/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #define _XOPEN_SOURCE 500 #define _GNU_SOURCE 1 #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "volumes.h" #include "repair.h" #include "disk-io.h" #include "print-tree.h" #include "transaction.h" #include "version.h" #include "utils.h" #include "commands.h" #include "free-space-cache.h" #include "btrfsck.h" static u64 bytes_used = 0; static u64 total_csum_bytes = 0; static u64 total_btree_bytes = 0; static u64 total_fs_tree_bytes = 0; static u64 total_extent_tree_bytes = 0; static u64 btree_space_waste = 0; static u64 data_bytes_allocated = 0; static u64 data_bytes_referenced = 0; static int found_old_backref = 0; static LIST_HEAD(duplicate_extents); static LIST_HEAD(delete_items); static int repair = 0; static int no_holes = 0; static int init_extent_tree = 0; struct extent_backref { struct list_head list; unsigned int is_data:1; unsigned int found_extent_tree:1; unsigned int full_backref:1; unsigned int found_ref:1; unsigned int broken:1; }; struct data_backref { struct extent_backref node; union { u64 parent; u64 root; }; u64 owner; u64 offset; u64 disk_bytenr; u64 bytes; u64 ram_bytes; u32 num_refs; u32 found_ref; }; struct tree_backref { struct extent_backref node; union { u64 parent; u64 root; }; }; struct extent_record { struct list_head backrefs; struct list_head dups; struct list_head list; struct cache_extent cache; struct btrfs_disk_key parent_key; unsigned int found_rec; u64 start; u64 max_size; u64 nr; u64 refs; u64 extent_item_refs; u64 generation; u64 parent_generation; u64 info_objectid; u64 num_duplicates; u8 info_level; unsigned int content_checked:1; unsigned int owner_ref_checked:1; unsigned int is_root:1; unsigned int metadata:1; }; struct inode_backref { struct list_head list; unsigned int found_dir_item:1; unsigned int found_dir_index:1; unsigned int found_inode_ref:1; unsigned int filetype:8; int errors; unsigned int ref_type; u64 dir; u64 index; u16 namelen; char name[0]; }; struct dropping_root_item_record { struct list_head list; struct btrfs_root_item ri; struct btrfs_key found_key; }; #define REF_ERR_NO_DIR_ITEM (1 << 0) #define REF_ERR_NO_DIR_INDEX (1 << 1) #define REF_ERR_NO_INODE_REF (1 << 2) #define REF_ERR_DUP_DIR_ITEM (1 << 3) #define REF_ERR_DUP_DIR_INDEX (1 << 4) #define REF_ERR_DUP_INODE_REF (1 << 5) #define REF_ERR_INDEX_UNMATCH (1 << 6) #define REF_ERR_FILETYPE_UNMATCH (1 << 7) #define REF_ERR_NAME_TOO_LONG (1 << 8) // 100 #define REF_ERR_NO_ROOT_REF (1 << 9) #define REF_ERR_NO_ROOT_BACKREF (1 << 10) #define REF_ERR_DUP_ROOT_REF (1 << 11) #define REF_ERR_DUP_ROOT_BACKREF (1 << 12) struct inode_record { struct list_head backrefs; unsigned int checked:1; unsigned int merging:1; unsigned int found_inode_item:1; unsigned int found_dir_item:1; unsigned int found_file_extent:1; unsigned int found_csum_item:1; unsigned int some_csum_missing:1; unsigned int nodatasum:1; int errors; u64 ino; u32 nlink; u32 imode; u64 isize; u64 nbytes; u32 found_link; u64 found_size; u64 extent_start; u64 extent_end; u64 first_extent_gap; u32 refs; }; #define I_ERR_NO_INODE_ITEM (1 << 0) #define I_ERR_NO_ORPHAN_ITEM (1 << 1) #define I_ERR_DUP_INODE_ITEM (1 << 2) #define I_ERR_DUP_DIR_INDEX (1 << 3) #define I_ERR_ODD_DIR_ITEM (1 << 4) #define I_ERR_ODD_FILE_EXTENT (1 << 5) #define I_ERR_BAD_FILE_EXTENT (1 << 6) #define I_ERR_FILE_EXTENT_OVERLAP (1 << 7) #define I_ERR_FILE_EXTENT_DISCOUNT (1 << 8) // 100 #define I_ERR_DIR_ISIZE_WRONG (1 << 9) #define I_ERR_FILE_NBYTES_WRONG (1 << 10) // 400 #define I_ERR_ODD_CSUM_ITEM (1 << 11) #define I_ERR_SOME_CSUM_MISSING (1 << 12) #define I_ERR_LINK_COUNT_WRONG (1 << 13) struct root_backref { struct list_head list; unsigned int found_dir_item:1; unsigned int found_dir_index:1; unsigned int found_back_ref:1; unsigned int found_forward_ref:1; unsigned int reachable:1; int errors; u64 ref_root; u64 dir; u64 index; u16 namelen; char name[0]; }; struct root_record { struct list_head backrefs; struct cache_extent cache; unsigned int found_root_item:1; u64 objectid; u32 found_ref; }; struct ptr_node { struct cache_extent cache; void *data; }; struct shared_node { struct cache_extent cache; struct cache_tree root_cache; struct cache_tree inode_cache; struct inode_record *current; u32 refs; }; struct block_info { u64 start; u32 size; }; struct walk_control { struct cache_tree shared; struct shared_node *nodes[BTRFS_MAX_LEVEL]; int active_node; int root_level; }; struct bad_item { struct btrfs_key key; u64 root_id; struct list_head list; }; static void reset_cached_block_groups(struct btrfs_fs_info *fs_info); static u8 imode_to_type(u32 imode) { #define S_SHIFT 12 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, }; return btrfs_type_by_mode[(imode & S_IFMT) >> S_SHIFT]; #undef S_SHIFT } static int device_record_compare(struct rb_node *node1, struct rb_node *node2) { struct device_record *rec1; struct device_record *rec2; rec1 = rb_entry(node1, struct device_record, node); rec2 = rb_entry(node2, struct device_record, node); if (rec1->devid > rec2->devid) return -1; else if (rec1->devid < rec2->devid) return 1; else return 0; } static struct inode_record *clone_inode_rec(struct inode_record *orig_rec) { struct inode_record *rec; struct inode_backref *backref; struct inode_backref *orig; size_t size; rec = malloc(sizeof(*rec)); memcpy(rec, orig_rec, sizeof(*rec)); rec->refs = 1; INIT_LIST_HEAD(&rec->backrefs); list_for_each_entry(orig, &orig_rec->backrefs, list) { size = sizeof(*orig) + orig->namelen + 1; backref = malloc(size); memcpy(backref, orig, size); list_add_tail(&backref->list, &rec->backrefs); } return rec; } static void print_inode_error(int errors) { if (errors & I_ERR_NO_INODE_ITEM) fprintf(stderr, ", no inode item"); if (errors & I_ERR_NO_ORPHAN_ITEM) fprintf(stderr, ", no orphan item"); if (errors & I_ERR_DUP_INODE_ITEM) fprintf(stderr, ", dup inode item"); if (errors & I_ERR_DUP_DIR_INDEX) fprintf(stderr, ", dup dir index"); if (errors & I_ERR_ODD_DIR_ITEM) fprintf(stderr, ", odd dir item"); if (errors & I_ERR_ODD_FILE_EXTENT) fprintf(stderr, ", odd file extent"); if (errors & I_ERR_BAD_FILE_EXTENT) fprintf(stderr, ", bad file extent"); if (errors & I_ERR_FILE_EXTENT_OVERLAP) fprintf(stderr, ", file extent overlap"); if (errors & I_ERR_FILE_EXTENT_DISCOUNT) fprintf(stderr, ", file extent discount"); if (errors & I_ERR_DIR_ISIZE_WRONG) fprintf(stderr, ", dir isize wrong"); if (errors & I_ERR_FILE_NBYTES_WRONG) fprintf(stderr, ", nbytes wrong"); if (errors & I_ERR_ODD_CSUM_ITEM) fprintf(stderr, ", odd csum item"); if (errors & I_ERR_SOME_CSUM_MISSING) fprintf(stderr, ", some csum missing"); if (errors & I_ERR_LINK_COUNT_WRONG) fprintf(stderr, ", link count wrong"); fprintf(stderr, "\n"); } static void print_ref_error(int errors) { if (errors & REF_ERR_NO_DIR_ITEM) fprintf(stderr, ", no dir item"); if (errors & REF_ERR_NO_DIR_INDEX) fprintf(stderr, ", no dir index"); if (errors & REF_ERR_NO_INODE_REF) fprintf(stderr, ", no inode ref"); if (errors & REF_ERR_DUP_DIR_ITEM) fprintf(stderr, ", dup dir item"); if (errors & REF_ERR_DUP_DIR_INDEX) fprintf(stderr, ", dup dir index"); if (errors & REF_ERR_DUP_INODE_REF) fprintf(stderr, ", dup inode ref"); if (errors & REF_ERR_INDEX_UNMATCH) fprintf(stderr, ", index unmatch"); if (errors & REF_ERR_FILETYPE_UNMATCH) fprintf(stderr, ", filetype unmatch"); if (errors & REF_ERR_NAME_TOO_LONG) fprintf(stderr, ", name too long"); if (errors & REF_ERR_NO_ROOT_REF) fprintf(stderr, ", no root ref"); if (errors & REF_ERR_NO_ROOT_BACKREF) fprintf(stderr, ", no root backref"); if (errors & REF_ERR_DUP_ROOT_REF) fprintf(stderr, ", dup root ref"); if (errors & REF_ERR_DUP_ROOT_BACKREF) fprintf(stderr, ", dup root backref"); fprintf(stderr, "\n"); } static struct inode_record *get_inode_rec(struct cache_tree *inode_cache, u64 ino, int mod) { struct ptr_node *node; struct cache_extent *cache; struct inode_record *rec = NULL; int ret; cache = lookup_cache_extent(inode_cache, ino, 1); if (cache) { node = container_of(cache, struct ptr_node, cache); rec = node->data; if (mod && rec->refs > 1) { node->data = clone_inode_rec(rec); rec->refs--; rec = node->data; } } else if (mod) { rec = calloc(1, sizeof(*rec)); rec->ino = ino; rec->extent_start = (u64)-1; rec->first_extent_gap = (u64)-1; rec->refs = 1; INIT_LIST_HEAD(&rec->backrefs); node = malloc(sizeof(*node)); node->cache.start = ino; node->cache.size = 1; node->data = rec; if (ino == BTRFS_FREE_INO_OBJECTID) rec->found_link = 1; ret = insert_cache_extent(inode_cache, &node->cache); BUG_ON(ret); } return rec; } static void free_inode_rec(struct inode_record *rec) { struct inode_backref *backref; if (--rec->refs > 0) return; while (!list_empty(&rec->backrefs)) { backref = list_entry(rec->backrefs.next, struct inode_backref, list); list_del(&backref->list); free(backref); } free(rec); } static int can_free_inode_rec(struct inode_record *rec) { if (!rec->errors && rec->checked && rec->found_inode_item && rec->nlink == rec->found_link && list_empty(&rec->backrefs)) return 1; return 0; } static void maybe_free_inode_rec(struct cache_tree *inode_cache, struct inode_record *rec) { struct cache_extent *cache; struct inode_backref *tmp, *backref; struct ptr_node *node; unsigned char filetype; if (!rec->found_inode_item) return; filetype = imode_to_type(rec->imode); list_for_each_entry_safe(backref, tmp, &rec->backrefs, list) { if (backref->found_dir_item && backref->found_dir_index) { if (backref->filetype != filetype) backref->errors |= REF_ERR_FILETYPE_UNMATCH; if (!backref->errors && backref->found_inode_ref) { list_del(&backref->list); free(backref); } } } if (!rec->checked || rec->merging) return; if (S_ISDIR(rec->imode)) { if (rec->found_size != rec->isize) rec->errors |= I_ERR_DIR_ISIZE_WRONG; if (rec->found_file_extent) rec->errors |= I_ERR_ODD_FILE_EXTENT; } else if (S_ISREG(rec->imode) || S_ISLNK(rec->imode)) { if (rec->found_dir_item) rec->errors |= I_ERR_ODD_DIR_ITEM; if (rec->found_size != rec->nbytes) rec->errors |= I_ERR_FILE_NBYTES_WRONG; if (rec->extent_start == (u64)-1 || rec->extent_start > 0) rec->first_extent_gap = 0; if (rec->nlink > 0 && !no_holes && (rec->extent_end < rec->isize || rec->first_extent_gap < rec->isize)) rec->errors |= I_ERR_FILE_EXTENT_DISCOUNT; } if (S_ISREG(rec->imode) || S_ISLNK(rec->imode)) { if (rec->found_csum_item && rec->nodatasum) rec->errors |= I_ERR_ODD_CSUM_ITEM; if (rec->some_csum_missing && !rec->nodatasum) rec->errors |= I_ERR_SOME_CSUM_MISSING; } BUG_ON(rec->refs != 1); if (can_free_inode_rec(rec)) { cache = lookup_cache_extent(inode_cache, rec->ino, 1); node = container_of(cache, struct ptr_node, cache); BUG_ON(node->data != rec); remove_cache_extent(inode_cache, &node->cache); free(node); free_inode_rec(rec); } } static int check_orphan_item(struct btrfs_root *root, u64 ino) { struct btrfs_path path; struct btrfs_key key; int ret; key.objectid = BTRFS_ORPHAN_OBJECTID; key.type = BTRFS_ORPHAN_ITEM_KEY; key.offset = ino; btrfs_init_path(&path); ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); btrfs_release_path(&path); if (ret > 0) ret = -ENOENT; return ret; } static int process_inode_item(struct extent_buffer *eb, int slot, struct btrfs_key *key, struct shared_node *active_node) { struct inode_record *rec; struct btrfs_inode_item *item; rec = active_node->current; BUG_ON(rec->ino != key->objectid || rec->refs > 1); if (rec->found_inode_item) { rec->errors |= I_ERR_DUP_INODE_ITEM; return 1; } item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); rec->nlink = btrfs_inode_nlink(eb, item); rec->isize = btrfs_inode_size(eb, item); rec->nbytes = btrfs_inode_nbytes(eb, item); rec->imode = btrfs_inode_mode(eb, item); if (btrfs_inode_flags(eb, item) & BTRFS_INODE_NODATASUM) rec->nodatasum = 1; rec->found_inode_item = 1; if (rec->nlink == 0) rec->errors |= I_ERR_NO_ORPHAN_ITEM; maybe_free_inode_rec(&active_node->inode_cache, rec); return 0; } static struct inode_backref *get_inode_backref(struct inode_record *rec, const char *name, int namelen, u64 dir) { struct inode_backref *backref; list_for_each_entry(backref, &rec->backrefs, list) { if (backref->dir != dir || backref->namelen != namelen) continue; if (memcmp(name, backref->name, namelen)) continue; return backref; } backref = malloc(sizeof(*backref) + namelen + 1); memset(backref, 0, sizeof(*backref)); backref->dir = dir; backref->namelen = namelen; memcpy(backref->name, name, namelen); backref->name[namelen] = '\0'; list_add_tail(&backref->list, &rec->backrefs); return backref; } static int add_inode_backref(struct cache_tree *inode_cache, u64 ino, u64 dir, u64 index, const char *name, int namelen, int filetype, int itemtype, int errors) { struct inode_record *rec; struct inode_backref *backref; rec = get_inode_rec(inode_cache, ino, 1); backref = get_inode_backref(rec, name, namelen, dir); if (errors) backref->errors |= errors; if (itemtype == BTRFS_DIR_INDEX_KEY) { if (backref->found_dir_index) backref->errors |= REF_ERR_DUP_DIR_INDEX; if (backref->found_inode_ref && backref->index != index) backref->errors |= REF_ERR_INDEX_UNMATCH; if (backref->found_dir_item && backref->filetype != filetype) backref->errors |= REF_ERR_FILETYPE_UNMATCH; backref->index = index; backref->filetype = filetype; backref->found_dir_index = 1; } else if (itemtype == BTRFS_DIR_ITEM_KEY) { rec->found_link++; if (backref->found_dir_item) backref->errors |= REF_ERR_DUP_DIR_ITEM; if (backref->found_dir_index && backref->filetype != filetype) backref->errors |= REF_ERR_FILETYPE_UNMATCH; backref->filetype = filetype; backref->found_dir_item = 1; } else if ((itemtype == BTRFS_INODE_REF_KEY) || (itemtype == BTRFS_INODE_EXTREF_KEY)) { if (backref->found_inode_ref) backref->errors |= REF_ERR_DUP_INODE_REF; if (backref->found_dir_index && backref->index != index) backref->errors |= REF_ERR_INDEX_UNMATCH; backref->ref_type = itemtype; backref->index = index; backref->found_inode_ref = 1; } else { BUG_ON(1); } maybe_free_inode_rec(inode_cache, rec); return 0; } static int merge_inode_recs(struct inode_record *src, struct inode_record *dst, struct cache_tree *dst_cache) { struct inode_backref *backref; u32 dir_count = 0; dst->merging = 1; list_for_each_entry(backref, &src->backrefs, list) { if (backref->found_dir_index) { add_inode_backref(dst_cache, dst->ino, backref->dir, backref->index, backref->name, backref->namelen, backref->filetype, BTRFS_DIR_INDEX_KEY, backref->errors); } if (backref->found_dir_item) { dir_count++; add_inode_backref(dst_cache, dst->ino, backref->dir, 0, backref->name, backref->namelen, backref->filetype, BTRFS_DIR_ITEM_KEY, backref->errors); } if (backref->found_inode_ref) { add_inode_backref(dst_cache, dst->ino, backref->dir, backref->index, backref->name, backref->namelen, 0, backref->ref_type, backref->errors); } } if (src->found_dir_item) dst->found_dir_item = 1; if (src->found_file_extent) dst->found_file_extent = 1; if (src->found_csum_item) dst->found_csum_item = 1; if (src->some_csum_missing) dst->some_csum_missing = 1; if (dst->first_extent_gap > src->first_extent_gap) dst->first_extent_gap = src->first_extent_gap; BUG_ON(src->found_link < dir_count); dst->found_link += src->found_link - dir_count; dst->found_size += src->found_size; if (src->extent_start != (u64)-1) { if (dst->extent_start == (u64)-1) { dst->extent_start = src->extent_start; dst->extent_end = src->extent_end; } else { if (dst->extent_end > src->extent_start) dst->errors |= I_ERR_FILE_EXTENT_OVERLAP; else if (dst->extent_end < src->extent_start && dst->extent_end < dst->first_extent_gap) dst->first_extent_gap = dst->extent_end; if (dst->extent_end < src->extent_end) dst->extent_end = src->extent_end; } } dst->errors |= src->errors; if (src->found_inode_item) { if (!dst->found_inode_item) { dst->nlink = src->nlink; dst->isize = src->isize; dst->nbytes = src->nbytes; dst->imode = src->imode; dst->nodatasum = src->nodatasum; dst->found_inode_item = 1; } else { dst->errors |= I_ERR_DUP_INODE_ITEM; } } dst->merging = 0; return 0; } static int splice_shared_node(struct shared_node *src_node, struct shared_node *dst_node) { struct cache_extent *cache; struct ptr_node *node, *ins; struct cache_tree *src, *dst; struct inode_record *rec, *conflict; u64 current_ino = 0; int splice = 0; int ret; if (--src_node->refs == 0) splice = 1; if (src_node->current) current_ino = src_node->current->ino; src = &src_node->root_cache; dst = &dst_node->root_cache; again: cache = search_cache_extent(src, 0); while (cache) { node = container_of(cache, struct ptr_node, cache); rec = node->data; cache = next_cache_extent(cache); if (splice) { remove_cache_extent(src, &node->cache); ins = node; } else { ins = malloc(sizeof(*ins)); ins->cache.start = node->cache.start; ins->cache.size = node->cache.size; ins->data = rec; rec->refs++; } ret = insert_cache_extent(dst, &ins->cache); if (ret == -EEXIST) { conflict = get_inode_rec(dst, rec->ino, 1); merge_inode_recs(rec, conflict, dst); if (rec->checked) { conflict->checked = 1; if (dst_node->current == conflict) dst_node->current = NULL; } maybe_free_inode_rec(dst, conflict); free_inode_rec(rec); free(ins); } else { BUG_ON(ret); } } if (src == &src_node->root_cache) { src = &src_node->inode_cache; dst = &dst_node->inode_cache; goto again; } if (current_ino > 0 && (!dst_node->current || current_ino > dst_node->current->ino)) { if (dst_node->current) { dst_node->current->checked = 1; maybe_free_inode_rec(dst, dst_node->current); } dst_node->current = get_inode_rec(dst, current_ino, 1); } return 0; } static void free_inode_ptr(struct cache_extent *cache) { struct ptr_node *node; struct inode_record *rec; node = container_of(cache, struct ptr_node, cache); rec = node->data; free_inode_rec(rec); free(node); } FREE_EXTENT_CACHE_BASED_TREE(inode_recs, free_inode_ptr); static struct shared_node *find_shared_node(struct cache_tree *shared, u64 bytenr) { struct cache_extent *cache; struct shared_node *node; cache = lookup_cache_extent(shared, bytenr, 1); if (cache) { node = container_of(cache, struct shared_node, cache); return node; } return NULL; } static int add_shared_node(struct cache_tree *shared, u64 bytenr, u32 refs) { int ret; struct shared_node *node; node = calloc(1, sizeof(*node)); node->cache.start = bytenr; node->cache.size = 1; cache_tree_init(&node->root_cache); cache_tree_init(&node->inode_cache); node->refs = refs; ret = insert_cache_extent(shared, &node->cache); BUG_ON(ret); return 0; } static int enter_shared_node(struct btrfs_root *root, u64 bytenr, u32 refs, struct walk_control *wc, int level) { struct shared_node *node; struct shared_node *dest; if (level == wc->active_node) return 0; BUG_ON(wc->active_node <= level); node = find_shared_node(&wc->shared, bytenr); if (!node) { add_shared_node(&wc->shared, bytenr, refs); node = find_shared_node(&wc->shared, bytenr); wc->nodes[level] = node; wc->active_node = level; return 0; } if (wc->root_level == wc->active_node && btrfs_root_refs(&root->root_item) == 0) { if (--node->refs == 0) { free_inode_recs_tree(&node->root_cache); free_inode_recs_tree(&node->inode_cache); remove_cache_extent(&wc->shared, &node->cache); free(node); } return 1; } dest = wc->nodes[wc->active_node]; splice_shared_node(node, dest); if (node->refs == 0) { remove_cache_extent(&wc->shared, &node->cache); free(node); } return 1; } static int leave_shared_node(struct btrfs_root *root, struct walk_control *wc, int level) { struct shared_node *node; struct shared_node *dest; int i; if (level == wc->root_level) return 0; for (i = level + 1; i < BTRFS_MAX_LEVEL; i++) { if (wc->nodes[i]) break; } BUG_ON(i >= BTRFS_MAX_LEVEL); node = wc->nodes[wc->active_node]; wc->nodes[wc->active_node] = NULL; wc->active_node = i; dest = wc->nodes[wc->active_node]; if (wc->active_node < wc->root_level || btrfs_root_refs(&root->root_item) > 0) { BUG_ON(node->refs <= 1); splice_shared_node(node, dest); } else { BUG_ON(node->refs < 2); node->refs--; } return 0; } static int is_child_root(struct btrfs_root *root, u64 parent_root_id, u64 child_root_id) { struct btrfs_path path; struct btrfs_key key; struct extent_buffer *leaf; int has_parent = 0; int ret; btrfs_init_path(&path); key.objectid = parent_root_id; key.type = BTRFS_ROOT_REF_KEY; key.offset = child_root_id; ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, &path, 0, 0); BUG_ON(ret < 0); btrfs_release_path(&path); if (!ret) return 1; key.objectid = child_root_id; key.type = BTRFS_ROOT_BACKREF_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, &path, 0, 0); BUG_ON(ret <= 0); while (1) { leaf = path.nodes[0]; if (path.slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root->fs_info->tree_root, &path); BUG_ON(ret < 0); if (ret > 0) break; leaf = path.nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.objectid != child_root_id || key.type != BTRFS_ROOT_BACKREF_KEY) break; has_parent = 1; if (key.offset == parent_root_id) { btrfs_release_path(&path); return 1; } path.slots[0]++; } btrfs_release_path(&path); return has_parent? 0 : -1; } static int process_dir_item(struct btrfs_root *root, struct extent_buffer *eb, int slot, struct btrfs_key *key, struct shared_node *active_node) { u32 total; u32 cur = 0; u32 len; u32 name_len; u32 data_len; int error; int nritems = 0; int filetype; struct btrfs_dir_item *di; struct inode_record *rec; struct cache_tree *root_cache; struct cache_tree *inode_cache; struct btrfs_key location; char namebuf[BTRFS_NAME_LEN]; root_cache = &active_node->root_cache; inode_cache = &active_node->inode_cache; rec = active_node->current; rec->found_dir_item = 1; di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); total = btrfs_item_size_nr(eb, slot); while (cur < total) { nritems++; btrfs_dir_item_key_to_cpu(eb, di, &location); name_len = btrfs_dir_name_len(eb, di); data_len = btrfs_dir_data_len(eb, di); filetype = btrfs_dir_type(eb, di); rec->found_size += name_len; if (name_len <= BTRFS_NAME_LEN) { len = name_len; error = 0; } else { len = BTRFS_NAME_LEN; error = REF_ERR_NAME_TOO_LONG; } read_extent_buffer(eb, namebuf, (unsigned long)(di + 1), len); if (location.type == BTRFS_INODE_ITEM_KEY) { add_inode_backref(inode_cache, location.objectid, key->objectid, key->offset, namebuf, len, filetype, key->type, error); } else if (location.type == BTRFS_ROOT_ITEM_KEY) { add_inode_backref(root_cache, location.objectid, key->objectid, key->offset, namebuf, len, filetype, key->type, error); } else { fprintf(stderr, "warning line %d\n", __LINE__); } len = sizeof(*di) + name_len + data_len; di = (struct btrfs_dir_item *)((char *)di + len); cur += len; } if (key->type == BTRFS_DIR_INDEX_KEY && nritems > 1) rec->errors |= I_ERR_DUP_DIR_INDEX; return 0; } static int process_inode_ref(struct extent_buffer *eb, int slot, struct btrfs_key *key, struct shared_node *active_node) { u32 total; u32 cur = 0; u32 len; u32 name_len; u64 index; int error; struct cache_tree *inode_cache; struct btrfs_inode_ref *ref; char namebuf[BTRFS_NAME_LEN]; inode_cache = &active_node->inode_cache; ref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); total = btrfs_item_size_nr(eb, slot); while (cur < total) { name_len = btrfs_inode_ref_name_len(eb, ref); index = btrfs_inode_ref_index(eb, ref); if (name_len <= BTRFS_NAME_LEN) { len = name_len; error = 0; } else { len = BTRFS_NAME_LEN; error = REF_ERR_NAME_TOO_LONG; } read_extent_buffer(eb, namebuf, (unsigned long)(ref + 1), len); add_inode_backref(inode_cache, key->objectid, key->offset, index, namebuf, len, 0, key->type, error); len = sizeof(*ref) + name_len; ref = (struct btrfs_inode_ref *)((char *)ref + len); cur += len; } return 0; } static int process_inode_extref(struct extent_buffer *eb, int slot, struct btrfs_key *key, struct shared_node *active_node) { u32 total; u32 cur = 0; u32 len; u32 name_len; u64 index; u64 parent; int error; struct cache_tree *inode_cache; struct btrfs_inode_extref *extref; char namebuf[BTRFS_NAME_LEN]; inode_cache = &active_node->inode_cache; extref = btrfs_item_ptr(eb, slot, struct btrfs_inode_extref); total = btrfs_item_size_nr(eb, slot); while (cur < total) { name_len = btrfs_inode_extref_name_len(eb, extref); index = btrfs_inode_extref_index(eb, extref); parent = btrfs_inode_extref_parent(eb, extref); if (name_len <= BTRFS_NAME_LEN) { len = name_len; error = 0; } else { len = BTRFS_NAME_LEN; error = REF_ERR_NAME_TOO_LONG; } read_extent_buffer(eb, namebuf, (unsigned long)(extref + 1), len); add_inode_backref(inode_cache, key->objectid, parent, index, namebuf, len, 0, key->type, error); len = sizeof(*extref) + name_len; extref = (struct btrfs_inode_extref *)((char *)extref + len); cur += len; } return 0; } static u64 count_csum_range(struct btrfs_root *root, u64 start, u64 len) { struct btrfs_key key; struct btrfs_path path; struct extent_buffer *leaf; int ret ; size_t size; u64 found = 0; u64 csum_end; u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); btrfs_init_path(&path); key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; key.offset = start; key.type = BTRFS_EXTENT_CSUM_KEY; ret = btrfs_search_slot(NULL, root->fs_info->csum_root, &key, &path, 0, 0); BUG_ON(ret < 0); if (ret > 0 && path.slots[0] > 0) { leaf = path.nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path.slots[0] - 1); if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && key.type == BTRFS_EXTENT_CSUM_KEY) path.slots[0]--; } while (len > 0) { leaf = path.nodes[0]; if (path.slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root->fs_info->csum_root, &path); BUG_ON(ret < 0); if (ret > 0) break; leaf = path.nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || key.type != BTRFS_EXTENT_CSUM_KEY) break; btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.offset >= start + len) break; if (key.offset > start) start = key.offset; size = btrfs_item_size_nr(leaf, path.slots[0]); csum_end = key.offset + (size / csum_size) * root->sectorsize; if (csum_end > start) { size = min(csum_end - start, len); len -= size; start += size; found += size; } path.slots[0]++; } btrfs_release_path(&path); return found; } static int process_file_extent(struct btrfs_root *root, struct extent_buffer *eb, int slot, struct btrfs_key *key, struct shared_node *active_node) { struct inode_record *rec; struct btrfs_file_extent_item *fi; u64 num_bytes = 0; u64 disk_bytenr = 0; u64 extent_offset = 0; u64 mask = root->sectorsize - 1; int extent_type; rec = active_node->current; BUG_ON(rec->ino != key->objectid || rec->refs > 1); rec->found_file_extent = 1; if (rec->extent_start == (u64)-1) { rec->extent_start = key->offset; rec->extent_end = key->offset; } if (rec->extent_end > key->offset) rec->errors |= I_ERR_FILE_EXTENT_OVERLAP; else if (rec->extent_end < key->offset && rec->extent_end < rec->first_extent_gap) rec->first_extent_gap = rec->extent_end; fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); extent_type = btrfs_file_extent_type(eb, fi); if (extent_type == BTRFS_FILE_EXTENT_INLINE) { num_bytes = btrfs_file_extent_inline_len(eb, fi); if (num_bytes == 0) rec->errors |= I_ERR_BAD_FILE_EXTENT; rec->found_size += num_bytes; num_bytes = (num_bytes + mask) & ~mask; } else if (extent_type == BTRFS_FILE_EXTENT_REG || extent_type == BTRFS_FILE_EXTENT_PREALLOC) { num_bytes = btrfs_file_extent_num_bytes(eb, fi); disk_bytenr = btrfs_file_extent_disk_bytenr(eb, fi); extent_offset = btrfs_file_extent_offset(eb, fi); if (num_bytes == 0 || (num_bytes & mask)) rec->errors |= I_ERR_BAD_FILE_EXTENT; if (num_bytes + extent_offset > btrfs_file_extent_ram_bytes(eb, fi)) rec->errors |= I_ERR_BAD_FILE_EXTENT; if (extent_type == BTRFS_FILE_EXTENT_PREALLOC && (btrfs_file_extent_compression(eb, fi) || btrfs_file_extent_encryption(eb, fi) || btrfs_file_extent_other_encoding(eb, fi))) rec->errors |= I_ERR_BAD_FILE_EXTENT; if (disk_bytenr > 0) rec->found_size += num_bytes; } else { rec->errors |= I_ERR_BAD_FILE_EXTENT; } rec->extent_end = key->offset + num_bytes; if (disk_bytenr > 0) { u64 found; if (btrfs_file_extent_compression(eb, fi)) num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); else disk_bytenr += extent_offset; found = count_csum_range(root, disk_bytenr, num_bytes); if (extent_type == BTRFS_FILE_EXTENT_REG) { if (found > 0) rec->found_csum_item = 1; if (found < num_bytes) rec->some_csum_missing = 1; } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { if (found > 0) rec->errors |= I_ERR_ODD_CSUM_ITEM; } } return 0; } static int process_one_leaf(struct btrfs_root *root, struct extent_buffer *eb, struct walk_control *wc) { struct btrfs_key key; u32 nritems; int i; int ret = 0; int error = 0; struct cache_tree *inode_cache; struct shared_node *active_node; if (wc->root_level == wc->active_node && btrfs_root_refs(&root->root_item) == 0) return 0; active_node = wc->nodes[wc->active_node]; inode_cache = &active_node->inode_cache; nritems = btrfs_header_nritems(eb); for (i = 0; i < nritems; i++) { btrfs_item_key_to_cpu(eb, &key, i); if (key.objectid == BTRFS_FREE_SPACE_OBJECTID) continue; if (key.type == BTRFS_ORPHAN_ITEM_KEY) continue; if (active_node->current == NULL || active_node->current->ino < key.objectid) { if (active_node->current) { active_node->current->checked = 1; maybe_free_inode_rec(inode_cache, active_node->current); } active_node->current = get_inode_rec(inode_cache, key.objectid, 1); } switch (key.type) { case BTRFS_DIR_ITEM_KEY: case BTRFS_DIR_INDEX_KEY: ret = process_dir_item(root, eb, i, &key, active_node); break; case BTRFS_INODE_REF_KEY: ret = process_inode_ref(eb, i, &key, active_node); break; case BTRFS_INODE_EXTREF_KEY: ret = process_inode_extref(eb, i, &key, active_node); break; case BTRFS_INODE_ITEM_KEY: ret = process_inode_item(eb, i, &key, active_node); break; case BTRFS_EXTENT_DATA_KEY: ret = process_file_extent(root, eb, i, &key, active_node); break; default: break; }; if (ret != 0) error = 1; } return error; } static void reada_walk_down(struct btrfs_root *root, struct extent_buffer *node, int slot) { u64 bytenr; u64 ptr_gen; u32 nritems; u32 blocksize; int i; int ret; int level; level = btrfs_header_level(node); if (level != 1) return; nritems = btrfs_header_nritems(node); blocksize = btrfs_level_size(root, level - 1); for (i = slot; i < nritems; i++) { bytenr = btrfs_node_blockptr(node, i); ptr_gen = btrfs_node_ptr_generation(node, i); ret = readahead_tree_block(root, bytenr, blocksize, ptr_gen); if (ret) break; } } static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path, struct walk_control *wc, int *level) { u64 bytenr; u64 ptr_gen; struct extent_buffer *next; struct extent_buffer *cur; u32 blocksize; int ret, err = 0; u64 refs; WARN_ON(*level < 0); WARN_ON(*level >= BTRFS_MAX_LEVEL); ret = btrfs_lookup_extent_info(NULL, root, path->nodes[*level]->start, *level, 1, &refs, NULL); if (ret < 0) { err = ret; goto out; } if (refs > 1) { ret = enter_shared_node(root, path->nodes[*level]->start, refs, wc, *level); if (ret > 0) { err = ret; goto out; } } while (*level >= 0) { WARN_ON(*level < 0); WARN_ON(*level >= BTRFS_MAX_LEVEL); cur = path->nodes[*level]; if (btrfs_header_level(cur) != *level) WARN_ON(1); if (path->slots[*level] >= btrfs_header_nritems(cur)) break; if (*level == 0) { ret = process_one_leaf(root, cur, wc); break; } bytenr = btrfs_node_blockptr(cur, path->slots[*level]); ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); blocksize = btrfs_level_size(root, *level - 1); ret = btrfs_lookup_extent_info(NULL, root, bytenr, *level - 1, 1, &refs, NULL); if (ret < 0) refs = 0; if (refs > 1) { ret = enter_shared_node(root, bytenr, refs, wc, *level - 1); if (ret > 0) { path->slots[*level]++; continue; } } next = btrfs_find_tree_block(root, bytenr, blocksize); if (!next || !btrfs_buffer_uptodate(next, ptr_gen)) { free_extent_buffer(next); reada_walk_down(root, cur, path->slots[*level]); next = read_tree_block(root, bytenr, blocksize, ptr_gen); if (!next) { err = -EIO; goto out; } } *level = *level - 1; free_extent_buffer(path->nodes[*level]); path->nodes[*level] = next; path->slots[*level] = 0; } out: path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); return err; } static int walk_up_tree(struct btrfs_root *root, struct btrfs_path *path, struct walk_control *wc, int *level) { int i; struct extent_buffer *leaf; for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { leaf = path->nodes[i]; if (path->slots[i] + 1 < btrfs_header_nritems(leaf)) { path->slots[i]++; *level = i; return 0; } else { free_extent_buffer(path->nodes[*level]); path->nodes[*level] = NULL; BUG_ON(*level > wc->active_node); if (*level == wc->active_node) leave_shared_node(root, wc, *level); *level = i + 1; } } return 1; } static int check_root_dir(struct inode_record *rec) { struct inode_backref *backref; int ret = -1; if (!rec->found_inode_item || rec->errors) goto out; if (rec->nlink != 1 || rec->found_link != 0) goto out; if (list_empty(&rec->backrefs)) goto out; backref = list_entry(rec->backrefs.next, struct inode_backref, list); if (!backref->found_inode_ref) goto out; if (backref->index != 0 || backref->namelen != 2 || memcmp(backref->name, "..", 2)) goto out; if (backref->found_dir_index || backref->found_dir_item) goto out; ret = 0; out: return ret; } static int repair_inode_isize(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct inode_record *rec) { struct btrfs_inode_item *ei; struct btrfs_key key; int ret; key.objectid = rec->ino; key.type = BTRFS_INODE_ITEM_KEY; key.offset = (u64)-1; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret < 0) goto out; if (ret) { if (!path->slots[0]) { ret = -ENOENT; goto out; } path->slots[0]--; ret = 0; } btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.objectid != rec->ino) { ret = -ENOENT; goto out; } ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_inode_item); btrfs_set_inode_size(path->nodes[0], ei, rec->found_size); btrfs_mark_buffer_dirty(path->nodes[0]); rec->errors &= ~I_ERR_DIR_ISIZE_WRONG; printf("reset isize for dir %Lu root %Lu\n", rec->ino, root->root_key.objectid); out: btrfs_release_path(path); return ret; } static int repair_inode_orphan_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct inode_record *rec) { struct btrfs_key key; int ret; key.objectid = BTRFS_ORPHAN_OBJECTID; key.type = BTRFS_ORPHAN_ITEM_KEY; key.offset = rec->ino; ret = btrfs_insert_empty_item(trans, root, path, &key, 0); btrfs_release_path(path); if (!ret) rec->errors &= ~I_ERR_NO_ORPHAN_ITEM; return ret; } static int try_repair_inode(struct btrfs_root *root, struct inode_record *rec) { struct btrfs_trans_handle *trans; struct btrfs_path *path; int ret = 0; /* So far we just fix dir isize wrong */ if (!(rec->errors & (I_ERR_DIR_ISIZE_WRONG | I_ERR_NO_ORPHAN_ITEM))) return 1; path = btrfs_alloc_path(); if (!path) return -ENOMEM; trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { btrfs_free_path(path); return PTR_ERR(trans); } if (rec->errors & I_ERR_DIR_ISIZE_WRONG) ret = repair_inode_isize(trans, root, path, rec); if (!ret && rec->errors & I_ERR_NO_ORPHAN_ITEM) ret = repair_inode_orphan_item(trans, root, path, rec); btrfs_commit_transaction(trans, root); btrfs_free_path(path); return ret; } static int check_inode_recs(struct btrfs_root *root, struct cache_tree *inode_cache) { struct cache_extent *cache; struct ptr_node *node; struct inode_record *rec; struct inode_backref *backref; int ret; u64 error = 0; u64 root_dirid = btrfs_root_dirid(&root->root_item); if (btrfs_root_refs(&root->root_item) == 0) { if (!cache_tree_empty(inode_cache)) fprintf(stderr, "warning line %d\n", __LINE__); return 0; } rec = get_inode_rec(inode_cache, root_dirid, 0); if (rec) { ret = check_root_dir(rec); if (ret) { fprintf(stderr, "root %llu root dir %llu error\n", (unsigned long long)root->root_key.objectid, (unsigned long long)root_dirid); error++; } } else { fprintf(stderr, "root %llu root dir %llu not found\n", (unsigned long long)root->root_key.objectid, (unsigned long long)root_dirid); } while (1) { cache = search_cache_extent(inode_cache, 0); if (!cache) break; node = container_of(cache, struct ptr_node, cache); rec = node->data; remove_cache_extent(inode_cache, &node->cache); free(node); if (rec->ino == root_dirid || rec->ino == BTRFS_ORPHAN_OBJECTID) { free_inode_rec(rec); continue; } if (rec->errors & I_ERR_NO_ORPHAN_ITEM) { ret = check_orphan_item(root, rec->ino); if (ret == 0) rec->errors &= ~I_ERR_NO_ORPHAN_ITEM; if (can_free_inode_rec(rec)) { free_inode_rec(rec); continue; } } if (repair) { ret = try_repair_inode(root, rec); if (ret == 0 && can_free_inode_rec(rec)) { free_inode_rec(rec); continue; } ret = 0; } error++; if (!rec->found_inode_item) rec->errors |= I_ERR_NO_INODE_ITEM; if (rec->found_link != rec->nlink) rec->errors |= I_ERR_LINK_COUNT_WRONG; fprintf(stderr, "root %llu inode %llu errors %x", (unsigned long long) root->root_key.objectid, (unsigned long long) rec->ino, rec->errors); print_inode_error(rec->errors); list_for_each_entry(backref, &rec->backrefs, list) { if (!backref->found_dir_item) backref->errors |= REF_ERR_NO_DIR_ITEM; if (!backref->found_dir_index) backref->errors |= REF_ERR_NO_DIR_INDEX; if (!backref->found_inode_ref) backref->errors |= REF_ERR_NO_INODE_REF; fprintf(stderr, "\tunresolved ref dir %llu index %llu" " namelen %u name %s filetype %d error %x", (unsigned long long)backref->dir, (unsigned long long)backref->index, backref->namelen, backref->name, backref->filetype, backref->errors); print_ref_error(backref->errors); } free_inode_rec(rec); } return (error > 0) ? -1 : 0; } static struct root_record *get_root_rec(struct cache_tree *root_cache, u64 objectid) { struct cache_extent *cache; struct root_record *rec = NULL; int ret; cache = lookup_cache_extent(root_cache, objectid, 1); if (cache) { rec = container_of(cache, struct root_record, cache); } else { rec = calloc(1, sizeof(*rec)); rec->objectid = objectid; INIT_LIST_HEAD(&rec->backrefs); rec->cache.start = objectid; rec->cache.size = 1; ret = insert_cache_extent(root_cache, &rec->cache); BUG_ON(ret); } return rec; } static struct root_backref *get_root_backref(struct root_record *rec, u64 ref_root, u64 dir, u64 index, const char *name, int namelen) { struct root_backref *backref; list_for_each_entry(backref, &rec->backrefs, list) { if (backref->ref_root != ref_root || backref->dir != dir || backref->namelen != namelen) continue; if (memcmp(name, backref->name, namelen)) continue; return backref; } backref = malloc(sizeof(*backref) + namelen + 1); memset(backref, 0, sizeof(*backref)); backref->ref_root = ref_root; backref->dir = dir; backref->index = index; backref->namelen = namelen; memcpy(backref->name, name, namelen); backref->name[namelen] = '\0'; list_add_tail(&backref->list, &rec->backrefs); return backref; } static void free_root_record(struct cache_extent *cache) { struct root_record *rec; struct root_backref *backref; rec = container_of(cache, struct root_record, cache); while (!list_empty(&rec->backrefs)) { backref = list_entry(rec->backrefs.next, struct root_backref, list); list_del(&backref->list); free(backref); } kfree(rec); } FREE_EXTENT_CACHE_BASED_TREE(root_recs, free_root_record); static int add_root_backref(struct cache_tree *root_cache, u64 root_id, u64 ref_root, u64 dir, u64 index, const char *name, int namelen, int item_type, int errors) { struct root_record *rec; struct root_backref *backref; rec = get_root_rec(root_cache, root_id); backref = get_root_backref(rec, ref_root, dir, index, name, namelen); backref->errors |= errors; if (item_type != BTRFS_DIR_ITEM_KEY) { if (backref->found_dir_index || backref->found_back_ref || backref->found_forward_ref) { if (backref->index != index) backref->errors |= REF_ERR_INDEX_UNMATCH; } else { backref->index = index; } } if (item_type == BTRFS_DIR_ITEM_KEY) { if (backref->found_forward_ref) rec->found_ref++; backref->found_dir_item = 1; } else if (item_type == BTRFS_DIR_INDEX_KEY) { backref->found_dir_index = 1; } else if (item_type == BTRFS_ROOT_REF_KEY) { if (backref->found_forward_ref) backref->errors |= REF_ERR_DUP_ROOT_REF; else if (backref->found_dir_item) rec->found_ref++; backref->found_forward_ref = 1; } else if (item_type == BTRFS_ROOT_BACKREF_KEY) { if (backref->found_back_ref) backref->errors |= REF_ERR_DUP_ROOT_BACKREF; backref->found_back_ref = 1; } else { BUG_ON(1); } if (backref->found_forward_ref && backref->found_dir_item) backref->reachable = 1; return 0; } static int merge_root_recs(struct btrfs_root *root, struct cache_tree *src_cache, struct cache_tree *dst_cache) { struct cache_extent *cache; struct ptr_node *node; struct inode_record *rec; struct inode_backref *backref; if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { free_inode_recs_tree(src_cache); return 0; } while (1) { cache = search_cache_extent(src_cache, 0); if (!cache) break; node = container_of(cache, struct ptr_node, cache); rec = node->data; remove_cache_extent(src_cache, &node->cache); free(node); if (!is_child_root(root, root->objectid, rec->ino)) goto skip; list_for_each_entry(backref, &rec->backrefs, list) { BUG_ON(backref->found_inode_ref); if (backref->found_dir_item) add_root_backref(dst_cache, rec->ino, root->root_key.objectid, backref->dir, backref->index, backref->name, backref->namelen, BTRFS_DIR_ITEM_KEY, backref->errors); if (backref->found_dir_index) add_root_backref(dst_cache, rec->ino, root->root_key.objectid, backref->dir, backref->index, backref->name, backref->namelen, BTRFS_DIR_INDEX_KEY, backref->errors); } skip: free_inode_rec(rec); } return 0; } static int check_root_refs(struct btrfs_root *root, struct cache_tree *root_cache) { struct root_record *rec; struct root_record *ref_root; struct root_backref *backref; struct cache_extent *cache; int loop = 1; int ret; int error; int errors = 0; rec = get_root_rec(root_cache, BTRFS_FS_TREE_OBJECTID); rec->found_ref = 1; /* fixme: this can not detect circular references */ while (loop) { loop = 0; cache = search_cache_extent(root_cache, 0); while (1) { if (!cache) break; rec = container_of(cache, struct root_record, cache); cache = next_cache_extent(cache); if (rec->found_ref == 0) continue; list_for_each_entry(backref, &rec->backrefs, list) { if (!backref->reachable) continue; ref_root = get_root_rec(root_cache, backref->ref_root); if (ref_root->found_ref > 0) continue; backref->reachable = 0; rec->found_ref--; if (rec->found_ref == 0) loop = 1; } } } cache = search_cache_extent(root_cache, 0); while (1) { if (!cache) break; rec = container_of(cache, struct root_record, cache); cache = next_cache_extent(cache); if (rec->found_ref == 0 && rec->objectid >= BTRFS_FIRST_FREE_OBJECTID && rec->objectid <= BTRFS_LAST_FREE_OBJECTID) { ret = check_orphan_item(root->fs_info->tree_root, rec->objectid); if (ret == 0) continue; /* * If we don't have a root item then we likely just have * a dir item in a snapshot for this root but no actual * ref key or anything so it's meaningless. */ if (!rec->found_root_item) continue; errors++; fprintf(stderr, "fs tree %llu not referenced\n", (unsigned long long)rec->objectid); } error = 0; if (rec->found_ref > 0 && !rec->found_root_item) error = 1; list_for_each_entry(backref, &rec->backrefs, list) { if (!backref->found_dir_item) backref->errors |= REF_ERR_NO_DIR_ITEM; if (!backref->found_dir_index) backref->errors |= REF_ERR_NO_DIR_INDEX; if (!backref->found_back_ref) backref->errors |= REF_ERR_NO_ROOT_BACKREF; if (!backref->found_forward_ref) backref->errors |= REF_ERR_NO_ROOT_REF; if (backref->reachable && backref->errors) error = 1; } if (!error) continue; errors++; fprintf(stderr, "fs tree %llu refs %u %s\n", (unsigned long long)rec->objectid, rec->found_ref, rec->found_root_item ? "" : "not found"); list_for_each_entry(backref, &rec->backrefs, list) { if (!backref->reachable) continue; if (!backref->errors && rec->found_root_item) continue; fprintf(stderr, "\tunresolved ref root %llu dir %llu" " index %llu namelen %u name %s error %x\n", (unsigned long long)backref->ref_root, (unsigned long long)backref->dir, (unsigned long long)backref->index, backref->namelen, backref->name, backref->errors); } } return errors > 0 ? 1 : 0; } static int process_root_ref(struct extent_buffer *eb, int slot, struct btrfs_key *key, struct cache_tree *root_cache) { u64 dirid; u64 index; u32 len; u32 name_len; struct btrfs_root_ref *ref; char namebuf[BTRFS_NAME_LEN]; int error; ref = btrfs_item_ptr(eb, slot, struct btrfs_root_ref); dirid = btrfs_root_ref_dirid(eb, ref); index = btrfs_root_ref_sequence(eb, ref); name_len = btrfs_root_ref_name_len(eb, ref); if (name_len <= BTRFS_NAME_LEN) { len = name_len; error = 0; } else { len = BTRFS_NAME_LEN; error = REF_ERR_NAME_TOO_LONG; } read_extent_buffer(eb, namebuf, (unsigned long)(ref + 1), len); if (key->type == BTRFS_ROOT_REF_KEY) { add_root_backref(root_cache, key->offset, key->objectid, dirid, index, namebuf, len, key->type, error); } else { add_root_backref(root_cache, key->objectid, key->offset, dirid, index, namebuf, len, key->type, error); } return 0; } static int check_fs_root(struct btrfs_root *root, struct cache_tree *root_cache, struct walk_control *wc) { int ret = 0; int wret; int level; struct btrfs_path path; struct shared_node root_node; struct root_record *rec; struct btrfs_root_item *root_item = &root->root_item; if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { rec = get_root_rec(root_cache, root->root_key.objectid); if (btrfs_root_refs(root_item) > 0) rec->found_root_item = 1; } btrfs_init_path(&path); memset(&root_node, 0, sizeof(root_node)); cache_tree_init(&root_node.root_cache); cache_tree_init(&root_node.inode_cache); level = btrfs_header_level(root->node); memset(wc->nodes, 0, sizeof(wc->nodes)); wc->nodes[level] = &root_node; wc->active_node = level; wc->root_level = level; if (btrfs_root_refs(root_item) > 0 || btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { path.nodes[level] = root->node; extent_buffer_get(root->node); path.slots[level] = 0; } else { struct btrfs_key key; struct btrfs_disk_key found_key; btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); level = root_item->drop_level; path.lowest_level = level; wret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); BUG_ON(wret < 0); btrfs_node_key(path.nodes[level], &found_key, path.slots[level]); WARN_ON(memcmp(&found_key, &root_item->drop_progress, sizeof(found_key))); } while (1) { wret = walk_down_tree(root, &path, wc, &level); if (wret < 0) ret = wret; if (wret != 0) break; wret = walk_up_tree(root, &path, wc, &level); if (wret < 0) ret = wret; if (wret != 0) break; } btrfs_release_path(&path); merge_root_recs(root, &root_node.root_cache, root_cache); if (root_node.current) { root_node.current->checked = 1; maybe_free_inode_rec(&root_node.inode_cache, root_node.current); } ret = check_inode_recs(root, &root_node.inode_cache); return ret; } static int fs_root_objectid(u64 objectid) { if (objectid == BTRFS_FS_TREE_OBJECTID || objectid == BTRFS_TREE_RELOC_OBJECTID || objectid == BTRFS_DATA_RELOC_TREE_OBJECTID || (objectid >= BTRFS_FIRST_FREE_OBJECTID && objectid <= BTRFS_LAST_FREE_OBJECTID)) return 1; return 0; } static int check_fs_roots(struct btrfs_root *root, struct cache_tree *root_cache) { struct btrfs_path path; struct btrfs_key key; struct walk_control wc; struct extent_buffer *leaf; struct btrfs_root *tmp_root; struct btrfs_root *tree_root = root->fs_info->tree_root; int ret; int err = 0; /* * Just in case we made any changes to the extent tree that weren't * reflected into the free space cache yet. */ if (repair) reset_cached_block_groups(root->fs_info); memset(&wc, 0, sizeof(wc)); cache_tree_init(&wc.shared); btrfs_init_path(&path); key.offset = 0; key.objectid = 0; key.type = BTRFS_ROOT_ITEM_KEY; ret = btrfs_search_slot(NULL, tree_root, &key, &path, 0, 0); BUG_ON(ret < 0); while (1) { leaf = path.nodes[0]; if (path.slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(tree_root, &path); if (ret != 0) break; leaf = path.nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.type == BTRFS_ROOT_ITEM_KEY && fs_root_objectid(key.objectid)) { key.offset = (u64)-1; tmp_root = btrfs_read_fs_root(root->fs_info, &key); if (IS_ERR(tmp_root)) { err = 1; goto next; } ret = check_fs_root(tmp_root, root_cache, &wc); if (ret) err = 1; } else if (key.type == BTRFS_ROOT_REF_KEY || key.type == BTRFS_ROOT_BACKREF_KEY) { process_root_ref(leaf, path.slots[0], &key, root_cache); } next: path.slots[0]++; } btrfs_release_path(&path); if (!cache_tree_empty(&wc.shared)) fprintf(stderr, "warning line %d\n", __LINE__); return err; } static int all_backpointers_checked(struct extent_record *rec, int print_errs) { struct list_head *cur = rec->backrefs.next; struct extent_backref *back; struct tree_backref *tback; struct data_backref *dback; u64 found = 0; int err = 0; while(cur != &rec->backrefs) { back = list_entry(cur, struct extent_backref, list); cur = cur->next; if (!back->found_extent_tree) { err = 1; if (!print_errs) goto out; if (back->is_data) { dback = (struct data_backref *)back; fprintf(stderr, "Backref %llu %s %llu" " owner %llu offset %llu num_refs %lu" " not found in extent tree\n", (unsigned long long)rec->start, back->full_backref ? "parent" : "root", back->full_backref ? (unsigned long long)dback->parent: (unsigned long long)dback->root, (unsigned long long)dback->owner, (unsigned long long)dback->offset, (unsigned long)dback->num_refs); } else { tback = (struct tree_backref *)back; fprintf(stderr, "Backref %llu parent %llu" " root %llu not found in extent tree\n", (unsigned long long)rec->start, (unsigned long long)tback->parent, (unsigned long long)tback->root); } } if (!back->is_data && !back->found_ref) { err = 1; if (!print_errs) goto out; tback = (struct tree_backref *)back; fprintf(stderr, "Backref %llu %s %llu not referenced back %p\n", (unsigned long long)rec->start, back->full_backref ? "parent" : "root", back->full_backref ? (unsigned long long)tback->parent : (unsigned long long)tback->root, back); } if (back->is_data) { dback = (struct data_backref *)back; if (dback->found_ref != dback->num_refs) { err = 1; if (!print_errs) goto out; fprintf(stderr, "Incorrect local backref count" " on %llu %s %llu owner %llu" " offset %llu found %u wanted %u back %p\n", (unsigned long long)rec->start, back->full_backref ? "parent" : "root", back->full_backref ? (unsigned long long)dback->parent: (unsigned long long)dback->root, (unsigned long long)dback->owner, (unsigned long long)dback->offset, dback->found_ref, dback->num_refs, back); } if (dback->disk_bytenr != rec->start) { err = 1; if (!print_errs) goto out; fprintf(stderr, "Backref disk bytenr does not" " match extent record, bytenr=%llu, " "ref bytenr=%llu\n", (unsigned long long)rec->start, (unsigned long long)dback->disk_bytenr); } if (dback->bytes != rec->nr) { err = 1; if (!print_errs) goto out; fprintf(stderr, "Backref bytes do not match " "extent backref, bytenr=%llu, ref " "bytes=%llu, backref bytes=%llu\n", (unsigned long long)rec->start, (unsigned long long)rec->nr, (unsigned long long)dback->bytes); } } if (!back->is_data) { found += 1; } else { dback = (struct data_backref *)back; found += dback->found_ref; } } if (found != rec->refs) { err = 1; if (!print_errs) goto out; fprintf(stderr, "Incorrect global backref count " "on %llu found %llu wanted %llu\n", (unsigned long long)rec->start, (unsigned long long)found, (unsigned long long)rec->refs); } out: return err; } static int free_all_extent_backrefs(struct extent_record *rec) { struct extent_backref *back; struct list_head *cur; while (!list_empty(&rec->backrefs)) { cur = rec->backrefs.next; back = list_entry(cur, struct extent_backref, list); list_del(cur); free(back); } return 0; } static void free_extent_record_cache(struct btrfs_fs_info *fs_info, struct cache_tree *extent_cache) { struct cache_extent *cache; struct extent_record *rec; while (1) { cache = first_cache_extent(extent_cache); if (!cache) break; rec = container_of(cache, struct extent_record, cache); btrfs_unpin_extent(fs_info, rec->start, rec->max_size); remove_cache_extent(extent_cache, cache); free_all_extent_backrefs(rec); free(rec); } } static int maybe_free_extent_rec(struct cache_tree *extent_cache, struct extent_record *rec) { if (rec->content_checked && rec->owner_ref_checked && rec->extent_item_refs == rec->refs && rec->refs > 0 && rec->num_duplicates == 0 && !all_backpointers_checked(rec, 0)) { remove_cache_extent(extent_cache, &rec->cache); free_all_extent_backrefs(rec); list_del_init(&rec->list); free(rec); } return 0; } static int check_owner_ref(struct btrfs_root *root, struct extent_record *rec, struct extent_buffer *buf) { struct extent_backref *node; struct tree_backref *back; struct btrfs_root *ref_root; struct btrfs_key key; struct btrfs_path path; struct extent_buffer *parent; int level; int found = 0; int ret; list_for_each_entry(node, &rec->backrefs, list) { if (node->is_data) continue; if (!node->found_ref) continue; if (node->full_backref) continue; back = (struct tree_backref *)node; if (btrfs_header_owner(buf) == back->root) return 0; } BUG_ON(rec->is_root); /* try to find the block by search corresponding fs tree */ key.objectid = btrfs_header_owner(buf); key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; ref_root = btrfs_read_fs_root(root->fs_info, &key); if (IS_ERR(ref_root)) return 1; level = btrfs_header_level(buf); if (level == 0) btrfs_item_key_to_cpu(buf, &key, 0); else btrfs_node_key_to_cpu(buf, &key, 0); btrfs_init_path(&path); path.lowest_level = level + 1; ret = btrfs_search_slot(NULL, ref_root, &key, &path, 0, 0); if (ret < 0) return 0; parent = path.nodes[level + 1]; if (parent && buf->start == btrfs_node_blockptr(parent, path.slots[level + 1])) found = 1; btrfs_release_path(&path); return found ? 0 : 1; } static int is_extent_tree_record(struct extent_record *rec) { struct list_head *cur = rec->backrefs.next; struct extent_backref *node; struct tree_backref *back; int is_extent = 0; while(cur != &rec->backrefs) { node = list_entry(cur, struct extent_backref, list); cur = cur->next; if (node->is_data) return 0; back = (struct tree_backref *)node; if (node->full_backref) return 0; if (back->root == BTRFS_EXTENT_TREE_OBJECTID) is_extent = 1; } return is_extent; } static int record_bad_block_io(struct btrfs_fs_info *info, struct cache_tree *extent_cache, u64 start, u64 len) { struct extent_record *rec; struct cache_extent *cache; struct btrfs_key key; cache = lookup_cache_extent(extent_cache, start, len); if (!cache) return 0; rec = container_of(cache, struct extent_record, cache); if (!is_extent_tree_record(rec)) return 0; btrfs_disk_key_to_cpu(&key, &rec->parent_key); return btrfs_add_corrupt_extent_record(info, &key, start, len, 0); } static int swap_values(struct btrfs_root *root, struct btrfs_path *path, struct extent_buffer *buf, int slot) { if (btrfs_header_level(buf)) { struct btrfs_key_ptr ptr1, ptr2; read_extent_buffer(buf, &ptr1, btrfs_node_key_ptr_offset(slot), sizeof(struct btrfs_key_ptr)); read_extent_buffer(buf, &ptr2, btrfs_node_key_ptr_offset(slot + 1), sizeof(struct btrfs_key_ptr)); write_extent_buffer(buf, &ptr1, btrfs_node_key_ptr_offset(slot + 1), sizeof(struct btrfs_key_ptr)); write_extent_buffer(buf, &ptr2, btrfs_node_key_ptr_offset(slot), sizeof(struct btrfs_key_ptr)); if (slot == 0) { struct btrfs_disk_key key; btrfs_node_key(buf, &key, 0); btrfs_fixup_low_keys(root, path, &key, btrfs_header_level(buf) + 1); } } else { struct btrfs_item *item1, *item2; struct btrfs_key k1, k2; char *item1_data, *item2_data; u32 item1_offset, item2_offset, item1_size, item2_size; item1 = btrfs_item_nr(slot); item2 = btrfs_item_nr(slot + 1); btrfs_item_key_to_cpu(buf, &k1, slot); btrfs_item_key_to_cpu(buf, &k2, slot + 1); item1_offset = btrfs_item_offset(buf, item1); item2_offset = btrfs_item_offset(buf, item2); item1_size = btrfs_item_size(buf, item1); item2_size = btrfs_item_size(buf, item2); item1_data = malloc(item1_size); if (!item1_data) return -ENOMEM; item2_data = malloc(item2_size); if (!item2_data) { free(item2_data); return -ENOMEM; } read_extent_buffer(buf, item1_data, item1_offset, item1_size); read_extent_buffer(buf, item2_data, item2_offset, item2_size); write_extent_buffer(buf, item1_data, item2_offset, item2_size); write_extent_buffer(buf, item2_data, item1_offset, item1_size); free(item1_data); free(item2_data); btrfs_set_item_offset(buf, item1, item2_offset); btrfs_set_item_offset(buf, item2, item1_offset); btrfs_set_item_size(buf, item1, item2_size); btrfs_set_item_size(buf, item2, item1_size); path->slots[0] = slot; btrfs_set_item_key_unsafe(root, path, &k2); path->slots[0] = slot + 1; btrfs_set_item_key_unsafe(root, path, &k1); } return 0; } /* * Attempt to fix basic block failures. Currently we only handle bad key * orders, we will cycle through the keys and swap them if necessary. */ static int try_to_fix_bad_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct btrfs_disk_key *parent_key, enum btrfs_tree_block_status status) { struct btrfs_path *path; struct btrfs_key k1, k2; int i; int ret; if (status != BTRFS_TREE_BLOCK_BAD_KEY_ORDER) return -EIO; k1.objectid = btrfs_header_owner(buf); k1.type = BTRFS_ROOT_ITEM_KEY; k1.offset = (u64)-1; root = btrfs_read_fs_root(root->fs_info, &k1); if (IS_ERR(root)) return -EIO; path = btrfs_alloc_path(); if (!path) return -EIO; path->lowest_level = btrfs_header_level(buf); path->skip_check_block = 1; if (btrfs_header_level(buf)) btrfs_node_key_to_cpu(buf, &k1, 0); else btrfs_item_key_to_cpu(buf, &k1, 0); ret = btrfs_search_slot(trans, root, &k1, path, 0, 1); if (ret) { btrfs_free_path(path); return -EIO; } buf = path->nodes[0]; for (i = 0; i < btrfs_header_nritems(buf) - 1; i++) { if (btrfs_header_level(buf)) { btrfs_node_key_to_cpu(buf, &k1, i); btrfs_node_key_to_cpu(buf, &k2, i + 1); } else { btrfs_item_key_to_cpu(buf, &k1, i); btrfs_item_key_to_cpu(buf, &k2, i + 1); } if (btrfs_comp_cpu_keys(&k1, &k2) < 0) continue; ret = swap_values(root, path, buf, i); if (ret) break; btrfs_mark_buffer_dirty(buf); i = 0; } btrfs_free_path(path); return ret; } static int check_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct cache_tree *extent_cache, struct extent_buffer *buf, u64 flags) { struct extent_record *rec; struct cache_extent *cache; struct btrfs_key key; enum btrfs_tree_block_status status; int ret = 0; int level; cache = lookup_cache_extent(extent_cache, buf->start, buf->len); if (!cache) return 1; rec = container_of(cache, struct extent_record, cache); rec->generation = btrfs_header_generation(buf); level = btrfs_header_level(buf); if (btrfs_header_nritems(buf) > 0) { if (level == 0) btrfs_item_key_to_cpu(buf, &key, 0); else btrfs_node_key_to_cpu(buf, &key, 0); rec->info_objectid = key.objectid; } rec->info_level = level; if (btrfs_is_leaf(buf)) status = btrfs_check_leaf(root, &rec->parent_key, buf); else status = btrfs_check_node(root, &rec->parent_key, buf); if (status != BTRFS_TREE_BLOCK_CLEAN) { if (repair) status = try_to_fix_bad_block(trans, root, buf, &rec->parent_key, status); if (status != BTRFS_TREE_BLOCK_CLEAN) { ret = -EIO; fprintf(stderr, "bad block %llu\n", (unsigned long long)buf->start); } else { /* * Signal to callers we need to start the scan over * again since we'll have cow'ed blocks. */ ret = -EAGAIN; } } else { rec->content_checked = 1; if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) rec->owner_ref_checked = 1; else { ret = check_owner_ref(root, rec, buf); if (!ret) rec->owner_ref_checked = 1; } } if (!ret) maybe_free_extent_rec(extent_cache, rec); return ret; } static struct tree_backref *find_tree_backref(struct extent_record *rec, u64 parent, u64 root) { struct list_head *cur = rec->backrefs.next; struct extent_backref *node; struct tree_backref *back; while(cur != &rec->backrefs) { node = list_entry(cur, struct extent_backref, list); cur = cur->next; if (node->is_data) continue; back = (struct tree_backref *)node; if (parent > 0) { if (!node->full_backref) continue; if (parent == back->parent) return back; } else { if (node->full_backref) continue; if (back->root == root) return back; } } return NULL; } static struct tree_backref *alloc_tree_backref(struct extent_record *rec, u64 parent, u64 root) { struct tree_backref *ref = malloc(sizeof(*ref)); memset(&ref->node, 0, sizeof(ref->node)); if (parent > 0) { ref->parent = parent; ref->node.full_backref = 1; } else { ref->root = root; ref->node.full_backref = 0; } list_add_tail(&ref->node.list, &rec->backrefs); return ref; } static struct data_backref *find_data_backref(struct extent_record *rec, u64 parent, u64 root, u64 owner, u64 offset, int found_ref, u64 disk_bytenr, u64 bytes) { struct list_head *cur = rec->backrefs.next; struct extent_backref *node; struct data_backref *back; while(cur != &rec->backrefs) { node = list_entry(cur, struct extent_backref, list); cur = cur->next; if (!node->is_data) continue; back = (struct data_backref *)node; if (parent > 0) { if (!node->full_backref) continue; if (parent == back->parent) return back; } else { if (node->full_backref) continue; if (back->root == root && back->owner == owner && back->offset == offset) { if (found_ref && node->found_ref && (back->bytes != bytes || back->disk_bytenr != disk_bytenr)) continue; return back; } } } return NULL; } static struct data_backref *alloc_data_backref(struct extent_record *rec, u64 parent, u64 root, u64 owner, u64 offset, u64 max_size) { struct data_backref *ref = malloc(sizeof(*ref)); memset(&ref->node, 0, sizeof(ref->node)); ref->node.is_data = 1; if (parent > 0) { ref->parent = parent; ref->owner = 0; ref->offset = 0; ref->node.full_backref = 1; } else { ref->root = root; ref->owner = owner; ref->offset = offset; ref->node.full_backref = 0; } ref->bytes = max_size; ref->found_ref = 0; ref->num_refs = 0; list_add_tail(&ref->node.list, &rec->backrefs); if (max_size > rec->max_size) rec->max_size = max_size; return ref; } static int add_extent_rec(struct cache_tree *extent_cache, struct btrfs_key *parent_key, u64 parent_gen, u64 start, u64 nr, u64 extent_item_refs, int is_root, int inc_ref, int set_checked, int metadata, int extent_rec, u64 max_size) { struct extent_record *rec; struct cache_extent *cache; int ret = 0; int dup = 0; cache = lookup_cache_extent(extent_cache, start, nr); if (cache) { rec = container_of(cache, struct extent_record, cache); if (inc_ref) rec->refs++; if (rec->nr == 1) rec->nr = max(nr, max_size); /* * We need to make sure to reset nr to whatever the extent * record says was the real size, this way we can compare it to * the backrefs. */ if (extent_rec) { if (start != rec->start || rec->found_rec) { struct extent_record *tmp; dup = 1; if (list_empty(&rec->list)) list_add_tail(&rec->list, &duplicate_extents); /* * We have to do this song and dance in case we * find an extent record that falls inside of * our current extent record but does not have * the same objectid. */ tmp = malloc(sizeof(*tmp)); if (!tmp) return -ENOMEM; tmp->start = start; tmp->max_size = max_size; tmp->nr = nr; tmp->found_rec = 1; tmp->metadata = metadata; tmp->extent_item_refs = extent_item_refs; INIT_LIST_HEAD(&tmp->list); list_add_tail(&tmp->list, &rec->dups); rec->num_duplicates++; } else { rec->nr = nr; rec->found_rec = 1; } } if (extent_item_refs && !dup) { if (rec->extent_item_refs) { fprintf(stderr, "block %llu rec " "extent_item_refs %llu, passed %llu\n", (unsigned long long)start, (unsigned long long) rec->extent_item_refs, (unsigned long long)extent_item_refs); } rec->extent_item_refs = extent_item_refs; } if (is_root) rec->is_root = 1; if (set_checked) { rec->content_checked = 1; rec->owner_ref_checked = 1; } if (parent_key) btrfs_cpu_key_to_disk(&rec->parent_key, parent_key); if (parent_gen) rec->parent_generation = parent_gen; if (rec->max_size < max_size) rec->max_size = max_size; maybe_free_extent_rec(extent_cache, rec); return ret; } rec = malloc(sizeof(*rec)); rec->start = start; rec->max_size = max_size; rec->nr = max(nr, max_size); rec->found_rec = extent_rec; rec->content_checked = 0; rec->owner_ref_checked = 0; rec->num_duplicates = 0; rec->metadata = metadata; INIT_LIST_HEAD(&rec->backrefs); INIT_LIST_HEAD(&rec->dups); INIT_LIST_HEAD(&rec->list); if (is_root) rec->is_root = 1; else rec->is_root = 0; if (inc_ref) rec->refs = 1; else rec->refs = 0; if (extent_item_refs) rec->extent_item_refs = extent_item_refs; else rec->extent_item_refs = 0; if (parent_key) btrfs_cpu_key_to_disk(&rec->parent_key, parent_key); else memset(&rec->parent_key, 0, sizeof(*parent_key)); if (parent_gen) rec->parent_generation = parent_gen; else rec->parent_generation = 0; rec->cache.start = start; rec->cache.size = nr; ret = insert_cache_extent(extent_cache, &rec->cache); BUG_ON(ret); bytes_used += nr; if (set_checked) { rec->content_checked = 1; rec->owner_ref_checked = 1; } return ret; } static int add_tree_backref(struct cache_tree *extent_cache, u64 bytenr, u64 parent, u64 root, int found_ref) { struct extent_record *rec; struct tree_backref *back; struct cache_extent *cache; cache = lookup_cache_extent(extent_cache, bytenr, 1); if (!cache) { add_extent_rec(extent_cache, NULL, 0, bytenr, 1, 0, 0, 0, 0, 1, 0, 0); cache = lookup_cache_extent(extent_cache, bytenr, 1); if (!cache) abort(); } rec = container_of(cache, struct extent_record, cache); if (rec->start != bytenr) { abort(); } back = find_tree_backref(rec, parent, root); if (!back) back = alloc_tree_backref(rec, parent, root); if (found_ref) { if (back->node.found_ref) { fprintf(stderr, "Extent back ref already exists " "for %llu parent %llu root %llu \n", (unsigned long long)bytenr, (unsigned long long)parent, (unsigned long long)root); } back->node.found_ref = 1; } else { if (back->node.found_extent_tree) { fprintf(stderr, "Extent back ref already exists " "for %llu parent %llu root %llu \n", (unsigned long long)bytenr, (unsigned long long)parent, (unsigned long long)root); } back->node.found_extent_tree = 1; } return 0; } static int add_data_backref(struct cache_tree *extent_cache, u64 bytenr, u64 parent, u64 root, u64 owner, u64 offset, u32 num_refs, int found_ref, u64 max_size) { struct extent_record *rec; struct data_backref *back; struct cache_extent *cache; cache = lookup_cache_extent(extent_cache, bytenr, 1); if (!cache) { add_extent_rec(extent_cache, NULL, 0, bytenr, 1, 0, 0, 0, 0, 0, 0, max_size); cache = lookup_cache_extent(extent_cache, bytenr, 1); if (!cache) abort(); } rec = container_of(cache, struct extent_record, cache); if (rec->max_size < max_size) rec->max_size = max_size; /* * If found_ref is set then max_size is the real size and must match the * existing refs. So if we have already found a ref then we need to * make sure that this ref matches the existing one, otherwise we need * to add a new backref so we can notice that the backrefs don't match * and we need to figure out who is telling the truth. This is to * account for that awful fsync bug I introduced where we'd end up with * a btrfs_file_extent_item that would have its length include multiple * prealloc extents or point inside of a prealloc extent. */ back = find_data_backref(rec, parent, root, owner, offset, found_ref, bytenr, max_size); if (!back) back = alloc_data_backref(rec, parent, root, owner, offset, max_size); if (found_ref) { BUG_ON(num_refs != 1); if (back->node.found_ref) BUG_ON(back->bytes != max_size); back->node.found_ref = 1; back->found_ref += 1; back->bytes = max_size; back->disk_bytenr = bytenr; rec->refs += 1; rec->content_checked = 1; rec->owner_ref_checked = 1; } else { if (back->node.found_extent_tree) { fprintf(stderr, "Extent back ref already exists " "for %llu parent %llu root %llu" "owner %llu offset %llu num_refs %lu\n", (unsigned long long)bytenr, (unsigned long long)parent, (unsigned long long)root, (unsigned long long)owner, (unsigned long long)offset, (unsigned long)num_refs); } back->num_refs = num_refs; back->node.found_extent_tree = 1; } return 0; } static int add_pending(struct cache_tree *pending, struct cache_tree *seen, u64 bytenr, u32 size) { int ret; ret = add_cache_extent(seen, bytenr, size); if (ret) return ret; add_cache_extent(pending, bytenr, size); return 0; } static int pick_next_pending(struct cache_tree *pending, struct cache_tree *reada, struct cache_tree *nodes, u64 last, struct block_info *bits, int bits_nr, int *reada_bits) { unsigned long node_start = last; struct cache_extent *cache; int ret; cache = search_cache_extent(reada, 0); if (cache) { bits[0].start = cache->start; bits[1].size = cache->size; *reada_bits = 1; return 1; } *reada_bits = 0; if (node_start > 32768) node_start -= 32768; cache = search_cache_extent(nodes, node_start); if (!cache) cache = search_cache_extent(nodes, 0); if (!cache) { cache = search_cache_extent(pending, 0); if (!cache) return 0; ret = 0; do { bits[ret].start = cache->start; bits[ret].size = cache->size; cache = next_cache_extent(cache); ret++; } while (cache && ret < bits_nr); return ret; } ret = 0; do { bits[ret].start = cache->start; bits[ret].size = cache->size; cache = next_cache_extent(cache); ret++; } while (cache && ret < bits_nr); if (bits_nr - ret > 8) { u64 lookup = bits[0].start + bits[0].size; struct cache_extent *next; next = search_cache_extent(pending, lookup); while(next) { if (next->start - lookup > 32768) break; bits[ret].start = next->start; bits[ret].size = next->size; lookup = next->start + next->size; ret++; if (ret == bits_nr) break; next = next_cache_extent(next); if (!next) break; } } return ret; } static void free_chunk_record(struct cache_extent *cache) { struct chunk_record *rec; rec = container_of(cache, struct chunk_record, cache); free(rec); } void free_chunk_cache_tree(struct cache_tree *chunk_cache) { cache_tree_free_extents(chunk_cache, free_chunk_record); } static void free_device_record(struct rb_node *node) { struct device_record *rec; rec = container_of(node, struct device_record, node); free(rec); } FREE_RB_BASED_TREE(device_cache, free_device_record); int insert_block_group_record(struct block_group_tree *tree, struct block_group_record *bg_rec) { int ret; ret = insert_cache_extent(&tree->tree, &bg_rec->cache); if (ret) return ret; list_add_tail(&bg_rec->list, &tree->block_groups); return 0; } static void free_block_group_record(struct cache_extent *cache) { struct block_group_record *rec; rec = container_of(cache, struct block_group_record, cache); free(rec); } void free_block_group_tree(struct block_group_tree *tree) { cache_tree_free_extents(&tree->tree, free_block_group_record); } int insert_device_extent_record(struct device_extent_tree *tree, struct device_extent_record *de_rec) { int ret; /* * Device extent is a bit different from the other extents, because * the extents which belong to the different devices may have the * same start and size, so we need use the special extent cache * search/insert functions. */ ret = insert_cache_extent2(&tree->tree, &de_rec->cache); if (ret) return ret; list_add_tail(&de_rec->chunk_list, &tree->no_chunk_orphans); list_add_tail(&de_rec->device_list, &tree->no_device_orphans); return 0; } static void free_device_extent_record(struct cache_extent *cache) { struct device_extent_record *rec; rec = container_of(cache, struct device_extent_record, cache); free(rec); } void free_device_extent_tree(struct device_extent_tree *tree) { cache_tree_free_extents(&tree->tree, free_device_extent_record); } #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 static int process_extent_ref_v0(struct cache_tree *extent_cache, struct extent_buffer *leaf, int slot) { struct btrfs_extent_ref_v0 *ref0; struct btrfs_key key; btrfs_item_key_to_cpu(leaf, &key, slot); ref0 = btrfs_item_ptr(leaf, slot, struct btrfs_extent_ref_v0); if (btrfs_ref_objectid_v0(leaf, ref0) < BTRFS_FIRST_FREE_OBJECTID) { add_tree_backref(extent_cache, key.objectid, key.offset, 0, 0); } else { add_data_backref(extent_cache, key.objectid, key.offset, 0, 0, 0, btrfs_ref_count_v0(leaf, ref0), 0, 0); } return 0; } #endif struct chunk_record *btrfs_new_chunk_record(struct extent_buffer *leaf, struct btrfs_key *key, int slot) { struct btrfs_chunk *ptr; struct chunk_record *rec; int num_stripes, i; ptr = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); num_stripes = btrfs_chunk_num_stripes(leaf, ptr); rec = malloc(btrfs_chunk_record_size(num_stripes)); if (!rec) { fprintf(stderr, "memory allocation failed\n"); exit(-1); } memset(rec, 0, btrfs_chunk_record_size(num_stripes)); INIT_LIST_HEAD(&rec->list); INIT_LIST_HEAD(&rec->dextents); rec->bg_rec = NULL; rec->cache.start = key->offset; rec->cache.size = btrfs_chunk_length(leaf, ptr); rec->generation = btrfs_header_generation(leaf); rec->objectid = key->objectid; rec->type = key->type; rec->offset = key->offset; rec->length = rec->cache.size; rec->owner = btrfs_chunk_owner(leaf, ptr); rec->stripe_len = btrfs_chunk_stripe_len(leaf, ptr); rec->type_flags = btrfs_chunk_type(leaf, ptr); rec->io_width = btrfs_chunk_io_width(leaf, ptr); rec->io_align = btrfs_chunk_io_align(leaf, ptr); rec->sector_size = btrfs_chunk_sector_size(leaf, ptr); rec->num_stripes = num_stripes; rec->sub_stripes = btrfs_chunk_sub_stripes(leaf, ptr); for (i = 0; i < rec->num_stripes; ++i) { rec->stripes[i].devid = btrfs_stripe_devid_nr(leaf, ptr, i); rec->stripes[i].offset = btrfs_stripe_offset_nr(leaf, ptr, i); read_extent_buffer(leaf, rec->stripes[i].dev_uuid, (unsigned long)btrfs_stripe_dev_uuid_nr(ptr, i), BTRFS_UUID_SIZE); } return rec; } static int process_chunk_item(struct cache_tree *chunk_cache, struct btrfs_key *key, struct extent_buffer *eb, int slot) { struct chunk_record *rec; int ret = 0; rec = btrfs_new_chunk_record(eb, key, slot); ret = insert_cache_extent(chunk_cache, &rec->cache); if (ret) { fprintf(stderr, "Chunk[%llu, %llu] existed.\n", rec->offset, rec->length); free(rec); } return ret; } static int process_device_item(struct rb_root *dev_cache, struct btrfs_key *key, struct extent_buffer *eb, int slot) { struct btrfs_dev_item *ptr; struct device_record *rec; int ret = 0; ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_item); rec = malloc(sizeof(*rec)); if (!rec) { fprintf(stderr, "memory allocation failed\n"); return -ENOMEM; } rec->devid = key->offset; rec->generation = btrfs_header_generation(eb); rec->objectid = key->objectid; rec->type = key->type; rec->offset = key->offset; rec->devid = btrfs_device_id(eb, ptr); rec->total_byte = btrfs_device_total_bytes(eb, ptr); rec->byte_used = btrfs_device_bytes_used(eb, ptr); ret = rb_insert(dev_cache, &rec->node, device_record_compare); if (ret) { fprintf(stderr, "Device[%llu] existed.\n", rec->devid); free(rec); } return ret; } struct block_group_record * btrfs_new_block_group_record(struct extent_buffer *leaf, struct btrfs_key *key, int slot) { struct btrfs_block_group_item *ptr; struct block_group_record *rec; rec = malloc(sizeof(*rec)); if (!rec) { fprintf(stderr, "memory allocation failed\n"); exit(-1); } memset(rec, 0, sizeof(*rec)); rec->cache.start = key->objectid; rec->cache.size = key->offset; rec->generation = btrfs_header_generation(leaf); rec->objectid = key->objectid; rec->type = key->type; rec->offset = key->offset; ptr = btrfs_item_ptr(leaf, slot, struct btrfs_block_group_item); rec->flags = btrfs_disk_block_group_flags(leaf, ptr); INIT_LIST_HEAD(&rec->list); return rec; } static int process_block_group_item(struct block_group_tree *block_group_cache, struct btrfs_key *key, struct extent_buffer *eb, int slot) { struct block_group_record *rec; int ret = 0; rec = btrfs_new_block_group_record(eb, key, slot); ret = insert_block_group_record(block_group_cache, rec); if (ret) { fprintf(stderr, "Block Group[%llu, %llu] existed.\n", rec->objectid, rec->offset); free(rec); } return ret; } struct device_extent_record * btrfs_new_device_extent_record(struct extent_buffer *leaf, struct btrfs_key *key, int slot) { struct device_extent_record *rec; struct btrfs_dev_extent *ptr; rec = malloc(sizeof(*rec)); if (!rec) { fprintf(stderr, "memory allocation failed\n"); exit(-1); } memset(rec, 0, sizeof(*rec)); rec->cache.objectid = key->objectid; rec->cache.start = key->offset; rec->generation = btrfs_header_generation(leaf); rec->objectid = key->objectid; rec->type = key->type; rec->offset = key->offset; ptr = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); rec->chunk_objecteid = btrfs_dev_extent_chunk_objectid(leaf, ptr); rec->chunk_offset = btrfs_dev_extent_chunk_offset(leaf, ptr); rec->length = btrfs_dev_extent_length(leaf, ptr); rec->cache.size = rec->length; INIT_LIST_HEAD(&rec->chunk_list); INIT_LIST_HEAD(&rec->device_list); return rec; } static int process_device_extent_item(struct device_extent_tree *dev_extent_cache, struct btrfs_key *key, struct extent_buffer *eb, int slot) { struct device_extent_record *rec; int ret; rec = btrfs_new_device_extent_record(eb, key, slot); ret = insert_device_extent_record(dev_extent_cache, rec); if (ret) { fprintf(stderr, "Device extent[%llu, %llu, %llu] existed.\n", rec->objectid, rec->offset, rec->length); free(rec); } return ret; } static int process_extent_item(struct btrfs_root *root, struct cache_tree *extent_cache, struct extent_buffer *eb, int slot) { struct btrfs_extent_item *ei; struct btrfs_extent_inline_ref *iref; struct btrfs_extent_data_ref *dref; struct btrfs_shared_data_ref *sref; struct btrfs_key key; unsigned long end; unsigned long ptr; int type; u32 item_size = btrfs_item_size_nr(eb, slot); u64 refs = 0; u64 offset; u64 num_bytes; int metadata = 0; btrfs_item_key_to_cpu(eb, &key, slot); if (key.type == BTRFS_METADATA_ITEM_KEY) { metadata = 1; num_bytes = root->leafsize; } else { num_bytes = key.offset; } if (item_size < sizeof(*ei)) { #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 struct btrfs_extent_item_v0 *ei0; BUG_ON(item_size != sizeof(*ei0)); ei0 = btrfs_item_ptr(eb, slot, struct btrfs_extent_item_v0); refs = btrfs_extent_refs_v0(eb, ei0); #else BUG(); #endif return add_extent_rec(extent_cache, NULL, 0, key.objectid, num_bytes, refs, 0, 0, 0, metadata, 1, num_bytes); } ei = btrfs_item_ptr(eb, slot, struct btrfs_extent_item); refs = btrfs_extent_refs(eb, ei); add_extent_rec(extent_cache, NULL, 0, key.objectid, num_bytes, refs, 0, 0, 0, metadata, 1, num_bytes); ptr = (unsigned long)(ei + 1); if (btrfs_extent_flags(eb, ei) & BTRFS_EXTENT_FLAG_TREE_BLOCK && key.type == BTRFS_EXTENT_ITEM_KEY) ptr += sizeof(struct btrfs_tree_block_info); end = (unsigned long)ei + item_size; while (ptr < end) { iref = (struct btrfs_extent_inline_ref *)ptr; type = btrfs_extent_inline_ref_type(eb, iref); offset = btrfs_extent_inline_ref_offset(eb, iref); switch (type) { case BTRFS_TREE_BLOCK_REF_KEY: add_tree_backref(extent_cache, key.objectid, 0, offset, 0); break; case BTRFS_SHARED_BLOCK_REF_KEY: add_tree_backref(extent_cache, key.objectid, offset, 0, 0); break; case BTRFS_EXTENT_DATA_REF_KEY: dref = (struct btrfs_extent_data_ref *)(&iref->offset); add_data_backref(extent_cache, key.objectid, 0, btrfs_extent_data_ref_root(eb, dref), btrfs_extent_data_ref_objectid(eb, dref), btrfs_extent_data_ref_offset(eb, dref), btrfs_extent_data_ref_count(eb, dref), 0, num_bytes); break; case BTRFS_SHARED_DATA_REF_KEY: sref = (struct btrfs_shared_data_ref *)(iref + 1); add_data_backref(extent_cache, key.objectid, offset, 0, 0, 0, btrfs_shared_data_ref_count(eb, sref), 0, num_bytes); break; default: fprintf(stderr, "corrupt extent record: key %Lu %u %Lu\n", key.objectid, key.type, num_bytes); goto out; } ptr += btrfs_extent_inline_ref_size(type); } WARN_ON(ptr > end); out: return 0; } static int check_cache_range(struct btrfs_root *root, struct btrfs_block_group_cache *cache, u64 offset, u64 bytes) { struct btrfs_free_space *entry; u64 *logical; u64 bytenr; int stripe_len; int i, nr, ret; for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { bytenr = btrfs_sb_offset(i); ret = btrfs_rmap_block(&root->fs_info->mapping_tree, cache->key.objectid, bytenr, 0, &logical, &nr, &stripe_len); if (ret) return ret; while (nr--) { if (logical[nr] + stripe_len <= offset) continue; if (offset + bytes <= logical[nr]) continue; if (logical[nr] == offset) { if (stripe_len >= bytes) { kfree(logical); return 0; } bytes -= stripe_len; offset += stripe_len; } else if (logical[nr] < offset) { if (logical[nr] + stripe_len >= offset + bytes) { kfree(logical); return 0; } bytes = (offset + bytes) - (logical[nr] + stripe_len); offset = logical[nr] + stripe_len; } else { /* * Could be tricky, the super may land in the * middle of the area we're checking. First * check the easiest case, it's at the end. */ if (logical[nr] + stripe_len >= bytes + offset) { bytes = logical[nr] - offset; continue; } /* Check the left side */ ret = check_cache_range(root, cache, offset, logical[nr] - offset); if (ret) { kfree(logical); return ret; } /* Now we continue with the right side */ bytes = (offset + bytes) - (logical[nr] + stripe_len); offset = logical[nr] + stripe_len; } } kfree(logical); } entry = btrfs_find_free_space(cache->free_space_ctl, offset, bytes); if (!entry) { fprintf(stderr, "There is no free space entry for %Lu-%Lu\n", offset, offset+bytes); return -EINVAL; } if (entry->offset != offset) { fprintf(stderr, "Wanted offset %Lu, found %Lu\n", offset, entry->offset); return -EINVAL; } if (entry->bytes != bytes) { fprintf(stderr, "Wanted bytes %Lu, found %Lu for off %Lu\n", bytes, entry->bytes, offset); return -EINVAL; } unlink_free_space(cache->free_space_ctl, entry); free(entry); return 0; } static int verify_space_cache(struct btrfs_root *root, struct btrfs_block_group_cache *cache) { struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_key key; u64 last; int ret = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; root = root->fs_info->extent_root; last = max_t(u64, cache->key.objectid, BTRFS_SUPER_INFO_OFFSET); key.objectid = last; key.offset = 0; key.type = BTRFS_EXTENT_ITEM_KEY; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto out; ret = 0; while (1) { if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { ret = btrfs_next_leaf(root, path); if (ret < 0) goto out; if (ret > 0) { ret = 0; break; } } leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid >= cache->key.offset + cache->key.objectid) break; if (key.type != BTRFS_EXTENT_ITEM_KEY && key.type != BTRFS_METADATA_ITEM_KEY) { path->slots[0]++; continue; } if (last == key.objectid) { if (key.type == BTRFS_EXTENT_ITEM_KEY) last = key.objectid + key.offset; else last = key.objectid + root->leafsize; path->slots[0]++; continue; } ret = check_cache_range(root, cache, last, key.objectid - last); if (ret) break; if (key.type == BTRFS_EXTENT_ITEM_KEY) last = key.objectid + key.offset; else last = key.objectid + root->leafsize; path->slots[0]++; } if (last < cache->key.objectid + cache->key.offset) ret = check_cache_range(root, cache, last, cache->key.objectid + cache->key.offset - last); out: btrfs_free_path(path); if (!ret && !RB_EMPTY_ROOT(&cache->free_space_ctl->free_space_offset)) { fprintf(stderr, "There are still entries left in the space " "cache\n"); ret = -EINVAL; } return ret; } static int check_space_cache(struct btrfs_root *root) { struct btrfs_block_group_cache *cache; u64 start = BTRFS_SUPER_INFO_OFFSET + BTRFS_SUPER_INFO_SIZE; int ret; int error = 0; if (btrfs_super_cache_generation(root->fs_info->super_copy) != -1ULL && btrfs_super_generation(root->fs_info->super_copy) != btrfs_super_cache_generation(root->fs_info->super_copy)) { printf("cache and super generation don't match, space cache " "will be invalidated\n"); return 0; } while (1) { cache = btrfs_lookup_first_block_group(root->fs_info, start); if (!cache) break; start = cache->key.objectid + cache->key.offset; if (!cache->free_space_ctl) { if (btrfs_init_free_space_ctl(cache, root->sectorsize)) { ret = -ENOMEM; break; } } else { btrfs_remove_free_space_cache(cache); } ret = load_free_space_cache(root->fs_info, cache); if (!ret) continue; ret = verify_space_cache(root, cache); if (ret) { fprintf(stderr, "cache appears valid but isnt %Lu\n", cache->key.objectid); error++; } } return error ? -EINVAL : 0; } static int check_extent_exists(struct btrfs_root *root, u64 bytenr, u64 num_bytes) { struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_key key; int ret; path = btrfs_alloc_path(); if (!path) { fprintf(stderr, "Error allocing path\n"); return -ENOMEM; } key.objectid = bytenr; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = 0; again: ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 0, 0); if (ret < 0) { fprintf(stderr, "Error looking up extent record %d\n", ret); btrfs_free_path(path); return ret; } else if (ret) { if (path->slots[0]) path->slots[0]--; else btrfs_prev_leaf(root, path); } btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); /* * Block group items come before extent items if they have the same * bytenr, so walk back one more just in case. Dear future traveler, * first congrats on mastering time travel. Now if it's not too much * trouble could you go back to 2006 and tell Chris to make the * BLOCK_GROUP_ITEM_KEY lower than the EXTENT_ITEM_KEY please? */ if (key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { if (path->slots[0]) path->slots[0]--; else btrfs_prev_leaf(root, path); } while (num_bytes) { if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { ret = btrfs_next_leaf(root, path); if (ret < 0) { fprintf(stderr, "Error going to next leaf " "%d\n", ret); btrfs_free_path(path); return ret; } else if (ret) { break; } } leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.type != BTRFS_EXTENT_ITEM_KEY) { path->slots[0]++; continue; } if (key.objectid + key.offset < bytenr) { path->slots[0]++; continue; } if (key.objectid > bytenr + num_bytes) break; if (key.objectid == bytenr) { if (key.offset >= num_bytes) { num_bytes = 0; break; } num_bytes -= key.offset; bytenr += key.offset; } else if (key.objectid < bytenr) { if (key.objectid + key.offset >= bytenr + num_bytes) { num_bytes = 0; break; } num_bytes = (bytenr + num_bytes) - (key.objectid + key.offset); bytenr = key.objectid + key.offset; } else { if (key.objectid + key.offset < bytenr + num_bytes) { u64 new_start = key.objectid + key.offset; u64 new_bytes = bytenr + num_bytes - new_start; /* * Weird case, the extent is in the middle of * our range, we'll have to search one side * and then the other. Not sure if this happens * in real life, but no harm in coding it up * anyway just in case. */ btrfs_release_path(path); ret = check_extent_exists(root, new_start, new_bytes); if (ret) { fprintf(stderr, "Right section didn't " "have a record\n"); break; } num_bytes = key.objectid - bytenr; goto again; } num_bytes = key.objectid - bytenr; } path->slots[0]++; } ret = 0; if (num_bytes) { fprintf(stderr, "There are no extents for csum range " "%Lu-%Lu\n", bytenr, bytenr+num_bytes); ret = 1; } btrfs_free_path(path); return ret; } static int check_csums(struct btrfs_root *root) { struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_key key; u64 offset = 0, num_bytes = 0; u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); int errors = 0; int ret; root = root->fs_info->csum_root; key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; key.type = BTRFS_EXTENT_CSUM_KEY; key.offset = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) { fprintf(stderr, "Error searching csum tree %d\n", ret); btrfs_free_path(path); return ret; } if (ret > 0 && path->slots[0]) path->slots[0]--; ret = 0; while (1) { if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { ret = btrfs_next_leaf(root, path); if (ret < 0) { fprintf(stderr, "Error going to next leaf " "%d\n", ret); break; } if (ret) break; } leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.type != BTRFS_EXTENT_CSUM_KEY) { path->slots[0]++; continue; } if (!num_bytes) { offset = key.offset; } else if (key.offset != offset + num_bytes) { ret = check_extent_exists(root, offset, num_bytes); if (ret) { fprintf(stderr, "Csum exists for %Lu-%Lu but " "there is no extent record\n", offset, offset+num_bytes); errors++; } offset = key.offset; num_bytes = 0; } num_bytes += (btrfs_item_size_nr(leaf, path->slots[0]) / csum_size) * root->sectorsize; path->slots[0]++; } btrfs_free_path(path); return errors; } static int is_dropped_key(struct btrfs_key *key, struct btrfs_key *drop_key) { if (key->objectid < drop_key->objectid) return 1; else if (key->objectid == drop_key->objectid) { if (key->type < drop_key->type) return 1; else if (key->type == drop_key->type) { if (key->offset < drop_key->offset) return 1; } } return 0; } static int run_next_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct block_info *bits, int bits_nr, u64 *last, struct cache_tree *pending, struct cache_tree *seen, struct cache_tree *reada, struct cache_tree *nodes, struct cache_tree *extent_cache, struct cache_tree *chunk_cache, struct rb_root *dev_cache, struct block_group_tree *block_group_cache, struct device_extent_tree *dev_extent_cache, struct btrfs_root_item *ri) { struct extent_buffer *buf; u64 bytenr; u32 size; u64 parent; u64 owner; u64 flags; u64 ptr; u64 gen = 0; int ret = 0; int i; int nritems; struct btrfs_key key; struct cache_extent *cache; int reada_bits; nritems = pick_next_pending(pending, reada, nodes, *last, bits, bits_nr, &reada_bits); if (nritems == 0) return 1; if (!reada_bits) { for(i = 0; i < nritems; i++) { ret = add_cache_extent(reada, bits[i].start, bits[i].size); if (ret == -EEXIST) continue; /* fixme, get the parent transid */ readahead_tree_block(root, bits[i].start, bits[i].size, 0); } } *last = bits[0].start; bytenr = bits[0].start; size = bits[0].size; cache = lookup_cache_extent(pending, bytenr, size); if (cache) { remove_cache_extent(pending, cache); free(cache); } cache = lookup_cache_extent(reada, bytenr, size); if (cache) { remove_cache_extent(reada, cache); free(cache); } cache = lookup_cache_extent(nodes, bytenr, size); if (cache) { remove_cache_extent(nodes, cache); free(cache); } cache = lookup_cache_extent(seen, bytenr, size); if (cache) { remove_cache_extent(seen, cache); free(cache); } cache = lookup_cache_extent(extent_cache, bytenr, size); if (cache) { struct extent_record *rec; rec = container_of(cache, struct extent_record, cache); gen = rec->parent_generation; } /* fixme, get the real parent transid */ buf = read_tree_block(root, bytenr, size, gen); if (!extent_buffer_uptodate(buf)) { record_bad_block_io(root->fs_info, extent_cache, bytenr, size); goto out; } nritems = btrfs_header_nritems(buf); /* * FIXME, this only works only if we don't have any full * backref mode. */ if (!init_extent_tree) { ret = btrfs_lookup_extent_info(NULL, root, bytenr, btrfs_header_level(buf), 1, NULL, &flags); if (ret < 0) flags = 0; } else { flags = 0; } if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { parent = bytenr; owner = 0; } else { parent = 0; owner = btrfs_header_owner(buf); } ret = check_block(trans, root, extent_cache, buf, flags); if (ret) goto out; if (btrfs_is_leaf(buf)) { btree_space_waste += btrfs_leaf_free_space(root, buf); for (i = 0; i < nritems; i++) { struct btrfs_file_extent_item *fi; btrfs_item_key_to_cpu(buf, &key, i); if (key.type == BTRFS_EXTENT_ITEM_KEY) { process_extent_item(root, extent_cache, buf, i); continue; } if (key.type == BTRFS_METADATA_ITEM_KEY) { process_extent_item(root, extent_cache, buf, i); continue; } if (key.type == BTRFS_EXTENT_CSUM_KEY) { total_csum_bytes += btrfs_item_size_nr(buf, i); continue; } if (key.type == BTRFS_CHUNK_ITEM_KEY) { process_chunk_item(chunk_cache, &key, buf, i); continue; } if (key.type == BTRFS_DEV_ITEM_KEY) { process_device_item(dev_cache, &key, buf, i); continue; } if (key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { process_block_group_item(block_group_cache, &key, buf, i); continue; } if (key.type == BTRFS_DEV_EXTENT_KEY) { process_device_extent_item(dev_extent_cache, &key, buf, i); continue; } if (key.type == BTRFS_EXTENT_REF_V0_KEY) { #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 process_extent_ref_v0(extent_cache, buf, i); #else BUG(); #endif continue; } if (key.type == BTRFS_TREE_BLOCK_REF_KEY) { add_tree_backref(extent_cache, key.objectid, 0, key.offset, 0); continue; } if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { add_tree_backref(extent_cache, key.objectid, key.offset, 0, 0); continue; } if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { struct btrfs_extent_data_ref *ref; ref = btrfs_item_ptr(buf, i, struct btrfs_extent_data_ref); add_data_backref(extent_cache, key.objectid, 0, btrfs_extent_data_ref_root(buf, ref), btrfs_extent_data_ref_objectid(buf, ref), btrfs_extent_data_ref_offset(buf, ref), btrfs_extent_data_ref_count(buf, ref), 0, root->sectorsize); continue; } if (key.type == BTRFS_SHARED_DATA_REF_KEY) { struct btrfs_shared_data_ref *ref; ref = btrfs_item_ptr(buf, i, struct btrfs_shared_data_ref); add_data_backref(extent_cache, key.objectid, key.offset, 0, 0, 0, btrfs_shared_data_ref_count(buf, ref), 0, root->sectorsize); continue; } if (key.type == BTRFS_ORPHAN_ITEM_KEY) { struct bad_item *bad; if (key.objectid == BTRFS_ORPHAN_OBJECTID) continue; if (!owner) continue; bad = malloc(sizeof(struct bad_item)); if (!bad) continue; INIT_LIST_HEAD(&bad->list); memcpy(&bad->key, &key, sizeof(struct btrfs_key)); bad->root_id = owner; list_add_tail(&bad->list, &delete_items); continue; } if (key.type != BTRFS_EXTENT_DATA_KEY) continue; fi = btrfs_item_ptr(buf, i, struct btrfs_file_extent_item); if (btrfs_file_extent_type(buf, fi) == BTRFS_FILE_EXTENT_INLINE) continue; if (btrfs_file_extent_disk_bytenr(buf, fi) == 0) continue; data_bytes_allocated += btrfs_file_extent_disk_num_bytes(buf, fi); if (data_bytes_allocated < root->sectorsize) { abort(); } data_bytes_referenced += btrfs_file_extent_num_bytes(buf, fi); add_data_backref(extent_cache, btrfs_file_extent_disk_bytenr(buf, fi), parent, owner, key.objectid, key.offset - btrfs_file_extent_offset(buf, fi), 1, 1, btrfs_file_extent_disk_num_bytes(buf, fi)); } } else { int level; struct btrfs_key first_key; first_key.objectid = 0; if (nritems > 0) btrfs_item_key_to_cpu(buf, &first_key, 0); level = btrfs_header_level(buf); for (i = 0; i < nritems; i++) { ptr = btrfs_node_blockptr(buf, i); size = btrfs_level_size(root, level - 1); btrfs_node_key_to_cpu(buf, &key, i); if (ri != NULL) { struct btrfs_key drop_key; btrfs_disk_key_to_cpu(&drop_key, &ri->drop_progress); if ((level == ri->drop_level) && is_dropped_key(&key, &drop_key)) { continue; } } ret = add_extent_rec(extent_cache, &key, btrfs_node_ptr_generation(buf, i), ptr, size, 0, 0, 1, 0, 1, 0, size); BUG_ON(ret); add_tree_backref(extent_cache, ptr, parent, owner, 1); if (level > 1) { add_pending(nodes, seen, ptr, size); } else { add_pending(pending, seen, ptr, size); } } btree_space_waste += (BTRFS_NODEPTRS_PER_BLOCK(root) - nritems) * sizeof(struct btrfs_key_ptr); } total_btree_bytes += buf->len; if (fs_root_objectid(btrfs_header_owner(buf))) total_fs_tree_bytes += buf->len; if (btrfs_header_owner(buf) == BTRFS_EXTENT_TREE_OBJECTID) total_extent_tree_bytes += buf->len; if (!found_old_backref && btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID && btrfs_header_backref_rev(buf) == BTRFS_MIXED_BACKREF_REV && !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) found_old_backref = 1; out: free_extent_buffer(buf); return ret; } static int add_root_to_pending(struct extent_buffer *buf, struct cache_tree *extent_cache, struct cache_tree *pending, struct cache_tree *seen, struct cache_tree *nodes, struct btrfs_key *root_key) { if (btrfs_header_level(buf) > 0) add_pending(nodes, seen, buf->start, buf->len); else add_pending(pending, seen, buf->start, buf->len); add_extent_rec(extent_cache, NULL, 0, buf->start, buf->len, 0, 1, 1, 0, 1, 0, buf->len); if (root_key->objectid == BTRFS_TREE_RELOC_OBJECTID || btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) add_tree_backref(extent_cache, buf->start, buf->start, 0, 1); else add_tree_backref(extent_cache, buf->start, 0, root_key->objectid, 1); return 0; } /* as we fix the tree, we might be deleting blocks that * we're tracking for repair. This hook makes sure we * remove any backrefs for blocks as we are fixing them. */ static int free_extent_hook(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, u64 owner, u64 offset, int refs_to_drop) { struct extent_record *rec; struct cache_extent *cache; int is_data; struct cache_tree *extent_cache = root->fs_info->fsck_extent_cache; is_data = owner >= BTRFS_FIRST_FREE_OBJECTID; cache = lookup_cache_extent(extent_cache, bytenr, num_bytes); if (!cache) return 0; rec = container_of(cache, struct extent_record, cache); if (is_data) { struct data_backref *back; back = find_data_backref(rec, parent, root_objectid, owner, offset, 1, bytenr, num_bytes); if (!back) goto out; if (back->node.found_ref) { back->found_ref -= refs_to_drop; if (rec->refs) rec->refs -= refs_to_drop; } if (back->node.found_extent_tree) { back->num_refs -= refs_to_drop; if (rec->extent_item_refs) rec->extent_item_refs -= refs_to_drop; } if (back->found_ref == 0) back->node.found_ref = 0; if (back->num_refs == 0) back->node.found_extent_tree = 0; if (!back->node.found_extent_tree && back->node.found_ref) { list_del(&back->node.list); free(back); } } else { struct tree_backref *back; back = find_tree_backref(rec, parent, root_objectid); if (!back) goto out; if (back->node.found_ref) { if (rec->refs) rec->refs--; back->node.found_ref = 0; } if (back->node.found_extent_tree) { if (rec->extent_item_refs) rec->extent_item_refs--; back->node.found_extent_tree = 0; } if (!back->node.found_extent_tree && back->node.found_ref) { list_del(&back->node.list); free(back); } } maybe_free_extent_rec(extent_cache, rec); out: return 0; } static int delete_extent_records(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 bytenr, u64 new_len) { struct btrfs_key key; struct btrfs_key found_key; struct extent_buffer *leaf; int ret; int slot; key.objectid = bytenr; key.type = (u8)-1; key.offset = (u64)-1; while(1) { ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, path, 0, 1); if (ret < 0) break; if (ret > 0) { ret = 0; if (path->slots[0] == 0) break; path->slots[0]--; } ret = 0; leaf = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(leaf, &found_key, slot); if (found_key.objectid != bytenr) break; if (found_key.type != BTRFS_EXTENT_ITEM_KEY && found_key.type != BTRFS_METADATA_ITEM_KEY && found_key.type != BTRFS_TREE_BLOCK_REF_KEY && found_key.type != BTRFS_EXTENT_DATA_REF_KEY && found_key.type != BTRFS_EXTENT_REF_V0_KEY && found_key.type != BTRFS_SHARED_BLOCK_REF_KEY && found_key.type != BTRFS_SHARED_DATA_REF_KEY) { btrfs_release_path(path); if (found_key.type == 0) { if (found_key.offset == 0) break; key.offset = found_key.offset - 1; key.type = found_key.type; } key.type = found_key.type - 1; key.offset = (u64)-1; continue; } fprintf(stderr, "repair deleting extent record: key %Lu %u %Lu\n", found_key.objectid, found_key.type, found_key.offset); ret = btrfs_del_item(trans, root->fs_info->extent_root, path); if (ret) break; btrfs_release_path(path); if (found_key.type == BTRFS_EXTENT_ITEM_KEY || found_key.type == BTRFS_METADATA_ITEM_KEY) { u64 bytes = (found_key.type == BTRFS_EXTENT_ITEM_KEY) ? found_key.offset : root->leafsize; ret = btrfs_update_block_group(trans, root, bytenr, bytes, 0, 0); if (ret) break; } } btrfs_release_path(path); return ret; } /* * for a single backref, this will allocate a new extent * and add the backref to it. */ static int record_extent(struct btrfs_trans_handle *trans, struct btrfs_fs_info *info, struct btrfs_path *path, struct extent_record *rec, struct extent_backref *back, int allocated, u64 flags) { int ret; struct btrfs_root *extent_root = info->extent_root; struct extent_buffer *leaf; struct btrfs_key ins_key; struct btrfs_extent_item *ei; struct tree_backref *tback; struct data_backref *dback; struct btrfs_tree_block_info *bi; if (!back->is_data) rec->max_size = max_t(u64, rec->max_size, info->extent_root->leafsize); if (!allocated) { u32 item_size = sizeof(*ei); if (!back->is_data) item_size += sizeof(*bi); ins_key.objectid = rec->start; ins_key.offset = rec->max_size; ins_key.type = BTRFS_EXTENT_ITEM_KEY; ret = btrfs_insert_empty_item(trans, extent_root, path, &ins_key, item_size); if (ret) goto fail; leaf = path->nodes[0]; ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); btrfs_set_extent_refs(leaf, ei, 0); btrfs_set_extent_generation(leaf, ei, rec->generation); if (back->is_data) { btrfs_set_extent_flags(leaf, ei, BTRFS_EXTENT_FLAG_DATA); } else { struct btrfs_disk_key copy_key;; tback = (struct tree_backref *)back; bi = (struct btrfs_tree_block_info *)(ei + 1); memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); btrfs_set_disk_key_objectid(©_key, rec->info_objectid); btrfs_set_disk_key_type(©_key, 0); btrfs_set_disk_key_offset(©_key, 0); btrfs_set_tree_block_level(leaf, bi, rec->info_level); btrfs_set_tree_block_key(leaf, bi, ©_key); btrfs_set_extent_flags(leaf, ei, BTRFS_EXTENT_FLAG_TREE_BLOCK | flags); } btrfs_mark_buffer_dirty(leaf); ret = btrfs_update_block_group(trans, extent_root, rec->start, rec->max_size, 1, 0); if (ret) goto fail; btrfs_release_path(path); } if (back->is_data) { u64 parent; int i; dback = (struct data_backref *)back; if (back->full_backref) parent = dback->parent; else parent = 0; for (i = 0; i < dback->found_ref; i++) { /* if parent != 0, we're doing a full backref * passing BTRFS_FIRST_FREE_OBJECTID as the owner * just makes the backref allocator create a data * backref */ ret = btrfs_inc_extent_ref(trans, info->extent_root, rec->start, rec->max_size, parent, dback->root, parent ? BTRFS_FIRST_FREE_OBJECTID : dback->owner, dback->offset); if (ret) break; } fprintf(stderr, "adding new data backref" " on %llu %s %llu owner %llu" " offset %llu found %d\n", (unsigned long long)rec->start, back->full_backref ? "parent" : "root", back->full_backref ? (unsigned long long)parent : (unsigned long long)dback->root, (unsigned long long)dback->owner, (unsigned long long)dback->offset, dback->found_ref); } else { u64 parent; tback = (struct tree_backref *)back; if (back->full_backref) parent = tback->parent; else parent = 0; ret = btrfs_inc_extent_ref(trans, info->extent_root, rec->start, rec->max_size, parent, tback->root, 0, 0); fprintf(stderr, "adding new tree backref on " "start %llu len %llu parent %llu root %llu\n", rec->start, rec->max_size, tback->parent, tback->root); } if (ret) goto fail; fail: btrfs_release_path(path); return ret; } struct extent_entry { u64 bytenr; u64 bytes; int count; int broken; struct list_head list; }; static struct extent_entry *find_entry(struct list_head *entries, u64 bytenr, u64 bytes) { struct extent_entry *entry = NULL; list_for_each_entry(entry, entries, list) { if (entry->bytenr == bytenr && entry->bytes == bytes) return entry; } return NULL; } static struct extent_entry *find_most_right_entry(struct list_head *entries) { struct extent_entry *entry, *best = NULL, *prev = NULL; list_for_each_entry(entry, entries, list) { if (!prev) { prev = entry; continue; } /* * If there are as many broken entries as entries then we know * not to trust this particular entry. */ if (entry->broken == entry->count) continue; /* * If our current entry == best then we can't be sure our best * is really the best, so we need to keep searching. */ if (best && best->count == entry->count) { prev = entry; best = NULL; continue; } /* Prev == entry, not good enough, have to keep searching */ if (!prev->broken && prev->count == entry->count) continue; if (!best) best = (prev->count > entry->count) ? prev : entry; else if (best->count < entry->count) best = entry; prev = entry; } return best; } static int repair_ref(struct btrfs_trans_handle *trans, struct btrfs_fs_info *info, struct btrfs_path *path, struct data_backref *dback, struct extent_entry *entry) { struct btrfs_root *root; struct btrfs_file_extent_item *fi; struct extent_buffer *leaf; struct btrfs_key key; u64 bytenr, bytes; int ret; key.objectid = dback->root; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; root = btrfs_read_fs_root(info, &key); if (IS_ERR(root)) { fprintf(stderr, "Couldn't find root for our ref\n"); return -EINVAL; } /* * The backref points to the original offset of the extent if it was * split, so we need to search down to the offset we have and then walk * forward until we find the backref we're looking for. */ key.objectid = dback->owner; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = dback->offset; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) { fprintf(stderr, "Error looking up ref %d\n", ret); return ret; } while (1) { if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { ret = btrfs_next_leaf(root, path); if (ret) { fprintf(stderr, "Couldn't find our ref, next\n"); return -EINVAL; } } leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != dback->owner || key.type != BTRFS_EXTENT_DATA_KEY) { fprintf(stderr, "Couldn't find our ref, search\n"); return -EINVAL; } fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); if (bytenr == dback->disk_bytenr && bytes == dback->bytes) break; path->slots[0]++; } btrfs_release_path(path); /* * Have to make sure that this root gets updated when we commit the * transaction */ root->track_dirty = 1; if (root->last_trans != trans->transid) { root->last_trans = trans->transid; root->commit_root = root->node; extent_buffer_get(root->node); } /* * Ok we have the key of the file extent we want to fix, now we can cow * down to the thing and fix it. */ ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret < 0) { fprintf(stderr, "Error cowing down to ref [%Lu, %u, %Lu]: %d\n", key.objectid, key.type, key.offset, ret); return ret; } if (ret > 0) { fprintf(stderr, "Well that's odd, we just found this key " "[%Lu, %u, %Lu]\n", key.objectid, key.type, key.offset); return -EINVAL; } leaf = path->nodes[0]; fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); if (btrfs_file_extent_compression(leaf, fi) && dback->disk_bytenr != entry->bytenr) { fprintf(stderr, "Ref doesn't match the record start and is " "compressed, please take a btrfs-image of this file " "system and send it to a btrfs developer so they can " "complete this functionality for bytenr %Lu\n", dback->disk_bytenr); return -EINVAL; } if (dback->node.broken && dback->disk_bytenr != entry->bytenr) { btrfs_set_file_extent_disk_bytenr(leaf, fi, entry->bytenr); } else if (dback->disk_bytenr > entry->bytenr) { u64 off_diff, offset; off_diff = dback->disk_bytenr - entry->bytenr; offset = btrfs_file_extent_offset(leaf, fi); if (dback->disk_bytenr + offset + btrfs_file_extent_num_bytes(leaf, fi) > entry->bytenr + entry->bytes) { fprintf(stderr, "Ref is past the entry end, please " "take a btrfs-image of this file system and " "send it to a btrfs developer, ref %Lu\n", dback->disk_bytenr); return -EINVAL; } offset += off_diff; btrfs_set_file_extent_disk_bytenr(leaf, fi, entry->bytenr); btrfs_set_file_extent_offset(leaf, fi, offset); } else if (dback->disk_bytenr < entry->bytenr) { u64 offset; offset = btrfs_file_extent_offset(leaf, fi); if (dback->disk_bytenr + offset < entry->bytenr) { fprintf(stderr, "Ref is before the entry start, please" " take a btrfs-image of this file system and " "send it to a btrfs developer, ref %Lu\n", dback->disk_bytenr); return -EINVAL; } offset += dback->disk_bytenr; offset -= entry->bytenr; btrfs_set_file_extent_disk_bytenr(leaf, fi, entry->bytenr); btrfs_set_file_extent_offset(leaf, fi, offset); } btrfs_set_file_extent_disk_num_bytes(leaf, fi, entry->bytes); /* * Chances are if disk_num_bytes were wrong then so is ram_bytes, but * only do this if we aren't using compression, otherwise it's a * trickier case. */ if (!btrfs_file_extent_compression(leaf, fi)) btrfs_set_file_extent_ram_bytes(leaf, fi, entry->bytes); else printf("ram bytes may be wrong?\n"); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(path); return 0; } static int verify_backrefs(struct btrfs_trans_handle *trans, struct btrfs_fs_info *info, struct btrfs_path *path, struct extent_record *rec) { struct extent_backref *back; struct data_backref *dback; struct extent_entry *entry, *best = NULL; LIST_HEAD(entries); int nr_entries = 0; int broken_entries = 0; int ret = 0; short mismatch = 0; /* * Metadata is easy and the backrefs should always agree on bytenr and * size, if not we've got bigger issues. */ if (rec->metadata) return 0; list_for_each_entry(back, &rec->backrefs, list) { dback = (struct data_backref *)back; /* * We only pay attention to backrefs that we found a real * backref for. */ if (dback->found_ref == 0) continue; if (back->full_backref) continue; /* * For now we only catch when the bytes don't match, not the * bytenr. We can easily do this at the same time, but I want * to have a fs image to test on before we just add repair * functionality willy-nilly so we know we won't screw up the * repair. */ entry = find_entry(&entries, dback->disk_bytenr, dback->bytes); if (!entry) { entry = malloc(sizeof(struct extent_entry)); if (!entry) { ret = -ENOMEM; goto out; } memset(entry, 0, sizeof(*entry)); entry->bytenr = dback->disk_bytenr; entry->bytes = dback->bytes; list_add_tail(&entry->list, &entries); nr_entries++; } /* * If we only have on entry we may think the entries agree when * in reality they don't so we have to do some extra checking. */ if (dback->disk_bytenr != rec->start || dback->bytes != rec->nr || back->broken) mismatch = 1; if (back->broken) { entry->broken++; broken_entries++; } entry->count++; } /* Yay all the backrefs agree, carry on good sir */ if (nr_entries <= 1 && !mismatch) goto out; fprintf(stderr, "attempting to repair backref discrepency for bytenr " "%Lu\n", rec->start); /* * First we want to see if the backrefs can agree amongst themselves who * is right, so figure out which one of the entries has the highest * count. */ best = find_most_right_entry(&entries); /* * Ok so we may have an even split between what the backrefs think, so * this is where we use the extent ref to see what it thinks. */ if (!best) { entry = find_entry(&entries, rec->start, rec->nr); if (!entry && (!broken_entries || !rec->found_rec)) { fprintf(stderr, "Backrefs don't agree with eachother " "and extent record doesn't agree with anybody," " so we can't fix bytenr %Lu bytes %Lu\n", rec->start, rec->nr); ret = -EINVAL; goto out; } else if (!entry) { /* * Ok our backrefs were broken, we'll assume this is the * correct value and add an entry for this range. */ entry = malloc(sizeof(struct extent_entry)); if (!entry) { ret = -ENOMEM; goto out; } memset(entry, 0, sizeof(*entry)); entry->bytenr = rec->start; entry->bytes = rec->nr; list_add_tail(&entry->list, &entries); nr_entries++; } entry->count++; best = find_most_right_entry(&entries); if (!best) { fprintf(stderr, "Backrefs and extent record evenly " "split on who is right, this is going to " "require user input to fix bytenr %Lu bytes " "%Lu\n", rec->start, rec->nr); ret = -EINVAL; goto out; } } /* * I don't think this can happen currently as we'll abort() if we catch * this case higher up, but in case somebody removes that we still can't * deal with it properly here yet, so just bail out of that's the case. */ if (best->bytenr != rec->start) { fprintf(stderr, "Extent start and backref starts don't match, " "please use btrfs-image on this file system and send " "it to a btrfs developer so they can make fsck fix " "this particular case. bytenr is %Lu, bytes is %Lu\n", rec->start, rec->nr); ret = -EINVAL; goto out; } /* * Ok great we all agreed on an extent record, let's go find the real * references and fix up the ones that don't match. */ list_for_each_entry(back, &rec->backrefs, list) { dback = (struct data_backref *)back; /* * Still ignoring backrefs that don't have a real ref attached * to them. */ if (dback->found_ref == 0) continue; if (back->full_backref) continue; if (dback->bytes == best->bytes && dback->disk_bytenr == best->bytenr) continue; ret = repair_ref(trans, info, path, dback, best); if (ret) goto out; } /* * Ok we messed with the actual refs, which means we need to drop our * entire cache and go back and rescan. I know this is a huge pain and * adds a lot of extra work, but it's the only way to be safe. Once all * the backrefs agree we may not need to do anything to the extent * record itself. */ ret = -EAGAIN; out: while (!list_empty(&entries)) { entry = list_entry(entries.next, struct extent_entry, list); list_del_init(&entry->list); free(entry); } return ret; } static int process_duplicates(struct btrfs_root *root, struct cache_tree *extent_cache, struct extent_record *rec) { struct extent_record *good, *tmp; struct cache_extent *cache; int ret; /* * If we found a extent record for this extent then return, or if we * have more than one duplicate we are likely going to need to delete * something. */ if (rec->found_rec || rec->num_duplicates > 1) return 0; /* Shouldn't happen but just in case */ BUG_ON(!rec->num_duplicates); /* * So this happens if we end up with a backref that doesn't match the * actual extent entry. So either the backref is bad or the extent * entry is bad. Either way we want to have the extent_record actually * reflect what we found in the extent_tree, so we need to take the * duplicate out and use that as the extent_record since the only way we * get a duplicate is if we find a real life BTRFS_EXTENT_ITEM_KEY. */ remove_cache_extent(extent_cache, &rec->cache); good = list_entry(rec->dups.next, struct extent_record, list); list_del_init(&good->list); INIT_LIST_HEAD(&good->backrefs); INIT_LIST_HEAD(&good->dups); good->cache.start = good->start; good->cache.size = good->nr; good->content_checked = 0; good->owner_ref_checked = 0; good->num_duplicates = 0; good->refs = rec->refs; list_splice_init(&rec->backrefs, &good->backrefs); while (1) { cache = lookup_cache_extent(extent_cache, good->start, good->nr); if (!cache) break; tmp = container_of(cache, struct extent_record, cache); /* * If we find another overlapping extent and it's found_rec is * set then it's a duplicate and we need to try and delete * something. */ if (tmp->found_rec || tmp->num_duplicates > 0) { if (list_empty(&good->list)) list_add_tail(&good->list, &duplicate_extents); good->num_duplicates += tmp->num_duplicates + 1; list_splice_init(&tmp->dups, &good->dups); list_del_init(&tmp->list); list_add_tail(&tmp->list, &good->dups); remove_cache_extent(extent_cache, &tmp->cache); continue; } /* * Ok we have another non extent item backed extent rec, so lets * just add it to this extent and carry on like we did above. */ good->refs += tmp->refs; list_splice_init(&tmp->backrefs, &good->backrefs); remove_cache_extent(extent_cache, &tmp->cache); free(tmp); } ret = insert_cache_extent(extent_cache, &good->cache); BUG_ON(ret); free(rec); return good->num_duplicates ? 0 : 1; } static int delete_duplicate_records(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_record *rec) { LIST_HEAD(delete_list); struct btrfs_path *path; struct extent_record *tmp, *good, *n; int nr_del = 0; int ret = 0; struct btrfs_key key; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } good = rec; /* Find the record that covers all of the duplicates. */ list_for_each_entry(tmp, &rec->dups, list) { if (good->start < tmp->start) continue; if (good->nr > tmp->nr) continue; if (tmp->start + tmp->nr < good->start + good->nr) { fprintf(stderr, "Ok we have overlapping extents that " "aren't completely covered by eachother, this " "is going to require more careful thought. " "The extents are [%Lu-%Lu] and [%Lu-%Lu]\n", tmp->start, tmp->nr, good->start, good->nr); abort(); } good = tmp; } if (good != rec) list_add_tail(&rec->list, &delete_list); list_for_each_entry_safe(tmp, n, &rec->dups, list) { if (tmp == good) continue; list_move_tail(&tmp->list, &delete_list); } root = root->fs_info->extent_root; list_for_each_entry(tmp, &delete_list, list) { if (tmp->found_rec == 0) continue; key.objectid = tmp->start; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = tmp->nr; /* Shouldn't happen but just in case */ if (tmp->metadata) { fprintf(stderr, "Well this shouldn't happen, extent " "record overlaps but is metadata? " "[%Lu, %Lu]\n", tmp->start, tmp->nr); abort(); } ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret) { if (ret > 0) ret = -EINVAL; goto out; } ret = btrfs_del_item(trans, root, path); if (ret) goto out; btrfs_release_path(path); nr_del++; } out: while (!list_empty(&delete_list)) { tmp = list_entry(delete_list.next, struct extent_record, list); list_del_init(&tmp->list); if (tmp == rec) continue; free(tmp); } while (!list_empty(&rec->dups)) { tmp = list_entry(rec->dups.next, struct extent_record, list); list_del_init(&tmp->list); free(tmp); } btrfs_free_path(path); if (!ret && !nr_del) rec->num_duplicates = 0; return ret ? ret : nr_del; } static int find_possible_backrefs(struct btrfs_trans_handle *trans, struct btrfs_fs_info *info, struct btrfs_path *path, struct cache_tree *extent_cache, struct extent_record *rec) { struct btrfs_root *root; struct extent_backref *back; struct data_backref *dback; struct cache_extent *cache; struct btrfs_file_extent_item *fi; struct btrfs_key key; u64 bytenr, bytes; int ret; list_for_each_entry(back, &rec->backrefs, list) { dback = (struct data_backref *)back; /* We found this one, we don't need to do a lookup */ if (dback->found_ref) continue; /* Don't care about full backrefs (poor unloved backrefs) */ if (back->full_backref) continue; key.objectid = dback->root; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; root = btrfs_read_fs_root(info, &key); /* No root, definitely a bad ref, skip */ if (IS_ERR(root) && PTR_ERR(root) == -ENOENT) continue; /* Other err, exit */ if (IS_ERR(root)) return PTR_ERR(root); key.objectid = dback->owner; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = dback->offset; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret) { btrfs_release_path(path); if (ret < 0) return ret; /* Didn't find it, we can carry on */ ret = 0; continue; } fi = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_file_extent_item); bytenr = btrfs_file_extent_disk_bytenr(path->nodes[0], fi); bytes = btrfs_file_extent_disk_num_bytes(path->nodes[0], fi); btrfs_release_path(path); cache = lookup_cache_extent(extent_cache, bytenr, 1); if (cache) { struct extent_record *tmp; tmp = container_of(cache, struct extent_record, cache); /* * If we found an extent record for the bytenr for this * particular backref then we can't add it to our * current extent record. We only want to add backrefs * that don't have a corresponding extent item in the * extent tree since they likely belong to this record * and we need to fix it if it doesn't match bytenrs. */ if (tmp->found_rec) continue; } dback->found_ref += 1; dback->disk_bytenr = bytenr; dback->bytes = bytes; /* * Set this so the verify backref code knows not to trust the * values in this backref. */ back->broken = 1; } return 0; } /* * when an incorrect extent item is found, this will delete * all of the existing entries for it and recreate them * based on what the tree scan found. */ static int fixup_extent_refs(struct btrfs_trans_handle *trans, struct btrfs_fs_info *info, struct cache_tree *extent_cache, struct extent_record *rec) { int ret; struct btrfs_path *path; struct list_head *cur = rec->backrefs.next; struct cache_extent *cache; struct extent_backref *back; int allocated = 0; u64 flags = 0; /* * remember our flags for recreating the extent. * FIXME, if we have cleared extent tree, we can not * lookup extent info in extent tree. */ if (!init_extent_tree) { ret = btrfs_lookup_extent_info(NULL, info->extent_root, rec->start, rec->max_size, rec->metadata, NULL, &flags); if (ret < 0) flags = 0; } else { flags = 0; } path = btrfs_alloc_path(); if (!path) return -ENOMEM; if (rec->refs != rec->extent_item_refs && !rec->metadata) { /* * Sometimes the backrefs themselves are so broken they don't * get attached to any meaningful rec, so first go back and * check any of our backrefs that we couldn't find and throw * them into the list if we find the backref so that * verify_backrefs can figure out what to do. */ ret = find_possible_backrefs(trans, info, path, extent_cache, rec); if (ret < 0) goto out; } /* step one, make sure all of the backrefs agree */ ret = verify_backrefs(trans, info, path, rec); if (ret < 0) goto out; /* step two, delete all the existing records */ ret = delete_extent_records(trans, info->extent_root, path, rec->start, rec->max_size); if (ret < 0) goto out; /* was this block corrupt? If so, don't add references to it */ cache = lookup_cache_extent(info->corrupt_blocks, rec->start, rec->max_size); if (cache) { ret = 0; goto out; } /* step three, recreate all the refs we did find */ while(cur != &rec->backrefs) { back = list_entry(cur, struct extent_backref, list); cur = cur->next; /* * if we didn't find any references, don't create a * new extent record */ if (!back->found_ref) continue; ret = record_extent(trans, info, path, rec, back, allocated, flags); allocated = 1; if (ret) goto out; } out: btrfs_free_path(path); return ret; } /* right now we only prune from the extent allocation tree */ static int prune_one_block(struct btrfs_trans_handle *trans, struct btrfs_fs_info *info, struct btrfs_corrupt_block *corrupt) { int ret; struct btrfs_path path; struct extent_buffer *eb; u64 found; int slot; int nritems; int level = corrupt->level + 1; btrfs_init_path(&path); again: /* we want to stop at the parent to our busted block */ path.lowest_level = level; ret = btrfs_search_slot(trans, info->extent_root, &corrupt->key, &path, -1, 1); if (ret < 0) goto out; eb = path.nodes[level]; if (!eb) { ret = -ENOENT; goto out; } /* * hopefully the search gave us the block we want to prune, * lets try that first */ slot = path.slots[level]; found = btrfs_node_blockptr(eb, slot); if (found == corrupt->cache.start) goto del_ptr; nritems = btrfs_header_nritems(eb); /* the search failed, lets scan this node and hope we find it */ for (slot = 0; slot < nritems; slot++) { found = btrfs_node_blockptr(eb, slot); if (found == corrupt->cache.start) goto del_ptr; } /* * we couldn't find the bad block. TODO, search all the nodes for pointers * to this block */ if (eb == info->extent_root->node) { ret = -ENOENT; goto out; } else { level++; btrfs_release_path(&path); goto again; } del_ptr: printk("deleting pointer to block %Lu\n", corrupt->cache.start); ret = btrfs_del_ptr(trans, info->extent_root, &path, level, slot); out: btrfs_release_path(&path); return ret; } static int prune_corrupt_blocks(struct btrfs_trans_handle *trans, struct btrfs_fs_info *info) { struct cache_extent *cache; struct btrfs_corrupt_block *corrupt; cache = search_cache_extent(info->corrupt_blocks, 0); while (1) { if (!cache) break; corrupt = container_of(cache, struct btrfs_corrupt_block, cache); prune_one_block(trans, info, corrupt); cache = next_cache_extent(cache); } return 0; } static void free_corrupt_block(struct cache_extent *cache) { struct btrfs_corrupt_block *corrupt; corrupt = container_of(cache, struct btrfs_corrupt_block, cache); free(corrupt); } FREE_EXTENT_CACHE_BASED_TREE(corrupt_blocks, free_corrupt_block); static void reset_cached_block_groups(struct btrfs_fs_info *fs_info) { struct btrfs_block_group_cache *cache; u64 start, end; int ret; while (1) { ret = find_first_extent_bit(&fs_info->free_space_cache, 0, &start, &end, EXTENT_DIRTY); if (ret) break; clear_extent_dirty(&fs_info->free_space_cache, start, end, GFP_NOFS); } start = 0; while (1) { cache = btrfs_lookup_first_block_group(fs_info, start); if (!cache) break; if (cache->cached) cache->cached = 0; start = cache->key.objectid + cache->key.offset; } } static int check_extent_refs(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct cache_tree *extent_cache) { struct extent_record *rec; struct cache_extent *cache; int err = 0; int ret = 0; int fixed = 0; int had_dups = 0; if (repair) { /* * if we're doing a repair, we have to make sure * we don't allocate from the problem extents. * In the worst case, this will be all the * extents in the FS */ cache = search_cache_extent(extent_cache, 0); while(cache) { rec = container_of(cache, struct extent_record, cache); btrfs_pin_extent(root->fs_info, rec->start, rec->max_size); cache = next_cache_extent(cache); } /* pin down all the corrupted blocks too */ cache = search_cache_extent(root->fs_info->corrupt_blocks, 0); while(cache) { btrfs_pin_extent(root->fs_info, cache->start, cache->size); cache = next_cache_extent(cache); } prune_corrupt_blocks(trans, root->fs_info); reset_cached_block_groups(root->fs_info); } /* * We need to delete any duplicate entries we find first otherwise we * could mess up the extent tree when we have backrefs that actually * belong to a different extent item and not the weird duplicate one. */ while (repair && !list_empty(&duplicate_extents)) { rec = list_entry(duplicate_extents.next, struct extent_record, list); list_del_init(&rec->list); /* Sometimes we can find a backref before we find an actual * extent, so we need to process it a little bit to see if there * truly are multiple EXTENT_ITEM_KEY's for the same range, or * if this is a backref screwup. If we need to delete stuff * process_duplicates() will return 0, otherwise it will return * 1 and we */ if (process_duplicates(root, extent_cache, rec)) continue; ret = delete_duplicate_records(trans, root, rec); if (ret < 0) return ret; /* * delete_duplicate_records will return the number of entries * deleted, so if it's greater than 0 then we know we actually * did something and we need to remove. */ if (ret) had_dups = 1; } if (had_dups) return -EAGAIN; while(1) { fixed = 0; cache = search_cache_extent(extent_cache, 0); if (!cache) break; rec = container_of(cache, struct extent_record, cache); if (rec->num_duplicates) { fprintf(stderr, "extent item %llu has multiple extent " "items\n", (unsigned long long)rec->start); err = 1; } if (rec->refs != rec->extent_item_refs) { fprintf(stderr, "ref mismatch on [%llu %llu] ", (unsigned long long)rec->start, (unsigned long long)rec->nr); fprintf(stderr, "extent item %llu, found %llu\n", (unsigned long long)rec->extent_item_refs, (unsigned long long)rec->refs); if (!fixed && repair) { ret = fixup_extent_refs(trans, root->fs_info, extent_cache, rec); if (ret) goto repair_abort; fixed = 1; } err = 1; } if (all_backpointers_checked(rec, 1)) { fprintf(stderr, "backpointer mismatch on [%llu %llu]\n", (unsigned long long)rec->start, (unsigned long long)rec->nr); if (!fixed && repair) { ret = fixup_extent_refs(trans, root->fs_info, extent_cache, rec); if (ret) goto repair_abort; fixed = 1; } err = 1; } if (!rec->owner_ref_checked) { fprintf(stderr, "owner ref check failed [%llu %llu]\n", (unsigned long long)rec->start, (unsigned long long)rec->nr); if (!fixed && repair) { ret = fixup_extent_refs(trans, root->fs_info, extent_cache, rec); if (ret) goto repair_abort; fixed = 1; } err = 1; } remove_cache_extent(extent_cache, cache); free_all_extent_backrefs(rec); free(rec); } repair_abort: if (repair) { if (ret && ret != -EAGAIN) { fprintf(stderr, "failed to repair damaged filesystem, aborting\n"); exit(1); } else if (!ret) { btrfs_fix_block_accounting(trans, root); } if (err) fprintf(stderr, "repaired damaged extent references\n"); return ret; } return err; } u64 calc_stripe_length(u64 type, u64 length, int num_stripes) { u64 stripe_size; if (type & BTRFS_BLOCK_GROUP_RAID0) { stripe_size = length; stripe_size /= num_stripes; } else if (type & BTRFS_BLOCK_GROUP_RAID10) { stripe_size = length * 2; stripe_size /= num_stripes; } else if (type & BTRFS_BLOCK_GROUP_RAID5) { stripe_size = length; stripe_size /= (num_stripes - 1); } else if (type & BTRFS_BLOCK_GROUP_RAID6) { stripe_size = length; stripe_size /= (num_stripes - 2); } else { stripe_size = length; } return stripe_size; } static int check_chunk_refs(struct chunk_record *chunk_rec, struct block_group_tree *block_group_cache, struct device_extent_tree *dev_extent_cache, int silent) { struct cache_extent *block_group_item; struct block_group_record *block_group_rec; struct cache_extent *dev_extent_item; struct device_extent_record *dev_extent_rec; u64 devid; u64 offset; u64 length; int i; int ret = 0; block_group_item = lookup_cache_extent(&block_group_cache->tree, chunk_rec->offset, chunk_rec->length); if (block_group_item) { block_group_rec = container_of(block_group_item, struct block_group_record, cache); if (chunk_rec->length != block_group_rec->offset || chunk_rec->offset != block_group_rec->objectid || chunk_rec->type_flags != block_group_rec->flags) { if (!silent) fprintf(stderr, "Chunk[%llu, %u, %llu]: length(%llu), offset(%llu), type(%llu) mismatch with block group[%llu, %u, %llu]: offset(%llu), objectid(%llu), flags(%llu)\n", chunk_rec->objectid, chunk_rec->type, chunk_rec->offset, chunk_rec->length, chunk_rec->offset, chunk_rec->type_flags, block_group_rec->objectid, block_group_rec->type, block_group_rec->offset, block_group_rec->offset, block_group_rec->objectid, block_group_rec->flags); ret = -1; } else { list_del_init(&block_group_rec->list); chunk_rec->bg_rec = block_group_rec; } } else { if (!silent) fprintf(stderr, "Chunk[%llu, %u, %llu]: length(%llu), offset(%llu), type(%llu) is not found in block group\n", chunk_rec->objectid, chunk_rec->type, chunk_rec->offset, chunk_rec->length, chunk_rec->offset, chunk_rec->type_flags); ret = -1; } length = calc_stripe_length(chunk_rec->type_flags, chunk_rec->length, chunk_rec->num_stripes); for (i = 0; i < chunk_rec->num_stripes; ++i) { devid = chunk_rec->stripes[i].devid; offset = chunk_rec->stripes[i].offset; dev_extent_item = lookup_cache_extent2(&dev_extent_cache->tree, devid, offset, length); if (dev_extent_item) { dev_extent_rec = container_of(dev_extent_item, struct device_extent_record, cache); if (dev_extent_rec->objectid != devid || dev_extent_rec->offset != offset || dev_extent_rec->chunk_offset != chunk_rec->offset || dev_extent_rec->length != length) { if (!silent) fprintf(stderr, "Chunk[%llu, %u, %llu] stripe[%llu, %llu] dismatch dev extent[%llu, %llu, %llu]\n", chunk_rec->objectid, chunk_rec->type, chunk_rec->offset, chunk_rec->stripes[i].devid, chunk_rec->stripes[i].offset, dev_extent_rec->objectid, dev_extent_rec->offset, dev_extent_rec->length); ret = -1; } else { list_move(&dev_extent_rec->chunk_list, &chunk_rec->dextents); } } else { if (!silent) fprintf(stderr, "Chunk[%llu, %u, %llu] stripe[%llu, %llu] is not found in dev extent\n", chunk_rec->objectid, chunk_rec->type, chunk_rec->offset, chunk_rec->stripes[i].devid, chunk_rec->stripes[i].offset); ret = -1; } } return ret; } /* check btrfs_chunk -> btrfs_dev_extent / btrfs_block_group_item */ int check_chunks(struct cache_tree *chunk_cache, struct block_group_tree *block_group_cache, struct device_extent_tree *dev_extent_cache, struct list_head *good, struct list_head *bad, int silent) { struct cache_extent *chunk_item; struct chunk_record *chunk_rec; struct block_group_record *bg_rec; struct device_extent_record *dext_rec; int err; int ret = 0; chunk_item = first_cache_extent(chunk_cache); while (chunk_item) { chunk_rec = container_of(chunk_item, struct chunk_record, cache); err = check_chunk_refs(chunk_rec, block_group_cache, dev_extent_cache, silent); if (err) { ret = err; if (bad) list_add_tail(&chunk_rec->list, bad); } else { if (good) list_add_tail(&chunk_rec->list, good); } chunk_item = next_cache_extent(chunk_item); } list_for_each_entry(bg_rec, &block_group_cache->block_groups, list) { if (!silent) fprintf(stderr, "Block group[%llu, %llu] (flags = %llu) didn't find the relative chunk.\n", bg_rec->objectid, bg_rec->offset, bg_rec->flags); if (!ret) ret = 1; } list_for_each_entry(dext_rec, &dev_extent_cache->no_chunk_orphans, chunk_list) { if (!silent) fprintf(stderr, "Device extent[%llu, %llu, %llu] didn't find the relative chunk.\n", dext_rec->objectid, dext_rec->offset, dext_rec->length); if (!ret) ret = 1; } return ret; } static int check_device_used(struct device_record *dev_rec, struct device_extent_tree *dext_cache) { struct cache_extent *cache; struct device_extent_record *dev_extent_rec; u64 total_byte = 0; cache = search_cache_extent2(&dext_cache->tree, dev_rec->devid, 0); while (cache) { dev_extent_rec = container_of(cache, struct device_extent_record, cache); if (dev_extent_rec->objectid != dev_rec->devid) break; list_del(&dev_extent_rec->device_list); total_byte += dev_extent_rec->length; cache = next_cache_extent(cache); } if (total_byte != dev_rec->byte_used) { fprintf(stderr, "Dev extent's total-byte(%llu) is not equal to byte-used(%llu) in dev[%llu, %u, %llu]\n", total_byte, dev_rec->byte_used, dev_rec->objectid, dev_rec->type, dev_rec->offset); return -1; } else { return 0; } } /* check btrfs_dev_item -> btrfs_dev_extent */ static int check_devices(struct rb_root *dev_cache, struct device_extent_tree *dev_extent_cache) { struct rb_node *dev_node; struct device_record *dev_rec; struct device_extent_record *dext_rec; int err; int ret = 0; dev_node = rb_first(dev_cache); while (dev_node) { dev_rec = container_of(dev_node, struct device_record, node); err = check_device_used(dev_rec, dev_extent_cache); if (err) ret = err; dev_node = rb_next(dev_node); } list_for_each_entry(dext_rec, &dev_extent_cache->no_device_orphans, device_list) { fprintf(stderr, "Device extent[%llu, %llu, %llu] didn't find its device.\n", dext_rec->objectid, dext_rec->offset, dext_rec->length); if (!ret) ret = 1; } return ret; } static int check_chunks_and_extents(struct btrfs_root *root) { struct rb_root dev_cache; struct cache_tree chunk_cache; struct block_group_tree block_group_cache; struct device_extent_tree dev_extent_cache; struct cache_tree extent_cache; struct cache_tree seen; struct cache_tree pending; struct cache_tree reada; struct cache_tree nodes; struct cache_tree corrupt_blocks; struct btrfs_path path; struct btrfs_key key; struct btrfs_key found_key; int ret, err = 0; u64 last = 0; struct block_info *bits; int bits_nr; struct extent_buffer *leaf; struct btrfs_trans_handle *trans = NULL; int slot; struct btrfs_root_item ri; struct list_head dropping_trees; dev_cache = RB_ROOT; cache_tree_init(&chunk_cache); block_group_tree_init(&block_group_cache); device_extent_tree_init(&dev_extent_cache); cache_tree_init(&extent_cache); cache_tree_init(&seen); cache_tree_init(&pending); cache_tree_init(&nodes); cache_tree_init(&reada); cache_tree_init(&corrupt_blocks); INIT_LIST_HEAD(&dropping_trees); if (repair) { trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { fprintf(stderr, "Error starting transaction\n"); return PTR_ERR(trans); } root->fs_info->fsck_extent_cache = &extent_cache; root->fs_info->free_extent_hook = free_extent_hook; root->fs_info->corrupt_blocks = &corrupt_blocks; } bits_nr = 1024; bits = malloc(bits_nr * sizeof(struct block_info)); if (!bits) { perror("malloc"); exit(1); } again: add_root_to_pending(root->fs_info->tree_root->node, &extent_cache, &pending, &seen, &nodes, &root->fs_info->tree_root->root_key); add_root_to_pending(root->fs_info->chunk_root->node, &extent_cache, &pending, &seen, &nodes, &root->fs_info->chunk_root->root_key); btrfs_init_path(&path); key.offset = 0; key.objectid = 0; btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, &path, 0, 0); BUG_ON(ret < 0); while(1) { leaf = path.nodes[0]; slot = path.slots[0]; if (slot >= btrfs_header_nritems(path.nodes[0])) { ret = btrfs_next_leaf(root, &path); if (ret != 0) break; leaf = path.nodes[0]; slot = path.slots[0]; } btrfs_item_key_to_cpu(leaf, &found_key, path.slots[0]); if (btrfs_key_type(&found_key) == BTRFS_ROOT_ITEM_KEY) { unsigned long offset; struct extent_buffer *buf; offset = btrfs_item_ptr_offset(leaf, path.slots[0]); read_extent_buffer(leaf, &ri, offset, sizeof(ri)); if (btrfs_disk_key_objectid(&ri.drop_progress) == 0) { buf = read_tree_block(root->fs_info->tree_root, btrfs_root_bytenr(&ri), btrfs_level_size(root, btrfs_root_level(&ri)), 0); if (!buf) { ret = -EIO; goto out; } add_root_to_pending(buf, &extent_cache, &pending, &seen, &nodes, &found_key); free_extent_buffer(buf); } else { struct dropping_root_item_record *dri_rec; dri_rec = malloc(sizeof(*dri_rec)); if (!dri_rec) { perror("malloc"); exit(1); } memcpy(&dri_rec->ri, &ri, sizeof(ri)); memcpy(&dri_rec->found_key, &found_key, sizeof(found_key)); list_add_tail(&dri_rec->list, &dropping_trees); } } path.slots[0]++; } btrfs_release_path(&path); while (1) { ret = run_next_block(trans, root, bits, bits_nr, &last, &pending, &seen, &reada, &nodes, &extent_cache, &chunk_cache, &dev_cache, &block_group_cache, &dev_extent_cache, NULL); if (ret != 0) break; } while (!list_empty(&dropping_trees)) { struct dropping_root_item_record *rec; struct extent_buffer *buf; rec = list_entry(dropping_trees.next, struct dropping_root_item_record, list); last = 0; if (!bits) { perror("realloc"); exit(1); } buf = read_tree_block(root->fs_info->tree_root, btrfs_root_bytenr(&rec->ri), btrfs_level_size(root, btrfs_root_level(&rec->ri)), 0); if (!buf) { ret = -EIO; goto out; } add_root_to_pending(buf, &extent_cache, &pending, &seen, &nodes, &rec->found_key); while (1) { ret = run_next_block(trans, root, bits, bits_nr, &last, &pending, &seen, &reada, &nodes, &extent_cache, &chunk_cache, &dev_cache, &block_group_cache, &dev_extent_cache, &rec->ri); if (ret != 0) break; } free_extent_buffer(buf); list_del(&rec->list); free(rec); } if (ret >= 0) ret = check_extent_refs(trans, root, &extent_cache); if (ret == -EAGAIN) { ret = btrfs_commit_transaction(trans, root); if (ret) goto out; trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out; } free_corrupt_blocks_tree(root->fs_info->corrupt_blocks); free_extent_cache_tree(&seen); free_extent_cache_tree(&pending); free_extent_cache_tree(&reada); free_extent_cache_tree(&nodes); free_extent_record_cache(root->fs_info, &extent_cache); goto again; } err = check_chunks(&chunk_cache, &block_group_cache, &dev_extent_cache, NULL, NULL, 0); if (err && !ret) ret = err; err = check_devices(&dev_cache, &dev_extent_cache); if (err && !ret) ret = err; if (trans) { err = btrfs_commit_transaction(trans, root); if (!ret) ret = err; } out: if (repair) { free_corrupt_blocks_tree(root->fs_info->corrupt_blocks); root->fs_info->fsck_extent_cache = NULL; root->fs_info->free_extent_hook = NULL; root->fs_info->corrupt_blocks = NULL; } free(bits); free_chunk_cache_tree(&chunk_cache); free_device_cache_tree(&dev_cache); free_block_group_tree(&block_group_cache); free_device_extent_tree(&dev_extent_cache); return ret; } static int btrfs_fsck_reinit_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, int overwrite) { struct extent_buffer *c; struct extent_buffer *old = root->node; int level; int ret; struct btrfs_disk_key disk_key = {0,0,0}; level = 0; if (overwrite) { c = old; extent_buffer_get(c); goto init; } c = btrfs_alloc_free_block(trans, root, btrfs_level_size(root, 0), root->root_key.objectid, &disk_key, level, 0, 0); if (IS_ERR(c)) { c = old; extent_buffer_get(c); overwrite = 1; } init: memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); btrfs_set_header_level(c, level); btrfs_set_header_bytenr(c, c->start); btrfs_set_header_generation(c, trans->transid); btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); btrfs_set_header_owner(c, root->root_key.objectid); write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); write_extent_buffer(c, root->fs_info->chunk_tree_uuid, btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); btrfs_mark_buffer_dirty(c); /* * this case can happen in the following case: * * 1.overwrite previous root. * * 2.reinit reloc data root, this is because we skip pin * down reloc data tree before which means we can allocate * same block bytenr here. */ if (old->start == c->start) { btrfs_set_root_generation(&root->root_item, trans->transid); root->root_item.level = btrfs_header_level(root->node); ret = btrfs_update_root(trans, root->fs_info->tree_root, &root->root_key, &root->root_item); if (ret) { free_extent_buffer(c); return ret; } } free_extent_buffer(old); root->node = c; add_root_to_dirty_list(root); return 0; } static int pin_down_tree_blocks(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, int tree_root) { struct extent_buffer *tmp; struct btrfs_root_item *ri; struct btrfs_key key; u64 bytenr; u32 leafsize; int level = btrfs_header_level(eb); int nritems; int ret; int i; btrfs_pin_extent(fs_info, eb->start, eb->len); leafsize = btrfs_super_leafsize(fs_info->super_copy); nritems = btrfs_header_nritems(eb); for (i = 0; i < nritems; i++) { if (level == 0) { btrfs_item_key_to_cpu(eb, &key, i); if (key.type != BTRFS_ROOT_ITEM_KEY) continue; /* Skip the extent root and reloc roots */ if (key.objectid == BTRFS_EXTENT_TREE_OBJECTID || key.objectid == BTRFS_TREE_RELOC_OBJECTID || key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) continue; ri = btrfs_item_ptr(eb, i, struct btrfs_root_item); bytenr = btrfs_disk_root_bytenr(eb, ri); /* * If at any point we start needing the real root we * will have to build a stump root for the root we are * in, but for now this doesn't actually use the root so * just pass in extent_root. */ tmp = read_tree_block(fs_info->extent_root, bytenr, leafsize, 0); if (!tmp) { fprintf(stderr, "Error reading root block\n"); return -EIO; } ret = pin_down_tree_blocks(fs_info, tmp, 0); free_extent_buffer(tmp); if (ret) return ret; } else { bytenr = btrfs_node_blockptr(eb, i); /* If we aren't the tree root don't read the block */ if (level == 1 && !tree_root) { btrfs_pin_extent(fs_info, bytenr, leafsize); continue; } tmp = read_tree_block(fs_info->extent_root, bytenr, leafsize, 0); if (!tmp) { fprintf(stderr, "Error reading tree block\n"); return -EIO; } ret = pin_down_tree_blocks(fs_info, tmp, tree_root); free_extent_buffer(tmp); if (ret) return ret; } } return 0; } static int pin_metadata_blocks(struct btrfs_fs_info *fs_info) { int ret; ret = pin_down_tree_blocks(fs_info, fs_info->chunk_root->node, 0); if (ret) return ret; return pin_down_tree_blocks(fs_info, fs_info->tree_root->node, 1); } static int reset_block_groups(struct btrfs_fs_info *fs_info) { struct btrfs_block_group_cache *cache; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_chunk *chunk; struct btrfs_key key; int ret; u64 start; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = 0; key.type = BTRFS_CHUNK_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); if (ret < 0) { btrfs_free_path(path); return ret; } /* * We do this in case the block groups were screwed up and had alloc * bits that aren't actually set on the chunks. This happens with * restored images every time and could happen in real life I guess. */ fs_info->avail_data_alloc_bits = 0; fs_info->avail_metadata_alloc_bits = 0; fs_info->avail_system_alloc_bits = 0; /* First we need to create the in-memory block groups */ while (1) { if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { ret = btrfs_next_leaf(fs_info->chunk_root, path); if (ret < 0) { btrfs_free_path(path); return ret; } if (ret) { ret = 0; break; } } leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.type != BTRFS_CHUNK_ITEM_KEY) { path->slots[0]++; continue; } chunk = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_chunk); btrfs_add_block_group(fs_info, 0, btrfs_chunk_type(leaf, chunk), key.objectid, key.offset, btrfs_chunk_length(leaf, chunk)); set_extent_dirty(&fs_info->free_space_cache, key.offset, key.offset + btrfs_chunk_length(leaf, chunk), GFP_NOFS); path->slots[0]++; } start = 0; while (1) { cache = btrfs_lookup_first_block_group(fs_info, start); if (!cache) break; cache->cached = 1; start = cache->key.objectid + cache->key.offset; } btrfs_free_path(path); return 0; } static int reset_balance(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *root = fs_info->tree_root; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_key key; int del_slot, del_nr = 0; int ret; int found = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = BTRFS_BALANCE_OBJECTID; key.type = BTRFS_BALANCE_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret) { if (ret > 0) ret = 0; if (!ret) goto reinit_data_reloc; else goto out; } ret = btrfs_del_item(trans, root, path); if (ret) goto out; btrfs_release_path(path); key.objectid = BTRFS_TREE_RELOC_OBJECTID; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) goto out; while (1) { if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { if (!found) break; if (del_nr) { ret = btrfs_del_items(trans, root, path, del_slot, del_nr); del_nr = 0; if (ret) goto out; } key.offset++; btrfs_release_path(path); found = 0; ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) goto out; continue; } found = 1; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid > BTRFS_TREE_RELOC_OBJECTID) break; if (key.objectid != BTRFS_TREE_RELOC_OBJECTID) { path->slots[0]++; continue; } if (!del_nr) { del_slot = path->slots[0]; del_nr = 1; } else { del_nr++; } path->slots[0]++; } if (del_nr) { ret = btrfs_del_items(trans, root, path, del_slot, del_nr); if (ret) goto out; } btrfs_release_path(path); reinit_data_reloc: key.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; root = btrfs_read_fs_root(fs_info, &key); if (IS_ERR(root)) { fprintf(stderr, "Error reading data reloc tree\n"); return PTR_ERR(root); } root->track_dirty = 1; if (root->last_trans != trans->transid) { root->last_trans = trans->transid; root->commit_root = root->node; extent_buffer_get(root->node); } ret = btrfs_fsck_reinit_root(trans, root, 0); if (ret) goto out; ret = btrfs_make_root_dir(trans, root, BTRFS_FIRST_FREE_OBJECTID); out: btrfs_free_path(path); return ret; } static int reinit_extent_tree(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { u64 start = 0; int ret; /* * The only reason we don't do this is because right now we're just * walking the trees we find and pinning down their bytes, we don't look * at any of the leaves. In order to do mixed groups we'd have to check * the leaves of any fs roots and pin down the bytes for any file * extents we find. Not hard but why do it if we don't have to? */ if (btrfs_fs_incompat(fs_info, BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)) { fprintf(stderr, "We don't support re-initing the extent tree " "for mixed block groups yet, please notify a btrfs " "developer you want to do this so they can add this " "functionality.\n"); return -EINVAL; } /* * first we need to walk all of the trees except the extent tree and pin * down the bytes that are in use so we don't overwrite any existing * metadata. */ ret = pin_metadata_blocks(fs_info); if (ret) { fprintf(stderr, "error pinning down used bytes\n"); return ret; } /* * Need to drop all the block groups since we're going to recreate all * of them again. */ btrfs_free_block_groups(fs_info); ret = reset_block_groups(fs_info); if (ret) { fprintf(stderr, "error resetting the block groups\n"); return ret; } /* Ok we can allocate now, reinit the extent root */ ret = btrfs_fsck_reinit_root(trans, fs_info->extent_root, 0); if (ret) { fprintf(stderr, "extent root initialization failed\n"); /* * When the transaction code is updated we should end the * transaction, but for now progs only knows about commit so * just return an error. */ return ret; } /* * Now we have all the in-memory block groups setup so we can make * allocations properly, and the metadata we care about is safe since we * pinned all of it above. */ while (1) { struct btrfs_block_group_cache *cache; cache = btrfs_lookup_first_block_group(fs_info, start); if (!cache) break; start = cache->key.objectid + cache->key.offset; ret = btrfs_insert_item(trans, fs_info->extent_root, &cache->key, &cache->item, sizeof(cache->item)); if (ret) { fprintf(stderr, "Error adding block group\n"); return ret; } btrfs_extent_post_op(trans, fs_info->extent_root); } ret = reset_balance(trans, fs_info); if (ret) fprintf(stderr, "error reseting the pending balance\n"); return ret; } static int recow_extent_buffer(struct btrfs_root *root, struct extent_buffer *eb) { struct btrfs_path *path; struct btrfs_trans_handle *trans; struct btrfs_key key; int ret; printf("Recowing metadata block %llu\n", eb->start); key.objectid = btrfs_header_owner(eb); key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; root = btrfs_read_fs_root(root->fs_info, &key); if (IS_ERR(root)) { fprintf(stderr, "Couldn't find owner root %llu\n", key.objectid); return PTR_ERR(root); } path = btrfs_alloc_path(); if (!path) return -ENOMEM; trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { btrfs_free_path(path); return PTR_ERR(trans); } path->lowest_level = btrfs_header_level(eb); if (path->lowest_level) btrfs_node_key_to_cpu(eb, &key, 0); else btrfs_item_key_to_cpu(eb, &key, 0); ret = btrfs_search_slot(trans, root, &key, path, 0, 1); btrfs_commit_transaction(trans, root); btrfs_free_path(path); return ret; } static int delete_bad_item(struct btrfs_root *root, struct bad_item *bad) { struct btrfs_path *path; struct btrfs_trans_handle *trans; struct btrfs_key key; int ret; printf("Deleting bad item [%llu,%u,%llu]\n", bad->key.objectid, bad->key.type, bad->key.offset); key.objectid = bad->root_id; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; root = btrfs_read_fs_root(root->fs_info, &key); if (IS_ERR(root)) { fprintf(stderr, "Couldn't find owner root %llu\n", key.objectid); return PTR_ERR(root); } path = btrfs_alloc_path(); if (!path) return -ENOMEM; trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { btrfs_free_path(path); return PTR_ERR(trans); } ret = btrfs_search_slot(trans, root, &bad->key, path, -1, 1); if (ret) { if (ret > 0) ret = 0; goto out; } ret = btrfs_del_item(trans, root, path); out: btrfs_commit_transaction(trans, root); btrfs_free_path(path); return ret; } static struct option long_options[] = { { "super", 1, NULL, 's' }, { "repair", 0, NULL, 0 }, { "init-csum-tree", 0, NULL, 0 }, { "init-extent-tree", 0, NULL, 0 }, { "backup", 0, NULL, 0 }, { NULL, 0, NULL, 0} }; const char * const cmd_check_usage[] = { "btrfs check [options] ", "Check an unmounted btrfs filesystem.", "", "-s|--super use this superblock copy", "-b|--backup use the backup root copy", "--repair try to repair the filesystem", "--init-csum-tree create a new CRC tree", "--init-extent-tree create a new extent tree", NULL }; int cmd_check(int argc, char **argv) { struct cache_tree root_cache; struct btrfs_root *root; struct btrfs_fs_info *info; u64 bytenr = 0; char uuidbuf[BTRFS_UUID_UNPARSED_SIZE]; int ret; u64 num; int option_index = 0; int init_csum_tree = 0; enum btrfs_open_ctree_flags ctree_flags = OPEN_CTREE_PARTIAL | OPEN_CTREE_EXCLUSIVE; while(1) { int c; c = getopt_long(argc, argv, "as:b", long_options, &option_index); if (c < 0) break; switch(c) { case 'a': /* ignored */ break; case 'b': ctree_flags |= OPEN_CTREE_BACKUP_ROOT; break; case 's': num = arg_strtou64(optarg); if (num >= BTRFS_SUPER_MIRROR_MAX) { fprintf(stderr, "ERROR: super mirror should be less than: %d\n", BTRFS_SUPER_MIRROR_MAX); exit(1); } bytenr = btrfs_sb_offset(((int)num)); printf("using SB copy %llu, bytenr %llu\n", num, (unsigned long long)bytenr); break; case '?': case 'h': usage(cmd_check_usage); } if (option_index == 1) { printf("enabling repair mode\n"); repair = 1; ctree_flags |= OPEN_CTREE_WRITES; } else if (option_index == 2) { printf("Creating a new CRC tree\n"); init_csum_tree = 1; repair = 1; ctree_flags |= OPEN_CTREE_WRITES; } else if (option_index == 3) { init_extent_tree = 1; ctree_flags |= (OPEN_CTREE_WRITES | OPEN_CTREE_NO_BLOCK_GROUPS); repair = 1; } } argc = argc - optind; if (argc != 1) usage(cmd_check_usage); radix_tree_init(); cache_tree_init(&root_cache); if((ret = check_mounted(argv[optind])) < 0) { fprintf(stderr, "Could not check mount status: %s\n", strerror(-ret)); goto err_out; } else if(ret) { fprintf(stderr, "%s is currently mounted. Aborting.\n", argv[optind]); ret = -EBUSY; goto err_out; } info = open_ctree_fs_info(argv[optind], bytenr, 0, ctree_flags); if (!info) { fprintf(stderr, "Couldn't open file system\n"); ret = -EIO; goto err_out; } root = info->fs_root; uuid_unparse(info->super_copy->fsid, uuidbuf); printf("Checking filesystem on %s\nUUID: %s\n", argv[optind], uuidbuf); if (!extent_buffer_uptodate(info->tree_root->node) || !extent_buffer_uptodate(info->dev_root->node) || !extent_buffer_uptodate(info->chunk_root->node)) { fprintf(stderr, "Critical roots corrupted, unable to fsck the FS\n"); ret = -EIO; goto close_out; } if (init_extent_tree || init_csum_tree) { struct btrfs_trans_handle *trans; trans = btrfs_start_transaction(info->extent_root, 0); if (IS_ERR(trans)) { fprintf(stderr, "Error starting transaction\n"); ret = PTR_ERR(trans); goto close_out; } if (init_extent_tree) { printf("Creating a new extent tree\n"); ret = reinit_extent_tree(trans, info); if (ret) goto close_out; } if (init_csum_tree) { fprintf(stderr, "Reinit crc root\n"); ret = btrfs_fsck_reinit_root(trans, info->csum_root, 0); if (ret) { fprintf(stderr, "crc root initialization failed\n"); ret = -EIO; goto close_out; } } /* * Ok now we commit and run the normal fsck, which will add * extent entries for all of the items it finds. */ ret = btrfs_commit_transaction(trans, info->extent_root); if (ret) goto close_out; } if (!extent_buffer_uptodate(info->extent_root->node)) { fprintf(stderr, "Critical roots corrupted, unable to fsck the FS\n"); ret = -EIO; goto close_out; } fprintf(stderr, "checking extents\n"); ret = check_chunks_and_extents(root); if (ret) fprintf(stderr, "Errors found in extent allocation tree or chunk allocation\n"); fprintf(stderr, "checking free space cache\n"); ret = check_space_cache(root); if (ret) goto out; /* * We used to have to have these hole extents in between our real * extents so if we don't have this flag set we need to make sure there * are no gaps in the file extents for inodes, otherwise we can just * ignore it when this happens. */ no_holes = btrfs_fs_incompat(root->fs_info, BTRFS_FEATURE_INCOMPAT_NO_HOLES); fprintf(stderr, "checking fs roots\n"); ret = check_fs_roots(root, &root_cache); if (ret) goto out; fprintf(stderr, "checking csums\n"); ret = check_csums(root); if (ret) goto out; fprintf(stderr, "checking root refs\n"); ret = check_root_refs(root, &root_cache); if (ret) goto out; while (repair && !list_empty(&root->fs_info->recow_ebs)) { struct extent_buffer *eb; eb = list_first_entry(&root->fs_info->recow_ebs, struct extent_buffer, recow); ret = recow_extent_buffer(root, eb); if (ret) break; } while (!list_empty(&delete_items)) { struct bad_item *bad; bad = list_first_entry(&delete_items, struct bad_item, list); list_del_init(&bad->list); if (repair) ret = delete_bad_item(root, bad); free(bad); } if (!list_empty(&root->fs_info->recow_ebs)) { fprintf(stderr, "Transid errors in file system\n"); ret = 1; } out: if (found_old_backref) { /* * there was a disk format change when mixed * backref was in testing tree. The old format * existed about one week. */ printf("\n * Found old mixed backref format. " "The old format is not supported! *" "\n * Please mount the FS in readonly mode, " "backup data and re-format the FS. *\n\n"); ret = 1; } printf("found %llu bytes used err is %d\n", (unsigned long long)bytes_used, ret); printf("total csum bytes: %llu\n",(unsigned long long)total_csum_bytes); printf("total tree bytes: %llu\n", (unsigned long long)total_btree_bytes); printf("total fs tree bytes: %llu\n", (unsigned long long)total_fs_tree_bytes); printf("total extent tree bytes: %llu\n", (unsigned long long)total_extent_tree_bytes); printf("btree space waste bytes: %llu\n", (unsigned long long)btree_space_waste); printf("file data blocks allocated: %llu\n referenced %llu\n", (unsigned long long)data_bytes_allocated, (unsigned long long)data_bytes_referenced); printf("%s\n", BTRFS_BUILD_VERSION); free_root_recs_tree(&root_cache); close_out: close_ctree(root); err_out: return ret; }