endif static int copy_tree_blocks(struct btrfs_root *root, struct extent_buffer *eb, struct metadump_struct *metadump, int root_tree) { struct extent_buffer *tmp; struct btrfs_root_item *ri; struct btrfs_key key; u64 bytenr; int level; int nritems = 0; int i = 0; int ret; ret = add_extent(btrfs_header_bytenr(eb), root->leafsize, metadump, 0); if (ret) { fprintf(stderr, "Error adding metadata block\n"); return ret; } if (btrfs_header_level(eb) == 0 && !root_tree) return 0; level = btrfs_header_level(eb); nritems = btrfs_header_nritems(eb); for (i = 0; i < nritems; i++) { if (level == 0) { btrfs_item_key_to_cpu(eb, &key, i); if (key.type != BTRFS_ROOT_ITEM_KEY) continue; ri = btrfs_item_ptr(eb, i, struct btrfs_root_item); bytenr = btrfs_disk_root_bytenr(eb, ri); tmp = read_tree_block(root, bytenr, root->leafsize, 0); if (!tmp) { fprintf(stderr, "Error reading log root block\n"); return -EIO; } ret = copy_tree_blocks(root, tmp, metadump, 0); free_extent_buffer(tmp); if (ret) return ret; } else { bytenr = btrfs_node_blockptr(eb, i); tmp = read_tree_block(root, bytenr, root->leafsize, 0); if (!tmp) { fprintf(stderr, "Error reading log block\n"); return -EIO; } ret = copy_tree_blocks(root, tmp, metadump, root_tree); free_extent_buffer(tmp); if (ret) return ret; } } return 0; } static int copy_log_trees(struct btrfs_root *root, struct metadump_struct *metadump, struct btrfs_path *path) { u64 blocknr = btrfs_super_log_root(root->fs_info->super_copy); if (blocknr == 0) return 0; if (!root->fs_info->log_root_tree || !root->fs_info->log_root_tree->node) { fprintf(stderr, "Error copying tree log, it wasn't setup\n"); return -EIO; } return copy_tree_blocks(root, root->fs_info->log_root_tree->node, metadump, 1); } static int copy_space_cache(struct btrfs_root *root, struct metadump_struct *metadump, struct btrfs_path *path) { struct extent_buffer *leaf; struct btrfs_file_extent_item *fi; struct btrfs_key key; u64 bytenr, num_bytes; int ret; root = root->fs_info->tree_root; key.objectid = 0; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) { fprintf(stderr, "Error searching for free space inode %d\n", ret); return ret; } while (1) { leaf = path->nodes[0]; if (path->slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, path); if (ret < 0) { fprintf(stderr, "Error going to next leaf " "%d\n", ret); return ret; } if (ret > 0) break; leaf = path->nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.type != BTRFS_EXTENT_DATA_KEY) { path->slots[0]++; continue; } fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) { path->slots[0]++; continue; } bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); ret = add_extent(bytenr, num_bytes, metadump, 1); if (ret) { fprintf(stderr, "Error adding space cache blocks %d\n", ret); btrfs_release_path(root, path); return ret; } path->slots[0]++; } return 0; } static int copy_from_extent_tree(struct metadump_struct *metadump, struct btrfs_path *path) { struct btrfs_root *extent_root; struct extent_buffer *leaf; struct btrfs_extent_item *ei; struct btrfs_key key; u64 bytenr; u64 num_bytes; int ret; extent_root = metadump->root->fs_info->extent_root; bytenr = BTRFS_SUPER_INFO_OFFSET + 4096; key.objectid = bytenr; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); if (ret < 0) { fprintf(stderr, "Error searching extent root %d\n", ret); return ret; } ret = 0; while (1) { leaf = path->nodes[0]; if (path->slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(extent_root, path); if (ret < 0) { fprintf(stderr, "Error going to next leaf %d" "\n", ret); break; } if (ret > 0) { ret = 0; break; } leaf = path->nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid < bytenr || (key.type != BTRFS_EXTENT_ITEM_KEY && key.type != BTRFS_METADATA_ITEM_KEY)) { path->slots[0]++; continue; } bytenr = key.objectid; if (key.type == BTRFS_METADATA_ITEM_KEY) num_bytes = key.offset; else num_bytes = extent_root->leafsize; if (btrfs_item_size_nr(leaf, path->slots[0]) > sizeof(*ei)) { ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); if (btrfs_extent_flags(leaf, ei) & BTRFS_EXTENT_FLAG_TREE_BLOCK) { ret = add_extent(bytenr, num_bytes, metadump, 0); if (ret) { fprintf(stderr, "Error adding block " "%d\n", ret); break; } } } else { #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 ret = is_tree_block(extent_root, path, bytenr); if (ret < 0) { fprintf(stderr, "Error checking tree block " "%d\n", ret); break; } if (ret) { ret = add_extent(bytenr, num_bytes, metadump, 0); if (ret) { fprintf(stderr, "Error adding block " "%d\n", ret); break; } } ret = 0; #else fprintf(stderr, "Either extent tree corruption or " "you haven't built with V0 support\n"); ret = -EIO; break; #endif } bytenr += num_bytes; } btrfs_release_path(extent_root, path); return ret; } static int create_metadump(const char *input, FILE *out, int num_threads, int compress_level, int walk_trees) { struct btrfs_root *root; struct btrfs_path *path = NULL; struct metadump_struct metadump; int ret; int err = 0; root = open_ctree(input, 0, 0); if (!root) { fprintf(stderr, "Open ctree failed\n"); return -EIO; } BUG_ON(root->nodesize != root->leafsize); ret = metadump_init(&metadump, root, out, num_threads, compress_level); if (ret) { fprintf(stderr, "Error initing metadump %d\n", ret); close_ctree(root); return ret; } ret = add_extent(BTRFS_SUPER_INFO_OFFSET, 4096, &metadump, 0); if (ret) { fprintf(stderr, "Error adding metadata %d\n", ret); err = ret; goto out; } path = btrfs_alloc_path(); if (!path) { fprintf(stderr, "Out of memory allocing path\n"); err = -ENOMEM; goto out; } if (walk_trees) { ret = copy_tree_blocks(root, root->fs_info->chunk_root->node, &metadump, 1); if (ret) { err = ret; goto out; } ret = copy_tree_blocks(root, root->fs_info->tree_root->node, &metadump, 1); if (ret) { err = ret; goto out; } } else { ret = copy_from_extent_tree(&metadump, path); if (ret) { err = ret; goto out; } } ret = copy_log_trees(root, &metadump, path); if (ret) { err = ret; goto out; } ret = copy_space_cache(root, &metadump, path); out: ret = flush_pending(&metadump, 1); if (ret) { if (!err) err = ret; fprintf(stderr, "Error flushing pending %d\n", ret); } metadump_destroy(&metadump); btrfs_free_path(path); ret = close_ctree(root); return err ? err : ret; } static void update_super_old(u8 *buffer) { struct btrfs_super_block *super = (struct btrfs_super_block *)buffer; struct btrfs_chunk *chunk; struct btrfs_disk_key *key; u32 sectorsize = btrfs_super_sectorsize(super); u64 flags = btrfs_super_flags(super); flags |= BTRFS_SUPER_FLAG_METADUMP; btrfs_set_super_flags(super, flags); key = (struct btrfs_disk_key *)(super->sys_chunk_array); chunk = (struct btrfs_chunk *)(super->sys_chunk_array + sizeof(struct btrfs_disk_key)); btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID); btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY); btrfs_set_disk_key_offset(key, 0); btrfs_set_stack_chunk_length(chunk, (u64)-1); btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); btrfs_set_stack_chunk_stripe_len(chunk, 64 * 1024); btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM); btrfs_set_stack_chunk_io_align(chunk, sectorsize); btrfs_set_stack_chunk_io_width(chunk, sectorsize); btrfs_set_stack_chunk_sector_size(chunk, sectorsize); btrfs_set_stack_chunk_num_stripes(chunk, 1); btrfs_set_stack_chunk_sub_stripes(chunk, 0); chunk->stripe.devid = super->dev_item.devid; chunk->stripe.offset = cpu_to_le64(0); memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE); btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk)); csum_block(buffer, 4096); } static int update_super(u8 *buffer) { struct btrfs_super_block *super = (struct btrfs_super_block *)buffer; struct btrfs_chunk *chunk; struct btrfs_disk_key *disk_key; struct btrfs_key key; u32 new_array_size = 0; u32 array_size; u32 cur = 0; u32 new_cur = 0; u8 *ptr, *write_ptr; int old_num_stripes; write_ptr = ptr = super->sys_chunk_array; array_size = btrfs_super_sys_array_size(super); while (cur < array_size) { disk_key = (struct btrfs_disk_key *)ptr; btrfs_disk_key_to_cpu(&key, disk_key); new_array_size += sizeof(*disk_key); memmove(write_ptr, ptr, sizeof(*disk_key)); write_ptr += sizeof(*disk_key); ptr += sizeof(*disk_key); cur += sizeof(*disk_key); new_cur += sizeof(*disk_key); if (key.type == BTRFS_CHUNK_ITEM_KEY) { chunk = (struct btrfs_chunk *)ptr; old_num_stripes = btrfs_stack_chunk_num_stripes(chunk); chunk = (struct btrfs_chunk *)write_ptr; memmove(write_ptr, ptr, sizeof(*chunk)); btrfs_set_stack_chunk_num_stripes(chunk, 1); btrfs_set_stack_chunk_sub_stripes(chunk, 0); btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM); chunk->stripe.devid = super->dev_item.devid; chunk->stripe.offset = cpu_to_le64(key.offset); memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE); new_array_size += sizeof(*chunk); new_cur += sizeof(*chunk); } else { fprintf(stderr, "Bogus key in the sys chunk array " "%d\n", key.type); return -EIO; } write_ptr += sizeof(*chunk); ptr += btrfs_chunk_item_size(old_num_stripes); cur += btrfs_chunk_item_size(old_num_stripes); } btrfs_set_super_sys_array_size(super, new_array_size); csum_block(buffer, 4096); return 0; } static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size) { struct extent_buffer *eb; eb = malloc(sizeof(struct extent_buffer) + size); if (!eb) return NULL; memset(eb, 0, sizeof(struct extent_buffer) + size); eb->start = bytenr; eb->len = size; return eb; } static void truncate_item(struct extent_buffer *eb, int slot, u32 new_size) { struct btrfs_item *item; u32 nritems; u32 old_size; u32 old_data_start; u32 size_diff; u32 data_end; int i; old_size = btrfs_item_size_nr(eb, slot); if (old_size == new_size) return; nritems = btrfs_header_nritems(eb); data_end = btrfs_item_offset_nr(eb, nritems - 1); old_data_start = btrfs_item_offset_nr(eb, slot); size_diff = old_size - new_size; for (i = slot; i < nritems; i++) { u32 ioff; item = btrfs_item_nr(eb, i); ioff = btrfs_item_offset(eb, item); btrfs_set_item_offset(eb, item, ioff + size_diff); } memmove_extent_buffer(eb, btrfs_leaf_data(eb) + data_end + size_diff, btrfs_leaf_data(eb) + data_end, old_data_start + new_size - data_end); item = btrfs_item_nr(eb, slot); btrfs_set_item_size(eb, item, new_size); } static int fixup_chunk_tree_block(struct mdrestore_struct *mdres, struct async_work *async, u8 *buffer, size_t size) { struct extent_buffer *eb; size_t size_left = size; u64 bytenr = async->start; int i; if (size_left % mdres->leafsize) return 0; eb = alloc_dummy_eb(bytenr, mdres->leafsize); if (!eb) return -ENOMEM; while (size_left) { eb->start = bytenr; memcpy(eb->data, buffer, mdres->leafsize); if (btrfs_header_bytenr(eb) != bytenr) break; if (memcmp(mdres->fsid, eb->data + offsetof(struct btrfs_header, fsid), BTRFS_FSID_SIZE)) break; if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID) goto next; if (btrfs_header_level(eb) != 0) goto next; for (i = 0; i < btrfs_header_nritems(eb); i++) { struct btrfs_chunk chunk; struct btrfs_key key; u64 type; btrfs_item_key_to_cpu(eb, &key, i); if (key.type != BTRFS_CHUNK_ITEM_KEY) continue; truncate_item(eb, i, sizeof(chunk)); read_extent_buffer(eb, &chunk, btrfs_item_ptr_offset(eb, i), sizeof(chunk)); /* Zero out the RAID profile */ type = btrfs_stack_chunk_type(&chunk); type &= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA); btrfs_set_stack_chunk_type(&chunk, type); btrfs_set_stack_chunk_num_stripes(&chunk, 1); btrfs_set_stack_chunk_sub_stripes(&chunk, 0); btrfs_set_stack_stripe_devid(&chunk.stripe, mdres->devid); btrfs_set_stack_stripe_offset(&chunk.stripe, key.offset); memcpy(chunk.stripe.dev_uuid, mdres->uuid, BTRFS_UUID_SIZE); write_extent_buffer(eb, &chunk, btrfs_item_ptr_offset(eb, i), sizeof(chunk)); } memcpy(buffer, eb->data, eb->len); csum_block(buffer, eb->len); next: size_left -= mdres->leafsize; buffer += mdres->leafsize; bytenr += mdres->leafsize; } return 0; } static void write_backup_supers(int fd, u8 *buf) { struct stat st; u64 size; u64 bytenr; int i; int ret; if (fstat(fd, &st)) { fprintf(stderr, "Couldn't stat restore point, won't be able " "to write backup supers: %d\n", errno); return; } size = btrfs_device_size(fd, &st); for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) { bytenr = btrfs_sb_offset(i); if (bytenr + 4096 > size) break; ret = pwrite64(fd, buf, 4096, bytenr); if (ret < 4096) { if (ret < 0) fprintf(stderr, "Problem writing out backup " "super block %d, err %d\n", i, errno); else fprintf(stderr, "Short write writing out " "backup super block\n"); break; } } } static void *restore_worker(void *data) { struct mdrestore_struct *mdres = (struct mdrestore_struct *)data; struct async_work *async; size_t size; u8 *buffer; u8 *outbuf; int outfd; int ret; outfd = fileno(mdres->out); buffer = malloc(MAX_PENDING_SIZE * 2); if (!buffer) { fprintf(stderr, "Error allocing buffer\n"); pthread_mutex_lock(&mdres->mutex); if (!mdres->error) mdres->error = -ENOMEM; pthread_mutex_unlock(&mdres->mutex); goto out; } while (1) { int err = 0; pthread_mutex_lock(&mdres->mutex); while (!mdres->leafsize || list_empty(&mdres->list)) { if (mdres->done) { pthread_mutex_unlock(&mdres->mutex); goto out; } pthread_cond_wait(&mdres->cond, &mdres->mutex); } async = list_entry(mdres->list.next, struct async_work, list); list_del_init(&async->list); pthread_mutex_unlock(&mdres->mutex); if (mdres->compress_method == COMPRESS_ZLIB) { size = MAX_PENDING_SIZE * 2; ret = uncompress(buffer, (unsigned long *)&size, async->buffer, async->bufsize); if (ret != Z_OK) { fprintf(stderr, "Error decompressing %d\n", ret); err = -EIO; } outbuf = buffer; } else { outbuf = async->buffer; size = async->bufsize; } if (async->start == BTRFS_SUPER_INFO_OFFSET) { if (mdres->old_restore) { update_super_old(outbuf); } else { ret = update_super(outbuf); if (ret) err = ret; } } else if (!mdres->old_restore) { ret = fixup_chunk_tree_block(mdres, async, outbuf, size); if (ret) err = ret; } ret = pwrite64(outfd, outbuf, size, async->start); if (ret < size) { if (ret < 0) { fprintf(stderr, "Error writing to device %d\n", errno); err = errno; } else { fprintf(stderr, "Short write\n"); err = -EIO; } } if (async->start == BTRFS_SUPER_INFO_OFFSET) write_backup_supers(outfd, outbuf); pthread_mutex_lock(&mdres->mutex); if (err && !mdres->error) mdres->error = err; mdres->num_items--; pthread_mutex_unlock(&mdres->mutex); free(async->buffer); free(async); } out: free(buffer); pthread_exit(NULL); } static void mdrestore_destroy(struct mdrestore_struct *mdres) { int i; pthread_mutex_lock(&mdres->mutex); mdres->done = 1; pthread_cond_broadcast(&mdres->cond); pthread_mutex_unlock(&mdres->mutex); for (i = 0; i < mdres->num_threads; i++) pthread_join(mdres->threads[i], NULL); pthread_cond_destroy(&mdres->cond); pthread_mutex_destroy(&mdres->mutex); free(mdres->threads); } static int mdrestore_init(struct mdrestore_struct *mdres, FILE *in, FILE *out, int old_restore, int num_threads) { int i, ret = 0; memset(mdres, 0, sizeof(*mdres)); pthread_cond_init(&mdres->cond, NULL); pthread_mutex_init(&mdres->mutex, NULL); INIT_LIST_HEAD(&mdres->list); mdres->in = in; mdres->out = out; mdres->old_restore = old_restore; if (!num_threads) return 0; mdres->num_threads = num_threads; mdres->threads = calloc(num_threads, sizeof(pthread_t)); if (!mdres->threads) return -ENOMEM; for (i = 0; i < num_threads; i++) { ret = pthread_create(mdres->threads + i, NULL, restore_worker, mdres); if (ret) break; } if (ret) mdrestore_destroy(mdres); return ret; } static int fill_mdres_info(struct mdrestore_struct *mdres, struct async_work *async) { struct btrfs_super_block *super; u8 *buffer = NULL; u8 *outbuf; int ret; if (mdres->compress_method == COMPRESS_ZLIB) { size_t size = MAX_PENDING_SIZE * 2; buffer = malloc(MAX_PENDING_SIZE * 2); if (!buffer) return -ENOMEM; ret = uncompress(buffer, (unsigned long *)&size, async->buffer, async->bufsize); if (ret != Z_OK) { fprintf(stderr, "Error decompressing %d\n", ret); free(buffer); return -EIO; } outbuf = buffer; } else { outbuf = async->buffer; } super = (struct btrfs_super_block *)outbuf; mdres->leafsize = btrfs_super_leafsize(super); memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE); memcpy(mdres->uuid, super->dev_item.uuid, BTRFS_UUID_SIZE); mdres->devid = le64_to_cpu(super->dev_item.devid); free(buffer); return 0; } static int add_cluster(struct meta_cluster *cluster, struct mdrestore_struct *mdres, u64 *next) { struct meta_cluster_item *item; struct meta_cluster_header *header = &cluster->header; struct async_work *async; u64 bytenr; u32 i, nritems; int ret; BUG_ON(mdres->num_items); mdres->compress_method = header->compress; bytenr = le64_to_cpu(header->bytenr) + BLOCK_SIZE; nritems = le32_to_cpu(header->nritems); for (i = 0; i < nritems; i++) { item = &cluster->items[i]; async = calloc(1, sizeof(*async)); if (!async) { fprintf(stderr, "Error allocating async\n"); return -ENOMEM; } async->start = le64_to_cpu(item->bytenr); async->bufsize = le32_to_cpu(item->size); async->buffer = malloc(async->bufsize); if (!async->buffer) { fprintf(stderr, "Error allocing async buffer\n"); free(async); return -ENOMEM; } ret = fread(async->buffer, async->bufsize, 1, mdres->in); if (ret != 1) { fprintf(stderr, "Error reading buffer %d\n", errno); free(async->buffer); free(async); return -EIO; } bytenr += async->bufsize; pthread_mutex_lock(&mdres->mutex); if (async->start == BTRFS_SUPER_INFO_OFFSET) { ret = fill_mdres_info(mdres, async); if (ret) { fprintf(stderr, "Error setting up restore\n"); pthread_mutex_unlock(&mdres->mutex); free(async->buffer); free(async); return ret; } } list_add_tail(&async->list, &mdres->list); mdres->num_items++; pthread_cond_signal(&mdres->cond); pthread_mutex_unlock(&mdres->mutex); } if (bytenr & BLOCK_MASK) { char buffer[BLOCK_MASK]; size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK); bytenr += size; ret = fread(buffer, size, 1, mdres->in); if (ret != 1) { fprintf(stderr, "Error reading in buffer %d\n", errno); return -EIO; } } *next = bytenr; return 0; } static int wait_for_worker(struct mdrestore_struct *mdres) { int ret = 0; pthread_mutex_lock(&mdres->mutex); ret = mdres->error; while (!ret && mdres->num_items > 0) { struct timespec ts = { .tv_sec = 0, .tv_nsec = 10000000, }; pthread_mutex_unlock(&mdres->mutex); nanosleep(&ts, NULL); pthread_mutex_lock(&mdres->mutex); ret = mdres->error; } pthread_mutex_unlock(&mdres->mutex); return ret; } static int restore_metadump(const char *input, FILE *out, int old_restore, int num_threads) { struct meta_cluster *cluster = NULL; struct meta_cluster_header *header; struct mdrestore_struct mdrestore; u64 bytenr = 0; FILE *in = NULL; int ret = 0; if (!strcmp(input, "-")) { in = stdin; } else { in = fopen(input, "r"); if (!in) { perror("unable to open metadump image"); return 1; } } cluster = malloc(BLOCK_SIZE); if (!cluster) { fprintf(stderr, "Error allocating cluster\n"); if (in != stdin) fclose(in); return -ENOMEM; } ret = mdrestore_init(&mdrestore, in, out, old_restore, num_threads); if (ret) { fprintf(stderr, "Error initing mdrestore %d\n", ret); if (in != stdin) fclose(in); free(cluster); return ret; } while (1) { ret = fread(cluster, BLOCK_SIZE, 1, in); if (!ret) break; header = &cluster->header; if (le64_to_cpu(header->magic) != HEADER_MAGIC || le64_to_cpu(header->bytenr) != bytenr) { fprintf(stderr, "bad header in metadump image\n"); ret = -EIO; break; } ret = add_cluster(cluster, &mdrestore, &bytenr); if (ret) { fprintf(stderr, "Error adding cluster\n"); break; } ret = wait_for_worker(&mdrestore); if (ret) { fprintf(stderr, "One of the threads errored out %d\n", ret); break; } } mdrestore_destroy(&mdrestore); free(cluster); if (in != stdin) fclose(in); return ret; } static void print_usage(void) { fprintf(stderr, "usage: btrfs-image [options] source target\n"); fprintf(stderr, "\t-r \trestore metadump image\n"); fprintf(stderr, "\t-c value\tcompression level (0 ~ 9)\n"); fprintf(stderr, "\t-t value\tnumber of threads (1 ~ 32)\n"); fprintf(stderr, "\t-o \tdon't mess with the chunk tree when restoring\n"); fprintf(stderr, "\t-w \twalk all trees instead of using extent tree, do this if your extent tree is broken\n"); exit(1); } int main(int argc, char *argv[]) { char *source; char *target; int num_threads = 0; int compress_level = 0; int create = 1; int old_restore = 0; int walk_trees = 0; int ret; FILE *out; while (1) { int c = getopt(argc, argv, "rc:t:ow"); if (c < 0) break; switch (c) { case 'r': create = 0; break; case 't': num_threads = atoi(optarg); if (num_threads <= 0 || num_threads > 32) print_usage(); break; case 'c': compress_level = atoi(optarg); if (compress_level < 0 || compress_level > 9) print_usage(); break; case 'o': old_restore = 1; break; case 'w': walk_trees = 1; break; default: print_usage(); } } if (old_restore && create) print_usage(); argc = argc - optind; if (argc != 2) print_usage(); source = argv[optind]; target = argv[optind + 1]; if (create && !strcmp(target, "-")) { out = stdout; } else { out = fopen(target, "w+"); if (!out) { perror("unable to create target file"); exit(1); } } if (num_threads == 0 && compress_level > 0) { num_threads = sysconf(_SC_NPROCESSORS_ONLN); if (num_threads <= 0) num_threads = 1; } if (create) ret = create_metadump(source, out, num_threads, compress_level, walk_trees); else ret = restore_metadump(source, out, old_restore, 1); if (out == stdout) fflush(out); else fclose(out); return ret; }