/* * Copyright (C) 2011 STRATO. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include "kerncompat.h" #include "androidcompat.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "ioctl.h" #include "utils.h" #include "volumes.h" #include "disk-io.h" #include "commands.h" static const char * const scrub_cmd_group_usage[] = { "btrfs scrub [options] |", NULL }; #define SCRUB_DATA_FILE "/var/lib/btrfs/scrub.status" #define SCRUB_PROGRESS_SOCKET_PATH "/var/lib/btrfs/scrub.progress" #define SCRUB_FILE_VERSION_PREFIX "scrub status" #define SCRUB_FILE_VERSION "1" struct scrub_stats { time_t t_start; time_t t_resumed; u64 duration; u64 finished; u64 canceled; int in_progress; }; /* TBD: replace with #include "linux/ioprio.h" in some years */ #if !defined (IOPRIO_H) #define IOPRIO_WHO_PROCESS 1 #define IOPRIO_CLASS_SHIFT 13 #define IOPRIO_PRIO_VALUE(class, data) \ (((class) << IOPRIO_CLASS_SHIFT) | (data)) #define IOPRIO_CLASS_IDLE 3 #endif struct scrub_progress { struct btrfs_ioctl_scrub_args scrub_args; int fd; int ret; int skip; struct scrub_stats stats; struct scrub_file_record *resumed; int ioctl_errno; pthread_mutex_t progress_mutex; int ioprio_class; int ioprio_classdata; }; struct scrub_file_record { u8 fsid[BTRFS_FSID_SIZE]; u64 devid; struct scrub_stats stats; struct btrfs_scrub_progress p; }; struct scrub_progress_cycle { int fdmnt; int prg_fd; int do_record; struct btrfs_ioctl_fs_info_args *fi; struct scrub_progress *progress; struct scrub_progress *shared_progress; pthread_mutex_t *write_mutex; }; struct scrub_fs_stat { struct btrfs_scrub_progress p; struct scrub_stats s; int i; }; static void print_scrub_full(struct btrfs_scrub_progress *sp) { printf("\tdata_extents_scrubbed: %lld\n", sp->data_extents_scrubbed); printf("\ttree_extents_scrubbed: %lld\n", sp->tree_extents_scrubbed); printf("\tdata_bytes_scrubbed: %lld\n", sp->data_bytes_scrubbed); printf("\ttree_bytes_scrubbed: %lld\n", sp->tree_bytes_scrubbed); printf("\tread_errors: %lld\n", sp->read_errors); printf("\tcsum_errors: %lld\n", sp->csum_errors); printf("\tverify_errors: %lld\n", sp->verify_errors); printf("\tno_csum: %lld\n", sp->no_csum); printf("\tcsum_discards: %lld\n", sp->csum_discards); printf("\tsuper_errors: %lld\n", sp->super_errors); printf("\tmalloc_errors: %lld\n", sp->malloc_errors); printf("\tuncorrectable_errors: %lld\n", sp->uncorrectable_errors); printf("\tunverified_errors: %lld\n", sp->unverified_errors); printf("\tcorrected_errors: %lld\n", sp->corrected_errors); printf("\tlast_physical: %lld\n", sp->last_physical); } #define PRINT_SCRUB_ERROR(test, desc) do { \ if (test) \ printf(" %s=%llu", desc, test); \ } while (0) static void print_scrub_summary(struct btrfs_scrub_progress *p) { u64 err_cnt; u64 err_cnt2; err_cnt = p->read_errors + p->csum_errors + p->verify_errors + p->super_errors; err_cnt2 = p->corrected_errors + p->uncorrectable_errors; if (p->malloc_errors) printf("*** WARNING: memory allocation failed while scrubbing. " "results may be inaccurate\n"); printf("\ttotal bytes scrubbed: %s with %llu errors\n", pretty_size(p->data_bytes_scrubbed + p->tree_bytes_scrubbed), max(err_cnt, err_cnt2)); if (err_cnt || err_cnt2) { printf("\terror details:"); PRINT_SCRUB_ERROR(p->read_errors, "read"); PRINT_SCRUB_ERROR(p->super_errors, "super"); PRINT_SCRUB_ERROR(p->verify_errors, "verify"); PRINT_SCRUB_ERROR(p->csum_errors, "csum"); printf("\n"); printf("\tcorrected errors: %llu, uncorrectable errors: %llu, " "unverified errors: %llu\n", p->corrected_errors, p->uncorrectable_errors, p->unverified_errors); } } #define _SCRUB_FS_STAT(p, name, fs_stat) do { \ fs_stat->p.name += p->name; \ } while (0) #define _SCRUB_FS_STAT_MIN(ss, name, fs_stat) \ do { \ if (fs_stat->s.name > ss->name) { \ fs_stat->s.name = ss->name; \ } \ } while (0) #define _SCRUB_FS_STAT_ZMIN(ss, name, fs_stat) \ do { \ if (!fs_stat->s.name || fs_stat->s.name > ss->name) { \ fs_stat->s.name = ss->name; \ } \ } while (0) #define _SCRUB_FS_STAT_ZMAX(ss, name, fs_stat) \ do { \ if (!(fs_stat)->s.name || (fs_stat)->s.name < (ss)->name) { \ (fs_stat)->s.name = (ss)->name; \ } \ } while (0) static void add_to_fs_stat(struct btrfs_scrub_progress *p, struct scrub_stats *ss, struct scrub_fs_stat *fs_stat) { _SCRUB_FS_STAT(p, data_extents_scrubbed, fs_stat); _SCRUB_FS_STAT(p, tree_extents_scrubbed, fs_stat); _SCRUB_FS_STAT(p, data_bytes_scrubbed, fs_stat); _SCRUB_FS_STAT(p, tree_bytes_scrubbed, fs_stat); _SCRUB_FS_STAT(p, read_errors, fs_stat); _SCRUB_FS_STAT(p, csum_errors, fs_stat); _SCRUB_FS_STAT(p, verify_errors, fs_stat); _SCRUB_FS_STAT(p, no_csum, fs_stat); _SCRUB_FS_STAT(p, csum_discards, fs_stat); _SCRUB_FS_STAT(p, super_errors, fs_stat); _SCRUB_FS_STAT(p, malloc_errors, fs_stat); _SCRUB_FS_STAT(p, uncorrectable_errors, fs_stat); _SCRUB_FS_STAT(p, corrected_errors, fs_stat); _SCRUB_FS_STAT(p, last_physical, fs_stat); _SCRUB_FS_STAT_ZMIN(ss, t_start, fs_stat); _SCRUB_FS_STAT_ZMIN(ss, t_resumed, fs_stat); _SCRUB_FS_STAT_ZMAX(ss, duration, fs_stat); _SCRUB_FS_STAT_ZMAX(ss, canceled, fs_stat); _SCRUB_FS_STAT_MIN(ss, finished, fs_stat); } static void init_fs_stat(struct scrub_fs_stat *fs_stat) { memset(fs_stat, 0, sizeof(*fs_stat)); fs_stat->s.finished = 1; } static void _print_scrub_ss(struct scrub_stats *ss) { char t[4096]; struct tm tm; time_t seconds; unsigned hours; if (!ss || !ss->t_start) { printf("\tno stats available\n"); return; } if (ss->t_resumed) { localtime_r(&ss->t_resumed, &tm); strftime(t, sizeof(t), "%c", &tm); t[sizeof(t) - 1] = '\0'; printf("\tscrub resumed at %s", t); } else { localtime_r(&ss->t_start, &tm); strftime(t, sizeof(t), "%c", &tm); t[sizeof(t) - 1] = '\0'; printf("\tscrub started at %s", t); } seconds = ss->duration; hours = ss->duration / (60 * 60); gmtime_r(&seconds, &tm); strftime(t, sizeof(t), "%M:%S", &tm); if (ss->in_progress) printf(", running for %02u:%s\n", hours, t); else if (ss->canceled) printf(" and was aborted after %02u:%s\n", hours, t); else if (ss->finished) printf(" and finished after %02u:%s\n", hours, t); else printf(", interrupted after %02u:%s, not running\n", hours, t); } static void print_scrub_dev(struct btrfs_ioctl_dev_info_args *di, struct btrfs_scrub_progress *p, int raw, const char *append, struct scrub_stats *ss) { printf("scrub device %s (id %llu) %s\n", di->path, di->devid, append ? append : ""); _print_scrub_ss(ss); if (p) { if (raw) print_scrub_full(p); else print_scrub_summary(p); } } static void print_fs_stat(struct scrub_fs_stat *fs_stat, int raw) { _print_scrub_ss(&fs_stat->s); if (raw) print_scrub_full(&fs_stat->p); else print_scrub_summary(&fs_stat->p); } static void free_history(struct scrub_file_record **last_scrubs) { struct scrub_file_record **l = last_scrubs; if (!l || IS_ERR(l)) return; while (*l) free(*l++); free(last_scrubs); } /* * cancels a running scrub and makes the master process record the current * progress status before exiting. */ static int cancel_fd = -1; static void scrub_sigint_record_progress(int signal) { int ret; ret = ioctl(cancel_fd, BTRFS_IOC_SCRUB_CANCEL, NULL); if (ret < 0) perror("Scrub cancel failed"); } static int scrub_handle_sigint_parent(void) { struct sigaction sa = { .sa_handler = SIG_IGN, .sa_flags = SA_RESTART, }; return sigaction(SIGINT, &sa, NULL); } static int scrub_handle_sigint_child(int fd) { struct sigaction sa = { .sa_handler = fd == -1 ? SIG_DFL : scrub_sigint_record_progress, }; cancel_fd = fd; return sigaction(SIGINT, &sa, NULL); } static int scrub_datafile(const char *fn_base, const char *fn_local, const char *fn_tmp, char *datafile, int size) { int ret; int end = size - 2; datafile[end + 1] = '\0'; strncpy(datafile, fn_base, end); ret = strlen(datafile); if (ret + 1 > end) return -EOVERFLOW; datafile[ret] = '.'; strncpy(datafile + ret + 1, fn_local, end - ret - 1); ret = strlen(datafile); if (ret + 1 > end) return -EOVERFLOW; if (fn_tmp) { datafile[ret] = '_'; strncpy(datafile + ret + 1, fn_tmp, end - ret - 1); ret = strlen(datafile); if (ret > end) return -EOVERFLOW; } return 0; } static int scrub_open_file(const char *datafile, int m) { int fd; int ret; fd = open(datafile, m, 0600); if (fd < 0) return -errno; ret = flock(fd, LOCK_EX|LOCK_NB); if (ret) { ret = errno; close(fd); return -ret; } return fd; } static int scrub_open_file_r(const char *fn_base, const char *fn_local) { int ret; char datafile[PATH_MAX]; ret = scrub_datafile(fn_base, fn_local, NULL, datafile, sizeof(datafile)); if (ret < 0) return ret; return scrub_open_file(datafile, O_RDONLY); } static int scrub_open_file_w(const char *fn_base, const char *fn_local, const char *tmp) { int ret; char datafile[PATH_MAX]; ret = scrub_datafile(fn_base, fn_local, tmp, datafile, sizeof(datafile)); if (ret < 0) return ret; return scrub_open_file(datafile, O_WRONLY|O_CREAT); } static int scrub_rename_file(const char *fn_base, const char *fn_local, const char *tmp) { int ret; char datafile_old[PATH_MAX]; char datafile_new[PATH_MAX]; ret = scrub_datafile(fn_base, fn_local, tmp, datafile_old, sizeof(datafile_old)); if (ret < 0) return ret; ret = scrub_datafile(fn_base, fn_local, NULL, datafile_new, sizeof(datafile_new)); if (ret < 0) return ret; ret = rename(datafile_old, datafile_new); return ret ? -errno : 0; } #define _SCRUB_KVREAD(ret, i, name, avail, l, dest) if (ret == 0) { \ ret = scrub_kvread(i, sizeof(#name), avail, l, #name, dest.name); \ } /* * returns 0 if the key did not match (nothing was read) * 1 if the key did match (success) * -1 if the key did match and an error occurred */ static int scrub_kvread(int *i, int len, int avail, const char *buf, const char *key, u64 *dest) { int j; if (*i + len + 1 < avail && strncmp(&buf[*i], key, len - 1) == 0) { *i += len - 1; if (buf[*i] != ':') return -1; *i += 1; for (j = 0; isdigit(buf[*i + j]) && *i + j < avail; ++j) ; if (*i + j >= avail) return -1; *dest = atoll(&buf[*i]); *i += j; return 1; } return 0; } #define _SCRUB_INVALID do { \ if (report_errors) \ warning("invalid data on line %d pos " \ "%d state %d (near \"%.*s\") at %s:%d", \ lineno, i, state, 20 > avail ? avail : 20, \ l + i, __FILE__, __LINE__); \ goto skip; \ } while (0) static struct scrub_file_record **scrub_read_file(int fd, int report_errors) { int avail = 0; int old_avail = 0; char l[16 * 1024]; int state = 0; int curr = -1; int i = 0; int j; int ret; int eof = 0; int lineno = 0; u64 version; char empty_uuid[BTRFS_FSID_SIZE] = {0}; struct scrub_file_record **p = NULL; again: old_avail = avail - i; BUG_ON(old_avail < 0); if (old_avail) memmove(l, l + i, old_avail); avail = read(fd, l + old_avail, sizeof(l) - old_avail); if (avail == 0) eof = 1; if (avail == 0 && old_avail == 0) { if (curr >= 0 && memcmp(p[curr]->fsid, empty_uuid, BTRFS_FSID_SIZE) == 0) { p[curr] = NULL; } else if (curr == -1) { p = ERR_PTR(-ENODATA); } return p; } if (avail == -1) { free_history(p); return ERR_PTR(-errno); } avail += old_avail; i = 0; while (i < avail) { void *tmp; switch (state) { case 0: /* start of file */ ret = scrub_kvread(&i, sizeof(SCRUB_FILE_VERSION_PREFIX), avail, l, SCRUB_FILE_VERSION_PREFIX, &version); if (ret != 1) _SCRUB_INVALID; if (version != atoll(SCRUB_FILE_VERSION)) return ERR_PTR(-ENOTSUP); state = 6; continue; case 1: /* start of line, alloc */ /* * this state makes sure we have a complete line in * further processing, so we don't need wrap-tracking * everywhere. */ if (!eof && !memchr(l + i, '\n', avail - i)) goto again; ++lineno; if (curr > -1 && memcmp(p[curr]->fsid, empty_uuid, BTRFS_FSID_SIZE) == 0) { state = 2; continue; } ++curr; tmp = p; p = realloc(p, (curr + 2) * sizeof(*p)); if (!p) { free_history(tmp); return ERR_PTR(-errno); } p[curr] = malloc(sizeof(**p)); if (!p[curr]) { free_history(p); return ERR_PTR(-errno); } memset(p[curr], 0, sizeof(**p)); p[curr + 1] = NULL; ++state; /* fall through */ case 2: /* start of line, skip space */ while (isspace(l[i]) && i < avail) { if (l[i] == '\n') ++lineno; ++i; } if (i >= avail || (!eof && !memchr(l + i, '\n', avail - i))) goto again; ++state; /* fall through */ case 3: /* read fsid */ if (i == avail) continue; for (j = 0; l[i + j] != ':' && i + j < avail; ++j) ; if (i + j + 1 >= avail) _SCRUB_INVALID; if (j != BTRFS_UUID_UNPARSED_SIZE - 1) _SCRUB_INVALID; l[i + j] = '\0'; ret = uuid_parse(l + i, p[curr]->fsid); if (ret) _SCRUB_INVALID; i += j + 1; ++state; /* fall through */ case 4: /* read dev id */ for (j = 0; isdigit(l[i + j]) && i+j < avail; ++j) ; if (j == 0 || i + j + 1 >= avail) _SCRUB_INVALID; p[curr]->devid = atoll(&l[i]); i += j + 1; ++state; /* fall through */ case 5: /* read key/value pair */ ret = 0; _SCRUB_KVREAD(ret, &i, data_extents_scrubbed, avail, l, &p[curr]->p); _SCRUB_KVREAD(ret, &i, data_extents_scrubbed, avail, l, &p[curr]->p); _SCRUB_KVREAD(ret, &i, tree_extents_scrubbed, avail, l, &p[curr]->p); _SCRUB_KVREAD(ret, &i, data_bytes_scrubbed, avail, l, &p[curr]->p); _SCRUB_KVREAD(ret, &i, tree_bytes_scrubbed, avail, l, &p[curr]->p); _SCRUB_KVREAD(ret, &i, read_errors, avail, l, &p[curr]->p); _SCRUB_KVREAD(ret, &i, csum_errors, avail, l, &p[curr]->p); _SCRUB_KVREAD(ret, &i, verify_errors, avail, l, &p[curr]->p); _SCRUB_KVREAD(ret, &i, no_csum, avail, l, &p[curr]->p); _SCRUB_KVREAD(ret, &i, csum_discards, avail, l, &p[curr]->p); _SCRUB_KVREAD(ret, &i, super_errors, avail, l, &p[curr]->p); _SCRUB_KVREAD(ret, &i, malloc_errors, avail, l, &p[curr]->p); _SCRUB_KVREAD(ret, &i, uncorrectable_errors, avail, l, &p[curr]->p); _SCRUB_KVREAD(ret, &i, corrected_errors, avail, l, &p[curr]->p); _SCRUB_KVREAD(ret, &i, last_physical, avail, l, &p[curr]->p); _SCRUB_KVREAD(ret, &i, finished, avail, l, &p[curr]->stats); _SCRUB_KVREAD(ret, &i, t_start, avail, l, (u64 *)&p[curr]->stats); _SCRUB_KVREAD(ret, &i, t_resumed, avail, l, (u64 *)&p[curr]->stats); _SCRUB_KVREAD(ret, &i, duration, avail, l, (u64 *)&p[curr]->stats); _SCRUB_KVREAD(ret, &i, canceled, avail, l, &p[curr]->stats); if (ret != 1) _SCRUB_INVALID; ++state; /* fall through */ case 6: /* after number */ if (l[i] == '|') state = 5; else if (l[i] == '\n') state = 1; else _SCRUB_INVALID; ++i; continue; case 99: /* skip rest of line */ skip: state = 99; do { ++i; if (l[i - 1] == '\n') { state = 1; break; } } while (i < avail); continue; } BUG(); } goto again; } static int scrub_write_buf(int fd, const void *data, int len) { int ret; ret = write(fd, data, len); return ret - len; } static int scrub_writev(int fd, char *buf, int max, const char *fmt, ...) __attribute__ ((format (printf, 4, 5))); static int scrub_writev(int fd, char *buf, int max, const char *fmt, ...) { int ret; va_list args; va_start(args, fmt); ret = vsnprintf(buf, max, fmt, args); va_end(args); if (ret >= max) return ret - max; return scrub_write_buf(fd, buf, ret); } #define _SCRUB_SUM(dest, data, name) dest->scrub_args.progress.name = \ data->resumed->p.name + data->scrub_args.progress.name static struct scrub_progress *scrub_resumed_stats(struct scrub_progress *data, struct scrub_progress *dest) { if (!data->resumed || data->skip) return data; _SCRUB_SUM(dest, data, data_extents_scrubbed); _SCRUB_SUM(dest, data, tree_extents_scrubbed); _SCRUB_SUM(dest, data, data_bytes_scrubbed); _SCRUB_SUM(dest, data, tree_bytes_scrubbed); _SCRUB_SUM(dest, data, read_errors); _SCRUB_SUM(dest, data, csum_errors); _SCRUB_SUM(dest, data, verify_errors); _SCRUB_SUM(dest, data, no_csum); _SCRUB_SUM(dest, data, csum_discards); _SCRUB_SUM(dest, data, super_errors); _SCRUB_SUM(dest, data, malloc_errors); _SCRUB_SUM(dest, data, uncorrectable_errors); _SCRUB_SUM(dest, data, corrected_errors); _SCRUB_SUM(dest, data, last_physical); dest->stats.canceled = data->stats.canceled; dest->stats.finished = data->stats.finished; dest->stats.t_resumed = data->stats.t_start; dest->stats.t_start = data->resumed->stats.t_start; dest->stats.duration = data->resumed->stats.duration + data->stats.duration; dest->scrub_args.devid = data->scrub_args.devid; return dest; } #define _SCRUB_KVWRITE(fd, buf, name, use) \ scrub_kvwrite(fd, buf, sizeof(buf), #name, \ use->scrub_args.progress.name) #define _SCRUB_KVWRITE_STATS(fd, buf, name, use) \ scrub_kvwrite(fd, buf, sizeof(buf), #name, \ use->stats.name) static int scrub_kvwrite(int fd, char *buf, int max, const char *key, u64 val) { return scrub_writev(fd, buf, max, "|%s:%lld", key, val); } static int scrub_write_file(int fd, const char *fsid, struct scrub_progress *data, int n) { int ret = 0; int i; char buf[1024]; struct scrub_progress local; struct scrub_progress *use; if (n < 1) return -EINVAL; /* each -1 is to subtract one \0 byte, the + 2 is for ':' and '\n' */ ret = scrub_write_buf(fd, SCRUB_FILE_VERSION_PREFIX ":" SCRUB_FILE_VERSION "\n", (sizeof(SCRUB_FILE_VERSION_PREFIX) - 1) + (sizeof(SCRUB_FILE_VERSION) - 1) + 2); if (ret) return -EOVERFLOW; for (i = 0; i < n; ++i) { use = scrub_resumed_stats(&data[i], &local); if (scrub_write_buf(fd, fsid, strlen(fsid)) || scrub_write_buf(fd, ":", 1) || scrub_writev(fd, buf, sizeof(buf), "%lld", use->scrub_args.devid) || scrub_write_buf(fd, buf, ret) || _SCRUB_KVWRITE(fd, buf, data_extents_scrubbed, use) || _SCRUB_KVWRITE(fd, buf, tree_extents_scrubbed, use) || _SCRUB_KVWRITE(fd, buf, data_bytes_scrubbed, use) || _SCRUB_KVWRITE(fd, buf, tree_bytes_scrubbed, use) || _SCRUB_KVWRITE(fd, buf, read_errors, use) || _SCRUB_KVWRITE(fd, buf, csum_errors, use) || _SCRUB_KVWRITE(fd, buf, verify_errors, use) || _SCRUB_KVWRITE(fd, buf, no_csum, use) || _SCRUB_KVWRITE(fd, buf, csum_discards, use) || _SCRUB_KVWRITE(fd, buf, super_errors, use) || _SCRUB_KVWRITE(fd, buf, malloc_errors, use) || _SCRUB_KVWRITE(fd, buf, uncorrectable_errors, use) || _SCRUB_KVWRITE(fd, buf, corrected_errors, use) || _SCRUB_KVWRITE(fd, buf, last_physical, use) || _SCRUB_KVWRITE_STATS(fd, buf, t_start, use) || _SCRUB_KVWRITE_STATS(fd, buf, t_resumed, use) || _SCRUB_KVWRITE_STATS(fd, buf, duration, use) || _SCRUB_KVWRITE_STATS(fd, buf, canceled, use) || _SCRUB_KVWRITE_STATS(fd, buf, finished, use) || scrub_write_buf(fd, "\n", 1)) { return -EOVERFLOW; } } return 0; } static int scrub_write_progress(pthread_mutex_t *m, const char *fsid, struct scrub_progress *data, int n) { int ret; int err; int fd = -1; int old; ret = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old); if (ret) { err = -ret; goto out3; } ret = pthread_mutex_lock(m); if (ret) { err = -ret; goto out2; } fd = scrub_open_file_w(SCRUB_DATA_FILE, fsid, "tmp"); if (fd < 0) { err = fd; goto out1; } err = scrub_write_file(fd, fsid, data, n); if (err) goto out1; err = scrub_rename_file(SCRUB_DATA_FILE, fsid, "tmp"); if (err) goto out1; out1: if (fd >= 0) { ret = close(fd); if (ret) err = -errno; } ret = pthread_mutex_unlock(m); if (ret && !err) err = -ret; out2: ret = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old); if (ret && !err) err = -ret; out3: return err; } static void *scrub_one_dev(void *ctx) { struct scrub_progress *sp = ctx; int ret; struct timeval tv; sp->stats.canceled = 0; sp->stats.duration = 0; sp->stats.finished = 0; ret = syscall(SYS_ioprio_set, IOPRIO_WHO_PROCESS, 0, IOPRIO_PRIO_VALUE(sp->ioprio_class, sp->ioprio_classdata)); if (ret) warning("setting ioprio failed: %s (ignored)", strerror(errno)); ret = ioctl(sp->fd, BTRFS_IOC_SCRUB, &sp->scrub_args); gettimeofday(&tv, NULL); sp->ret = ret; sp->stats.duration = tv.tv_sec - sp->stats.t_start; sp->stats.canceled = !!ret; sp->ioctl_errno = errno; ret = pthread_mutex_lock(&sp->progress_mutex); if (ret) return ERR_PTR(-ret); sp->stats.finished = 1; ret = pthread_mutex_unlock(&sp->progress_mutex); if (ret) return ERR_PTR(-ret); return NULL; } static void *progress_one_dev(void *ctx) { struct scrub_progress *sp = ctx; sp->ret = ioctl(sp->fd, BTRFS_IOC_SCRUB_PROGRESS, &sp->scrub_args); sp->ioctl_errno = errno; return NULL; } /* nb: returns a negative errno via ERR_PTR */ static void *scrub_progress_cycle(void *ctx) { int ret = 0; int perr = 0; /* positive / pthread error returns */ int old; int i; char fsid[BTRFS_UUID_UNPARSED_SIZE]; struct scrub_progress *sp; struct scrub_progress *sp_last; struct scrub_progress *sp_shared; struct timeval tv; struct scrub_progress_cycle *spc = ctx; int ndev = spc->fi->num_devices; int this = 1; int last = 0; int peer_fd = -1; struct pollfd accept_poll_fd = { .fd = spc->prg_fd, .events = POLLIN, .revents = 0, }; struct pollfd write_poll_fd = { .events = POLLOUT, .revents = 0, }; struct sockaddr_un peer; socklen_t peer_size = sizeof(peer); perr = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old); if (perr) goto out; uuid_unparse(spc->fi->fsid, fsid); for (i = 0; i < ndev; ++i) { sp = &spc->progress[i]; sp_last = &spc->progress[i + ndev]; sp_shared = &spc->shared_progress[i]; sp->scrub_args.devid = sp_last->scrub_args.devid = sp_shared->scrub_args.devid; sp->fd = sp_last->fd = spc->fdmnt; sp->stats.t_start = sp_last->stats.t_start = sp_shared->stats.t_start; sp->resumed = sp_last->resumed = sp_shared->resumed; sp->skip = sp_last->skip = sp_shared->skip; sp->stats.finished = sp_last->stats.finished = sp_shared->stats.finished; } while (1) { ret = poll(&accept_poll_fd, 1, 5 * 1000); if (ret == -1) { ret = -errno; goto out; } if (ret) peer_fd = accept(spc->prg_fd, (struct sockaddr *)&peer, &peer_size); gettimeofday(&tv, NULL); this = (this + 1)%2; last = (last + 1)%2; for (i = 0; i < ndev; ++i) { sp = &spc->progress[this * ndev + i]; sp_last = &spc->progress[last * ndev + i]; sp_shared = &spc->shared_progress[i]; if (sp->stats.finished) continue; progress_one_dev(sp); sp->stats.duration = tv.tv_sec - sp->stats.t_start; if (!sp->ret) continue; if (sp->ioctl_errno != ENOTCONN && sp->ioctl_errno != ENODEV) { ret = -sp->ioctl_errno; goto out; } /* * scrub finished or device removed, check the * finished flag. if unset, just use the last * result we got for the current write and go * on. flag should be set on next cycle, then. */ perr = pthread_setcancelstate( PTHREAD_CANCEL_DISABLE, &old); if (perr) goto out; perr = pthread_mutex_lock(&sp_shared->progress_mutex); if (perr) goto out; if (!sp_shared->stats.finished) { perr = pthread_mutex_unlock( &sp_shared->progress_mutex); if (perr) goto out; perr = pthread_setcancelstate( PTHREAD_CANCEL_ENABLE, &old); if (perr) goto out; memcpy(sp, sp_last, sizeof(*sp)); continue; } perr = pthread_mutex_unlock(&sp_shared->progress_mutex); if (perr) goto out; perr = pthread_setcancelstate( PTHREAD_CANCEL_ENABLE, &old); if (perr) goto out; memcpy(sp, sp_shared, sizeof(*sp)); memcpy(sp_last, sp_shared, sizeof(*sp)); } if (peer_fd != -1) { write_poll_fd.fd = peer_fd; ret = poll(&write_poll_fd, 1, 0); if (ret == -1) { ret = -errno; goto out; } if (ret) { ret = scrub_write_file( peer_fd, fsid, &spc->progress[this * ndev], ndev); if (ret) goto out; } close(peer_fd); peer_fd = -1; } if (!spc->do_record) continue; ret = scrub_write_progress(spc->write_mutex, fsid, &spc->progress[this * ndev], ndev); if (ret) goto out; } out: if (peer_fd != -1) close(peer_fd); if (perr) ret = -perr; return ERR_PTR(ret); } static struct scrub_file_record *last_dev_scrub( struct scrub_file_record *const *const past_scrubs, u64 devid) { int i; if (!past_scrubs || IS_ERR(past_scrubs)) return NULL; for (i = 0; past_scrubs[i]; ++i) if (past_scrubs[i]->devid == devid) return past_scrubs[i]; return NULL; } static int mkdir_p(char *path) { int i; int ret; for (i = 1; i < strlen(path); ++i) { if (path[i] != '/') continue; path[i] = '\0'; ret = mkdir(path, 0777); if (ret && errno != EEXIST) return -errno; path[i] = '/'; } return 0; } static int is_scrub_running_on_fs(struct btrfs_ioctl_fs_info_args *fi_args, struct btrfs_ioctl_dev_info_args *di_args, struct scrub_file_record **past_scrubs) { int i; if (!fi_args || !di_args || !past_scrubs) return 0; for (i = 0; i < fi_args->num_devices; i++) { struct scrub_file_record *sfr = last_dev_scrub(past_scrubs, di_args[i].devid); if (!sfr) continue; if (!(sfr->stats.finished || sfr->stats.canceled)) return 1; } return 0; } static int is_scrub_running_in_kernel(int fd, struct btrfs_ioctl_dev_info_args *di_args, u64 max_devices) { struct scrub_progress sp; int i; int ret; for (i = 0; i < max_devices; i++) { memset(&sp, 0, sizeof(sp)); sp.scrub_args.devid = di_args[i].devid; ret = ioctl(fd, BTRFS_IOC_SCRUB_PROGRESS, &sp.scrub_args); if (!ret) return 1; } return 0; } static const char * const cmd_scrub_start_usage[]; static const char * const cmd_scrub_resume_usage[]; static int scrub_start(int argc, char **argv, int resume) { int fdmnt; int prg_fd = -1; int fdres = -1; int ret; pid_t pid; int c; int i; int err = 0; int e_uncorrectable = 0; int e_correctable = 0; int print_raw = 0; char *path; int do_background = 1; int do_wait = 0; int do_print = 0; int do_quiet = 0; int do_record = 1; int readonly = 0; int do_stats_per_dev = 0; int ioprio_class = IOPRIO_CLASS_IDLE; int ioprio_classdata = 0; int n_start = 0; int n_skip = 0; int n_resume = 0; struct btrfs_ioctl_fs_info_args fi_args; struct btrfs_ioctl_dev_info_args *di_args = NULL; struct scrub_progress *sp = NULL; struct scrub_fs_stat fs_stat; struct timeval tv; struct sockaddr_un addr = { .sun_family = AF_UNIX, }; pthread_t *t_devs = NULL; pthread_t t_prog; struct scrub_file_record **past_scrubs = NULL; struct scrub_file_record *last_scrub = NULL; char *datafile = strdup(SCRUB_DATA_FILE); char fsid[BTRFS_UUID_UNPARSED_SIZE]; char sock_path[PATH_MAX] = ""; struct scrub_progress_cycle spc; pthread_mutex_t spc_write_mutex = PTHREAD_MUTEX_INITIALIZER; void *terr; u64 devid; DIR *dirstream = NULL; int force = 0; int nothing_to_resume = 0; while ((c = getopt(argc, argv, "BdqrRc:n:f")) != -1) { switch (c) { case 'B': do_background = 0; do_wait = 1; do_print = 1; break; case 'd': do_stats_per_dev = 1; break; case 'q': do_quiet = 1; break; case 'r': readonly = 1; break; case 'R': print_raw = 1; break; case 'c': ioprio_class = (int)strtol(optarg, NULL, 10); break; case 'n': ioprio_classdata = (int)strtol(optarg, NULL, 10); break; case 'f': force = 1; break; case '?': default: usage(resume ? cmd_scrub_resume_usage : cmd_scrub_start_usage); } } /* try to catch most error cases before forking */ if (check_argc_exact(argc - optind, 1)) { usage(resume ? cmd_scrub_resume_usage : cmd_scrub_start_usage); } spc.progress = NULL; if (do_quiet && do_print) do_print = 0; if (mkdir_p(datafile)) { warning_on(!do_quiet, "cannot create scrub data file, mkdir %s failed: %s. Status recording disabled", datafile, strerror(errno)); do_record = 0; } free(datafile); path = argv[optind]; fdmnt = open_path_or_dev_mnt(path, &dirstream, !do_quiet); if (fdmnt < 0) return 1; ret = get_fs_info(path, &fi_args, &di_args); if (ret) { error_on(!do_quiet, "getting dev info for scrub failed: %s", strerror(-ret)); err = 1; goto out; } if (!fi_args.num_devices) { error_on(!do_quiet, "no devices found"); err = 1; goto out; } uuid_unparse(fi_args.fsid, fsid); fdres = scrub_open_file_r(SCRUB_DATA_FILE, fsid); if (fdres < 0 && fdres != -ENOENT) { warning_on(!do_quiet, "failed to open status file: %s", strerror(-fdres)); } else if (fdres >= 0) { past_scrubs = scrub_read_file(fdres, !do_quiet); if (IS_ERR(past_scrubs)) warning_on(!do_quiet, "failed to read status file: %s", strerror(-PTR_ERR(past_scrubs))); close(fdres); } /* * Check for stale information in the status file, ie. if it's * canceled=0, finished=0 but no scrub is running. */ if (!is_scrub_running_in_kernel(fdmnt, di_args, fi_args.num_devices)) force = 1; /* * check whether any involved device is already busy running a * scrub. This would cause damaged status messages and the state * "aborted" without the explanation that a scrub was already * running. Therefore check it first, prevent it and give some * feedback to the user if scrub is already running. * Note that if scrub is started with a block device as the * parameter, only that particular block device is checked. It * is a normal mode of operation to start scrub on multiple * single devices, there is no reason to prevent this. */ if (!force && is_scrub_running_on_fs(&fi_args, di_args, past_scrubs)) { error_on(!do_quiet, "Scrub is already running.\n" "To cancel use 'btrfs scrub cancel %s'.\n" "To see the status use 'btrfs scrub status [-d] %s'", path, path); err = 1; goto out; } t_devs = malloc(fi_args.num_devices * sizeof(*t_devs)); sp = calloc(fi_args.num_devices, sizeof(*sp)); spc.progress = calloc(fi_args.num_devices * 2, sizeof(*spc.progress)); if (!t_devs || !sp || !spc.progress) { error_on(!do_quiet, "scrub failed: %s", strerror(errno)); err = 1; goto out; } for (i = 0; i < fi_args.num_devices; ++i) { devid = di_args[i].devid; ret = pthread_mutex_init(&sp[i].progress_mutex, NULL); if (ret) { error_on(!do_quiet, "pthread_mutex_init failed: %s", strerror(ret)); err = 1; goto out; } last_scrub = last_dev_scrub(past_scrubs, devid); sp[i].scrub_args.devid = devid; sp[i].fd = fdmnt; if (resume && last_scrub && (last_scrub->stats.canceled || !last_scrub->stats.finished)) { ++n_resume; sp[i].scrub_args.start = last_scrub->p.last_physical; sp[i].resumed = last_scrub; } else if (resume) { ++n_skip; sp[i].skip = 1; sp[i].resumed = last_scrub; continue; } else { ++n_start; sp[i].scrub_args.start = 0ll; sp[i].resumed = NULL; } sp[i].skip = 0; sp[i].scrub_args.end = (u64)-1ll; sp[i].scrub_args.flags = readonly ? BTRFS_SCRUB_READONLY : 0; sp[i].ioprio_class = ioprio_class; sp[i].ioprio_classdata = ioprio_classdata; } if (!n_start && !n_resume) { if (!do_quiet) printf("scrub: nothing to resume for %s, fsid %s\n", path, fsid); nothing_to_resume = 1; goto out; } ret = prg_fd = socket(AF_UNIX, SOCK_STREAM, 0); while (ret != -1) { ret = scrub_datafile(SCRUB_PROGRESS_SOCKET_PATH, fsid, NULL, sock_path, sizeof(sock_path)); /* ignore EOVERFLOW, try using a shorter path for the socket */ addr.sun_path[sizeof(addr.sun_path) - 1] = '\0'; strncpy(addr.sun_path, sock_path, sizeof(addr.sun_path) - 1); ret = bind(prg_fd, (struct sockaddr *)&addr, sizeof(addr)); if (ret != -1 || errno != EADDRINUSE) break; /* * bind failed with EADDRINUSE. so let's see if anyone answers * when we make a call to the socket ... */ ret = connect(prg_fd, (struct sockaddr *)&addr, sizeof(addr)); if (!ret || errno != ECONNREFUSED) { /* ... yes, so scrub must be running. error out */ error("scrub already running"); close(prg_fd); prg_fd = -1; goto out; } /* * ... no, this means someone left us alone with an unused * socket in the file system. remove it and try again. */ ret = unlink(sock_path); } if (ret != -1) ret = listen(prg_fd, 100); if (ret == -1) { warning_on(!do_quiet, "failed to open the progress status socket at %s: %s. Progress cannot be queried", sock_path[0] ? sock_path : SCRUB_PROGRESS_SOCKET_PATH, strerror(errno)); if (prg_fd != -1) { close(prg_fd); prg_fd = -1; if (sock_path[0]) unlink(sock_path); } } if (do_record) { /* write all-zero progress file for a start */ ret = scrub_write_progress(&spc_write_mutex, fsid, sp, fi_args.num_devices); if (ret) { warning_on(!do_quiet, "failed to write the progress status file: %s. Status recording disabled", strerror(-ret)); do_record = 0; } } if (do_background) { pid = fork(); if (pid == -1) { error_on(!do_quiet, "cannot scrub, fork failed: %s", strerror(errno)); err = 1; goto out; } if (pid) { int stat; scrub_handle_sigint_parent(); if (!do_quiet) printf("scrub %s on %s, fsid %s (pid=%d)\n", n_start ? "started" : "resumed", path, fsid, pid); if (!do_wait) { err = 0; goto out; } ret = wait(&stat); if (ret != pid) { error_on(!do_quiet, "wait failed (ret=%d): %s", ret, strerror(errno)); err = 1; goto out; } if (!WIFEXITED(stat) || WEXITSTATUS(stat)) { error_on(!do_quiet, "scrub process failed"); err = WIFEXITED(stat) ? WEXITSTATUS(stat) : -1; goto out; } err = 0; goto out; } } scrub_handle_sigint_child(fdmnt); for (i = 0; i < fi_args.num_devices; ++i) { if (sp[i].skip) { sp[i].scrub_args.progress = sp[i].resumed->p; sp[i].stats = sp[i].resumed->stats; sp[i].ret = 0; sp[i].stats.finished = 1; continue; } devid = di_args[i].devid; gettimeofday(&tv, NULL); sp[i].stats.t_start = tv.tv_sec; ret = pthread_create(&t_devs[i], NULL, scrub_one_dev, &sp[i]); if (ret) { if (do_print) error("creating scrub_one_dev[%llu] thread failed: %s", devid, strerror(ret)); err = 1; goto out; } } spc.fdmnt = fdmnt; spc.prg_fd = prg_fd; spc.do_record = do_record; spc.write_mutex = &spc_write_mutex; spc.shared_progress = sp; spc.fi = &fi_args; ret = pthread_create(&t_prog, NULL, scrub_progress_cycle, &spc); if (ret) { if (do_print) error("creating progress thread failed: %s", strerror(ret)); err = 1; goto out; } err = 0; for (i = 0; i < fi_args.num_devices; ++i) { if (sp[i].skip) continue; devid = di_args[i].devid; ret = pthread_join(t_devs[i], NULL); if (ret) { if (do_print) error("pthread_join failed for scrub_one_dev[%llu]: %s", devid, strerror(ret)); ++err; continue; } if (sp[i].ret) { switch (sp[i].ioctl_errno) { case ENODEV: if (do_print) warning("device %lld not present", devid); continue; case ECANCELED: ++err; break; default: if (do_print) error("scrubbing %s failed for device id %lld: ret=%d, errno=%d (%s)", path, devid, sp[i].ret, sp[i].ioctl_errno, strerror(sp[i].ioctl_errno)); ++err; continue; } } if (sp[i].scrub_args.progress.uncorrectable_errors > 0) e_uncorrectable++; if (sp[i].scrub_args.progress.corrected_errors > 0 || sp[i].scrub_args.progress.unverified_errors > 0) e_correctable++; } if (do_print) { const char *append = "done"; if (!do_stats_per_dev) init_fs_stat(&fs_stat); for (i = 0; i < fi_args.num_devices; ++i) { if (do_stats_per_dev) { print_scrub_dev(&di_args[i], &sp[i].scrub_args.progress, print_raw, sp[i].ret ? "canceled" : "done", &sp[i].stats); } else { if (sp[i].ret) append = "canceled"; add_to_fs_stat(&sp[i].scrub_args.progress, &sp[i].stats, &fs_stat); } } if (!do_stats_per_dev) { printf("scrub %s for %s\n", append, fsid); print_fs_stat(&fs_stat, print_raw); } } ret = pthread_cancel(t_prog); if (!ret) ret = pthread_join(t_prog, &terr); /* check for errors from the handling of the progress thread */ if (do_print && ret) { error("progress thread handling failed: %s", strerror(ret)); } /* check for errors returned from the progress thread itself */ if (do_print && terr && terr != PTHREAD_CANCELED) error("recording progress failed: %s", strerror(-PTR_ERR(terr))); if (do_record) { ret = scrub_write_progress(&spc_write_mutex, fsid, sp, fi_args.num_devices); if (ret && do_print) error("failed to record the result: %s", strerror(-ret)); } scrub_handle_sigint_child(-1); out: free_history(past_scrubs); free(di_args); free(t_devs); free(sp); free(spc.progress); if (prg_fd > -1) { close(prg_fd); if (sock_path[0]) unlink(sock_path); } close_file_or_dir(fdmnt, dirstream); if (err) return 1; if (nothing_to_resume) return 2; if (e_uncorrectable) { error_on(!do_quiet, "there are uncorrectable errors"); return 3; } if (e_correctable) warning_on(!do_quiet, "errors detected during scrubbing, corrected"); return 0; } static const char * const cmd_scrub_start_usage[] = { "btrfs scrub start [-BdqrRf] [-c ioprio_class -n ioprio_classdata] |", "Start a new scrub. If a scrub is already running, the new one fails.", "", "-B do not background", "-d stats per device (-B only)", "-q be quiet", "-r read only mode", "-R raw print mode, print full data instead of summary", "-c set ioprio class (see ionice(1) manpage)", "-n set ioprio classdata (see ionice(1) manpage)", "-f force starting new scrub even if a scrub is already running", " this is useful when scrub stats record file is damaged", NULL }; static int cmd_scrub_start(int argc, char **argv) { return scrub_start(argc, argv, 0); } static const char * const cmd_scrub_cancel_usage[] = { "btrfs scrub cancel |", "Cancel a running scrub", NULL }; static int cmd_scrub_cancel(int argc, char **argv) { char *path; int ret; int fdmnt = -1; DIR *dirstream = NULL; clean_args_no_options(argc, argv, cmd_scrub_cancel_usage); if (check_argc_exact(argc - optind, 1)) usage(cmd_scrub_cancel_usage); path = argv[optind]; fdmnt = open_path_or_dev_mnt(path, &dirstream, 1); if (fdmnt < 0) { ret = 1; goto out; } ret = ioctl(fdmnt, BTRFS_IOC_SCRUB_CANCEL, NULL); if (ret < 0) { error("scrub cancel failed on %s: %s", path, errno == ENOTCONN ? "not running" : strerror(errno)); if (errno == ENOTCONN) ret = 2; else ret = 1; goto out; } ret = 0; printf("scrub cancelled\n"); out: close_file_or_dir(fdmnt, dirstream); return ret; } static const char * const cmd_scrub_resume_usage[] = { "btrfs scrub resume [-BdqrR] [-c ioprio_class -n ioprio_classdata] |", "Resume previously canceled or interrupted scrub", "", "-B do not background", "-d stats per device (-B only)", "-q be quiet", "-r read only mode", "-R raw print mode, print full data instead of summary", "-c set ioprio class (see ionice(1) manpage)", "-n set ioprio classdata (see ionice(1) manpage)", NULL }; static int cmd_scrub_resume(int argc, char **argv) { return scrub_start(argc, argv, 1); } static const char * const cmd_scrub_status_usage[] = { "btrfs scrub status [-dR] |", "Show status of running or finished scrub", "", "-d stats per device", "-R print raw stats", NULL }; static int cmd_scrub_status(int argc, char **argv) { char *path; struct btrfs_ioctl_fs_info_args fi_args; struct btrfs_ioctl_dev_info_args *di_args = NULL; struct scrub_file_record **past_scrubs = NULL; struct scrub_file_record *last_scrub; struct scrub_fs_stat fs_stat; struct sockaddr_un addr = { .sun_family = AF_UNIX, }; int in_progress; int ret; int i; int fdmnt; int print_raw = 0; int do_stats_per_dev = 0; int c; char fsid[BTRFS_UUID_UNPARSED_SIZE]; int fdres = -1; int err = 0; DIR *dirstream = NULL; while ((c = getopt(argc, argv, "dR")) != -1) { switch (c) { case 'd': do_stats_per_dev = 1; break; case 'R': print_raw = 1; break; case '?': default: usage(cmd_scrub_status_usage); } } if (check_argc_exact(argc - optind, 1)) usage(cmd_scrub_status_usage); path = argv[optind]; fdmnt = open_path_or_dev_mnt(path, &dirstream, 1); if (fdmnt < 0) return 1; ret = get_fs_info(path, &fi_args, &di_args); if (ret) { error("getting dev info for scrub failed: %s", strerror(-ret)); err = 1; goto out; } if (!fi_args.num_devices) { error("no devices found"); err = 1; goto out; } uuid_unparse(fi_args.fsid, fsid); fdres = socket(AF_UNIX, SOCK_STREAM, 0); if (fdres == -1) { error("failed to create socket to receive progress information: %s", strerror(errno)); err = 1; goto out; } scrub_datafile(SCRUB_PROGRESS_SOCKET_PATH, fsid, NULL, addr.sun_path, sizeof(addr.sun_path)); /* ignore EOVERFLOW, just use shorter name and hope for the best */ addr.sun_path[sizeof(addr.sun_path) - 1] = '\0'; ret = connect(fdres, (struct sockaddr *)&addr, sizeof(addr)); if (ret == -1) { close(fdres); fdres = scrub_open_file_r(SCRUB_DATA_FILE, fsid); if (fdres < 0 && fdres != -ENOENT) { warning("failed to open status file: %s", strerror(-fdres)); err = 1; goto out; } } if (fdres >= 0) { past_scrubs = scrub_read_file(fdres, 1); if (IS_ERR(past_scrubs)) warning("failed to read status: %s", strerror(-PTR_ERR(past_scrubs))); } in_progress = is_scrub_running_in_kernel(fdmnt, di_args, fi_args.num_devices); printf("scrub status for %s\n", fsid); if (do_stats_per_dev) { for (i = 0; i < fi_args.num_devices; ++i) { last_scrub = last_dev_scrub(past_scrubs, di_args[i].devid); if (!last_scrub) { print_scrub_dev(&di_args[i], NULL, print_raw, NULL, NULL); continue; } last_scrub->stats.in_progress = in_progress; print_scrub_dev(&di_args[i], &last_scrub->p, print_raw, last_scrub->stats.finished ? "history" : "status", &last_scrub->stats); } } else { init_fs_stat(&fs_stat); fs_stat.s.in_progress = in_progress; for (i = 0; i < fi_args.num_devices; ++i) { last_scrub = last_dev_scrub(past_scrubs, di_args[i].devid); if (!last_scrub) continue; add_to_fs_stat(&last_scrub->p, &last_scrub->stats, &fs_stat); } print_fs_stat(&fs_stat, print_raw); } out: free_history(past_scrubs); free(di_args); if (fdres > -1) close(fdres); close_file_or_dir(fdmnt, dirstream); return !!err; } static const char scrub_cmd_group_info[] = "verify checksums of data and metadata"; const struct cmd_group scrub_cmd_group = { scrub_cmd_group_usage, scrub_cmd_group_info, { { "start", cmd_scrub_start, cmd_scrub_start_usage, NULL, 0 }, { "cancel", cmd_scrub_cancel, cmd_scrub_cancel_usage, NULL, 0 }, { "resume", cmd_scrub_resume, cmd_scrub_resume_usage, NULL, 0 }, { "status", cmd_scrub_status, cmd_scrub_status_usage, NULL, 0 }, NULL_CMD_STRUCT } }; int cmd_scrub(int argc, char **argv) { return handle_command_group(&scrub_cmd_group, argc, argv); }