/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #define _XOPEN_SOURCE 600 #define __USE_XOPEN2K #define _GNU_SOURCE 1 #include #include #include #include #include #include #include "kerncompat.h" #include "radix-tree.h" #include "ctree.h" #include "disk-io.h" #include "volumes.h" #include "transaction.h" #include "crc32c.h" #include "utils.h" #include "print-tree.h" static int close_all_devices(struct btrfs_fs_info *fs_info); static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf) { struct btrfs_fs_devices *fs_devices; int ret = 1; if (buf->start != btrfs_header_bytenr(buf)) { printk("Check tree block failed, want=%Lu, have=%Lu\n", buf->start, btrfs_header_bytenr(buf)); return ret; } fs_devices = root->fs_info->fs_devices; while (fs_devices) { if (!memcmp_extent_buffer(buf, fs_devices->fsid, (unsigned long)btrfs_header_fsid(buf), BTRFS_FSID_SIZE)) { ret = 0; break; } fs_devices = fs_devices->seed; } return ret; } u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) { return crc32c(seed, data, len); } void btrfs_csum_final(u32 crc, char *result) { *(__le32 *)result = ~cpu_to_le32(crc); } int csum_tree_block_size(struct extent_buffer *buf, u16 csum_size, int verify) { char *result; u32 len; u32 crc = ~(u32)0; result = malloc(csum_size * sizeof(char)); if (!result) return 1; len = buf->len - BTRFS_CSUM_SIZE; crc = crc32c(crc, buf->data + BTRFS_CSUM_SIZE, len); btrfs_csum_final(crc, result); if (verify) { if (memcmp_extent_buffer(buf, result, 0, csum_size)) { printk("checksum verify failed on %llu found %X " "wanted %X\n", (unsigned long long)buf->start, *((int *)result), *((char *)buf->data)); free(result); return 1; } } else { write_extent_buffer(buf, result, 0, csum_size); } free(result); return 0; } int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, int verify) { u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); return csum_tree_block_size(buf, csum_size, verify); } struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize) { return find_extent_buffer(&root->fs_info->extent_cache, bytenr, blocksize); } struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize) { return alloc_extent_buffer(&root->fs_info->extent_cache, bytenr, blocksize); } int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, u64 parent_transid) { int ret; struct extent_buffer *eb; u64 length; struct btrfs_multi_bio *multi = NULL; struct btrfs_device *device; eb = btrfs_find_tree_block(root, bytenr, blocksize); if (eb && btrfs_buffer_uptodate(eb, parent_transid)) { free_extent_buffer(eb); return 0; } length = blocksize; ret = btrfs_map_block(&root->fs_info->mapping_tree, READ, bytenr, &length, &multi, 0, NULL); BUG_ON(ret); device = multi->stripes[0].dev; device->total_ios++; blocksize = min(blocksize, (u32)(64 * 1024)); readahead(device->fd, multi->stripes[0].physical, blocksize); kfree(multi); return 0; } static int verify_parent_transid(struct extent_io_tree *io_tree, struct extent_buffer *eb, u64 parent_transid, int ignore) { int ret; if (!parent_transid || btrfs_header_generation(eb) == parent_transid) return 0; if (extent_buffer_uptodate(eb) && btrfs_header_generation(eb) == parent_transid) { ret = 0; goto out; } printk("parent transid verify failed on %llu wanted %llu found %llu\n", (unsigned long long)eb->start, (unsigned long long)parent_transid, (unsigned long long)btrfs_header_generation(eb)); if (ignore) { printk("Ignoring transid failure\n"); return 0; } ret = 1; out: clear_extent_buffer_uptodate(io_tree, eb); return ret; } static int read_whole_eb(struct btrfs_fs_info *info, struct extent_buffer *eb, int mirror) { unsigned long offset = 0; struct btrfs_multi_bio *multi = NULL; struct btrfs_device *device; int ret = 0; u64 read_len; unsigned long bytes_left = eb->len; while (bytes_left) { read_len = bytes_left; ret = btrfs_map_block(&info->mapping_tree, READ, eb->start + offset, &read_len, &multi, mirror, NULL); if (ret) { printk("Couldn't map the block %Lu\n", eb->start + offset); kfree(multi); return -EIO; } device = multi->stripes[0].dev; if (device->fd == 0) { kfree(multi); return -EIO; } eb->fd = device->fd; device->total_ios++; eb->dev_bytenr = multi->stripes[0].physical; kfree(multi); multi = NULL; if (read_len > bytes_left) read_len = bytes_left; ret = read_extent_from_disk(eb, offset, read_len); if (ret) return -EIO; offset += read_len; bytes_left -= read_len; } return 0; } struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, u64 parent_transid) { int ret; struct extent_buffer *eb; u64 best_transid = 0; int mirror_num = 0; int good_mirror = 0; int num_copies; int ignore = 0; eb = btrfs_find_create_tree_block(root, bytenr, blocksize); if (!eb) return NULL; if (btrfs_buffer_uptodate(eb, parent_transid)) return eb; while (1) { ret = read_whole_eb(root->fs_info, eb, mirror_num); if (ret == 0 && check_tree_block(root, eb) == 0 && csum_tree_block(root, eb, 1) == 0 && verify_parent_transid(eb->tree, eb, parent_transid, ignore) == 0) { btrfs_set_buffer_uptodate(eb); return eb; } if (ignore) { if (check_tree_block(root, eb)) printk("read block failed check_tree_block\n"); else printk("Csum didn't match\n"); break; } num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, eb->start, eb->len); if (num_copies == 1) { ignore = 1; continue; } if (btrfs_header_generation(eb) > best_transid) { best_transid = btrfs_header_generation(eb); good_mirror = mirror_num; } mirror_num++; if (mirror_num > num_copies) { mirror_num = good_mirror; ignore = 1; continue; } } free_extent_buffer(eb); return NULL; } static int rmw_eb(struct btrfs_fs_info *info, struct extent_buffer *eb, struct extent_buffer *orig_eb) { int ret; unsigned long orig_off = 0; unsigned long dest_off = 0; unsigned long copy_len = eb->len; ret = read_whole_eb(info, eb, 0); if (ret) return ret; if (eb->start + eb->len <= orig_eb->start || eb->start >= orig_eb->start + orig_eb->len) return 0; /* * | ----- orig_eb ------- | * | ----- stripe ------- | * | ----- orig_eb ------- | * | ----- orig_eb ------- | */ if (eb->start > orig_eb->start) orig_off = eb->start - orig_eb->start; if (orig_eb->start > eb->start) dest_off = orig_eb->start - eb->start; if (copy_len > orig_eb->len - orig_off) copy_len = orig_eb->len - orig_off; if (copy_len > eb->len - dest_off) copy_len = eb->len - dest_off; memcpy(eb->data + dest_off, orig_eb->data + orig_off, copy_len); return 0; } static void split_eb_for_raid56(struct btrfs_fs_info *info, struct extent_buffer *orig_eb, struct extent_buffer **ebs, u64 stripe_len, u64 *raid_map, int num_stripes) { struct extent_buffer *eb; u64 start = orig_eb->start; u64 this_eb_start; int i; int ret; for (i = 0; i < num_stripes; i++) { if (raid_map[i] >= BTRFS_RAID5_P_STRIPE) break; eb = malloc(sizeof(struct extent_buffer) + stripe_len); if (!eb) BUG(); memset(eb, 0, sizeof(struct extent_buffer) + stripe_len); eb->start = raid_map[i]; eb->len = stripe_len; eb->refs = 1; eb->flags = 0; eb->fd = -1; eb->dev_bytenr = (u64)-1; this_eb_start = raid_map[i]; if (start > this_eb_start || start + orig_eb->len < this_eb_start + stripe_len) { ret = rmw_eb(info, eb, orig_eb); BUG_ON(ret); } else { memcpy(eb->data, orig_eb->data + eb->start - start, stripe_len); } ebs[i] = eb; } } static int write_raid56_with_parity(struct btrfs_fs_info *info, struct extent_buffer *eb, struct btrfs_multi_bio *multi, u64 stripe_len, u64 *raid_map) { struct extent_buffer *ebs[multi->num_stripes], *p_eb = NULL, *q_eb = NULL; int i; int j; int ret; int alloc_size = eb->len; if (stripe_len > alloc_size) alloc_size = stripe_len; split_eb_for_raid56(info, eb, ebs, stripe_len, raid_map, multi->num_stripes); for (i = 0; i < multi->num_stripes; i++) { struct extent_buffer *new_eb; if (raid_map[i] < BTRFS_RAID5_P_STRIPE) { ebs[i]->dev_bytenr = multi->stripes[i].physical; ebs[i]->fd = multi->stripes[i].dev->fd; multi->stripes[i].dev->total_ios++; BUG_ON(ebs[i]->start != raid_map[i]); continue; } new_eb = kmalloc(sizeof(*eb) + alloc_size, GFP_NOFS); BUG_ON(!new_eb); new_eb->dev_bytenr = multi->stripes[i].physical; new_eb->fd = multi->stripes[i].dev->fd; multi->stripes[i].dev->total_ios++; new_eb->len = stripe_len; if (raid_map[i] == BTRFS_RAID5_P_STRIPE) p_eb = new_eb; else if (raid_map[i] == BTRFS_RAID6_Q_STRIPE) q_eb = new_eb; } if (q_eb) { void *pointers[multi->num_stripes]; ebs[multi->num_stripes - 2] = p_eb; ebs[multi->num_stripes - 1] = q_eb; for (i = 0; i < multi->num_stripes; i++) pointers[i] = ebs[i]->data; raid6_gen_syndrome(multi->num_stripes, stripe_len, pointers); } else { ebs[multi->num_stripes - 1] = p_eb; memcpy(p_eb->data, ebs[0]->data, stripe_len); for (j = 1; j < multi->num_stripes - 1; j++) { for (i = 0; i < stripe_len; i += sizeof(unsigned long)) { *(unsigned long *)(p_eb->data + i) ^= *(unsigned long *)(ebs[j]->data + i); } } } for (i = 0; i < multi->num_stripes; i++) { ret = write_extent_to_disk(ebs[i]); BUG_ON(ret); if (ebs[i] != eb) kfree(ebs[i]); } return 0; } int write_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *eb) { int ret; int dev_nr; u64 length; u64 *raid_map = NULL; struct btrfs_multi_bio *multi = NULL; if (check_tree_block(root, eb)) BUG(); if (!btrfs_buffer_uptodate(eb, trans->transid)) BUG(); btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); csum_tree_block(root, eb, 0); dev_nr = 0; length = eb->len; ret = btrfs_map_block(&root->fs_info->mapping_tree, WRITE, eb->start, &length, &multi, 0, &raid_map); if (raid_map) { ret = write_raid56_with_parity(root->fs_info, eb, multi, length, raid_map); BUG_ON(ret); } else while (dev_nr < multi->num_stripes) { BUG_ON(ret); eb->fd = multi->stripes[dev_nr].dev->fd; eb->dev_bytenr = multi->stripes[dev_nr].physical; multi->stripes[dev_nr].dev->total_ios++; dev_nr++; ret = write_extent_to_disk(eb); BUG_ON(ret); } kfree(multi); return 0; } int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, u32 stripesize, struct btrfs_root *root, struct btrfs_fs_info *fs_info, u64 objectid) { root->node = NULL; root->commit_root = NULL; root->sectorsize = sectorsize; root->nodesize = nodesize; root->leafsize = leafsize; root->stripesize = stripesize; root->ref_cows = 0; root->track_dirty = 0; root->fs_info = fs_info; root->objectid = objectid; root->last_trans = 0; root->highest_inode = 0; root->last_inode_alloc = 0; INIT_LIST_HEAD(&root->dirty_list); memset(&root->root_key, 0, sizeof(root->root_key)); memset(&root->root_item, 0, sizeof(root->root_item)); root->root_key.objectid = objectid; return 0; } static int update_cowonly_root(struct btrfs_trans_handle *trans, struct btrfs_root *root) { int ret; u64 old_root_bytenr; struct btrfs_root *tree_root = root->fs_info->tree_root; btrfs_write_dirty_block_groups(trans, root); while(1) { old_root_bytenr = btrfs_root_bytenr(&root->root_item); if (old_root_bytenr == root->node->start) break; btrfs_set_root_bytenr(&root->root_item, root->node->start); btrfs_set_root_generation(&root->root_item, trans->transid); root->root_item.level = btrfs_header_level(root->node); ret = btrfs_update_root(trans, tree_root, &root->root_key, &root->root_item); BUG_ON(ret); btrfs_write_dirty_block_groups(trans, root); } return 0; } static int commit_tree_roots(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *root; struct list_head *next; struct extent_buffer *eb; int ret; if (fs_info->readonly) return 0; eb = fs_info->tree_root->node; extent_buffer_get(eb); ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb); free_extent_buffer(eb); if (ret) return ret; while(!list_empty(&fs_info->dirty_cowonly_roots)) { next = fs_info->dirty_cowonly_roots.next; list_del_init(next); root = list_entry(next, struct btrfs_root, dirty_list); update_cowonly_root(trans, root); } return 0; } static int __commit_transaction(struct btrfs_trans_handle *trans, struct btrfs_root *root) { u64 start; u64 end; struct extent_buffer *eb; struct extent_io_tree *tree = &root->fs_info->extent_cache; int ret; while(1) { ret = find_first_extent_bit(tree, 0, &start, &end, EXTENT_DIRTY); if (ret) break; while(start <= end) { eb = find_first_extent_buffer(tree, start); BUG_ON(!eb || eb->start != start); ret = write_tree_block(trans, root, eb); BUG_ON(ret); start += eb->len; clear_extent_buffer_dirty(eb); free_extent_buffer(eb); } } return 0; } int btrfs_commit_transaction(struct btrfs_trans_handle *trans, struct btrfs_root *root) { u64 transid = trans->transid; int ret = 0; struct btrfs_fs_info *fs_info = root->fs_info; if (root->commit_root == root->node) goto commit_tree; free_extent_buffer(root->commit_root); root->commit_root = NULL; btrfs_set_root_bytenr(&root->root_item, root->node->start); btrfs_set_root_generation(&root->root_item, trans->transid); root->root_item.level = btrfs_header_level(root->node); ret = btrfs_update_root(trans, root->fs_info->tree_root, &root->root_key, &root->root_item); BUG_ON(ret); commit_tree: ret = commit_tree_roots(trans, fs_info); BUG_ON(ret); ret = __commit_transaction(trans, root); BUG_ON(ret); write_ctree_super(trans, root); btrfs_finish_extent_commit(trans, fs_info->extent_root, &fs_info->pinned_extents); btrfs_free_transaction(root, trans); free_extent_buffer(root->commit_root); root->commit_root = NULL; fs_info->running_transaction = NULL; fs_info->last_trans_committed = transid; return 0; } static int find_and_setup_root(struct btrfs_root *tree_root, struct btrfs_fs_info *fs_info, u64 objectid, struct btrfs_root *root) { int ret; u32 blocksize; u64 generation; __setup_root(tree_root->nodesize, tree_root->leafsize, tree_root->sectorsize, tree_root->stripesize, root, fs_info, objectid); ret = btrfs_find_last_root(tree_root, objectid, &root->root_item, &root->root_key); if (ret) return ret; blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); generation = btrfs_root_generation(&root->root_item); root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), blocksize, generation); if (!extent_buffer_uptodate(root->node)) return -EIO; return 0; } static int find_and_setup_log_root(struct btrfs_root *tree_root, struct btrfs_fs_info *fs_info, struct btrfs_super_block *disk_super) { u32 blocksize; u64 blocknr = btrfs_super_log_root(disk_super); struct btrfs_root *log_root = malloc(sizeof(struct btrfs_root)); if (!log_root) return -ENOMEM; if (blocknr == 0) { free(log_root); return 0; } blocksize = btrfs_level_size(tree_root, btrfs_super_log_root_level(disk_super)); __setup_root(tree_root->nodesize, tree_root->leafsize, tree_root->sectorsize, tree_root->stripesize, log_root, fs_info, BTRFS_TREE_LOG_OBJECTID); log_root->node = read_tree_block(tree_root, blocknr, blocksize, btrfs_super_generation(disk_super) + 1); fs_info->log_root_tree = log_root; if (!extent_buffer_uptodate(log_root->node)) { free_extent_buffer(log_root->node); free(log_root); fs_info->log_root_tree = NULL; return -EIO; } return 0; } int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) { if (root->node) free_extent_buffer(root->node); if (root->commit_root) free_extent_buffer(root->commit_root); kfree(root); return 0; } static int free_fs_roots(struct btrfs_fs_info *fs_info) { struct cache_extent *cache; struct btrfs_root *root; while (1) { cache = find_first_cache_extent(&fs_info->fs_root_cache, 0); if (!cache) break; root = container_of(cache, struct btrfs_root, cache); remove_cache_extent(&fs_info->fs_root_cache, cache); btrfs_free_fs_root(fs_info, root); } return 0; } struct btrfs_root *btrfs_read_fs_root_no_cache(struct btrfs_fs_info *fs_info, struct btrfs_key *location) { struct btrfs_root *root; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_path *path; struct extent_buffer *l; u64 generation; u32 blocksize; int ret = 0; root = malloc(sizeof(*root)); if (!root) return ERR_PTR(-ENOMEM); memset(root, 0, sizeof(*root)); if (location->offset == (u64)-1) { ret = find_and_setup_root(tree_root, fs_info, location->objectid, root); if (ret) { free(root); return ERR_PTR(ret); } goto insert; } __setup_root(tree_root->nodesize, tree_root->leafsize, tree_root->sectorsize, tree_root->stripesize, root, fs_info, location->objectid); path = btrfs_alloc_path(); BUG_ON(!path); ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); if (ret != 0) { if (ret > 0) ret = -ENOENT; goto out; } l = path->nodes[0]; read_extent_buffer(l, &root->root_item, btrfs_item_ptr_offset(l, path->slots[0]), sizeof(root->root_item)); memcpy(&root->root_key, location, sizeof(*location)); ret = 0; out: btrfs_release_path(root, path); btrfs_free_path(path); if (ret) { free(root); return ERR_PTR(ret); } generation = btrfs_root_generation(&root->root_item); blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), blocksize, generation); BUG_ON(!root->node); insert: root->ref_cows = 1; return root; } struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_key *location) { struct btrfs_root *root; struct cache_extent *cache; int ret; if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) return fs_info->tree_root; if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) return fs_info->extent_root; if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) return fs_info->chunk_root; if (location->objectid == BTRFS_DEV_TREE_OBJECTID) return fs_info->dev_root; if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) return fs_info->csum_root; BUG_ON(location->objectid == BTRFS_TREE_RELOC_OBJECTID || location->offset != (u64)-1); cache = find_cache_extent(&fs_info->fs_root_cache, location->objectid, 1); if (cache) return container_of(cache, struct btrfs_root, cache); root = btrfs_read_fs_root_no_cache(fs_info, location); if (IS_ERR(root)) return root; root->cache.start = location->objectid; root->cache.size = 1; ret = insert_existing_cache_extent(&fs_info->fs_root_cache, &root->cache); BUG_ON(ret); return root; } static struct btrfs_fs_info *__open_ctree_fd(int fp, const char *path, u64 sb_bytenr, u64 root_tree_bytenr, int writes, int partial) { u32 sectorsize; u32 nodesize; u32 leafsize; u32 blocksize; u32 stripesize; u64 generation; struct btrfs_key key; struct btrfs_root *tree_root = malloc(sizeof(struct btrfs_root)); struct btrfs_root *extent_root = malloc(sizeof(struct btrfs_root)); struct btrfs_root *chunk_root = malloc(sizeof(struct btrfs_root)); struct btrfs_root *dev_root = malloc(sizeof(struct btrfs_root)); struct btrfs_root *csum_root = malloc(sizeof(struct btrfs_root)); struct btrfs_fs_info *fs_info = malloc(sizeof(*fs_info)); int ret; struct btrfs_super_block *disk_super; struct btrfs_fs_devices *fs_devices = NULL; u64 total_devs; u64 features; if (sb_bytenr == 0) sb_bytenr = BTRFS_SUPER_INFO_OFFSET; /* try to drop all the caches */ if (posix_fadvise(fp, 0, 0, POSIX_FADV_DONTNEED)) fprintf(stderr, "Warning, could not drop caches\n"); ret = btrfs_scan_one_device(fp, path, &fs_devices, &total_devs, sb_bytenr); if (ret) { fprintf(stderr, "No valid Btrfs found on %s\n", path); goto out; } if (total_devs != 1) { ret = btrfs_scan_for_fsid(fs_devices, total_devs, 1); if (ret) goto out; } memset(fs_info, 0, sizeof(*fs_info)); fs_info->super_copy = calloc(1, BTRFS_SUPER_INFO_SIZE); fs_info->tree_root = tree_root; fs_info->extent_root = extent_root; fs_info->chunk_root = chunk_root; fs_info->dev_root = dev_root; fs_info->csum_root = csum_root; if (!writes) fs_info->readonly = 1; extent_io_tree_init(&fs_info->extent_cache); extent_io_tree_init(&fs_info->free_space_cache); extent_io_tree_init(&fs_info->block_group_cache); extent_io_tree_init(&fs_info->pinned_extents); extent_io_tree_init(&fs_info->pending_del); extent_io_tree_init(&fs_info->extent_ins); cache_tree_init(&fs_info->fs_root_cache); cache_tree_init(&fs_info->mapping_tree.cache_tree); mutex_init(&fs_info->fs_mutex); fs_info->fs_devices = fs_devices; INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); INIT_LIST_HEAD(&fs_info->space_info); __setup_root(4096, 4096, 4096, 4096, tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); if (writes) ret = btrfs_open_devices(fs_devices, O_RDWR); else ret = btrfs_open_devices(fs_devices, O_RDONLY); if (ret) goto out_cleanup; fs_info->super_bytenr = sb_bytenr; disk_super = fs_info->super_copy; ret = btrfs_read_dev_super(fs_devices->latest_bdev, disk_super, sb_bytenr); if (ret) { printk("No valid btrfs found\n"); goto out_devices; } memcpy(fs_info->fsid, &disk_super->fsid, BTRFS_FSID_SIZE); features = btrfs_super_incompat_flags(disk_super) & ~BTRFS_FEATURE_INCOMPAT_SUPP; if (features) { printk("couldn't open because of unsupported " "option features (%Lx).\n", (unsigned long long)features); goto out_devices; } features = btrfs_super_incompat_flags(disk_super); if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) { features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; btrfs_set_super_incompat_flags(disk_super, features); } features = btrfs_super_compat_ro_flags(disk_super) & ~BTRFS_FEATURE_COMPAT_RO_SUPP; if (writes && features) { printk("couldn't open RDWR because of unsupported " "option features (%Lx).\n", (unsigned long long)features); goto out_devices; } nodesize = btrfs_super_nodesize(disk_super); leafsize = btrfs_super_leafsize(disk_super); sectorsize = btrfs_super_sectorsize(disk_super); stripesize = btrfs_super_stripesize(disk_super); tree_root->nodesize = nodesize; tree_root->leafsize = leafsize; tree_root->sectorsize = sectorsize; tree_root->stripesize = stripesize; ret = btrfs_read_sys_array(tree_root); if (ret) goto out_devices; blocksize = btrfs_level_size(tree_root, btrfs_super_chunk_root_level(disk_super)); generation = btrfs_super_chunk_root_generation(disk_super); __setup_root(nodesize, leafsize, sectorsize, stripesize, chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); chunk_root->node = read_tree_block(chunk_root, btrfs_super_chunk_root(disk_super), blocksize, generation); if (!extent_buffer_uptodate(chunk_root->node)) { printk("Couldn't read chunk root\n"); goto out_devices; } read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); if (!(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)) { ret = btrfs_read_chunk_tree(chunk_root); if (ret) { printk("Couldn't read chunk tree\n"); goto out_chunk; } } blocksize = btrfs_level_size(tree_root, btrfs_super_root_level(disk_super)); generation = btrfs_super_generation(disk_super); if (!root_tree_bytenr) root_tree_bytenr = btrfs_super_root(disk_super); tree_root->node = read_tree_block(tree_root, root_tree_bytenr, blocksize, generation); if (!extent_buffer_uptodate(tree_root->node)) { printk("Couldn't read tree root\n"); goto out_failed; } ret = find_and_setup_root(tree_root, fs_info, BTRFS_EXTENT_TREE_OBJECTID, extent_root); if (ret) { printk("Couldn't setup extent tree\n"); goto out_failed; } extent_root->track_dirty = 1; ret = find_and_setup_root(tree_root, fs_info, BTRFS_DEV_TREE_OBJECTID, dev_root); if (ret) { printk("Couldn't setup device tree\n"); goto out_failed; } dev_root->track_dirty = 1; ret = find_and_setup_root(tree_root, fs_info, BTRFS_CSUM_TREE_OBJECTID, csum_root); if (ret) { printk("Couldn't setup csum tree\n"); if (!partial) goto out_failed; } csum_root->track_dirty = 1; find_and_setup_log_root(tree_root, fs_info, disk_super); fs_info->generation = generation; fs_info->last_trans_committed = generation; btrfs_read_block_groups(fs_info->tree_root); key.objectid = BTRFS_FS_TREE_OBJECTID; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; fs_info->fs_root = btrfs_read_fs_root(fs_info, &key); if (!fs_info->fs_root) goto out_failed; fs_info->data_alloc_profile = (u64)-1; fs_info->metadata_alloc_profile = (u64)-1; fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; return fs_info; out_failed: if (partial) return fs_info; if (fs_info->csum_root) free_extent_buffer(fs_info->csum_root->node); if (fs_info->dev_root) free_extent_buffer(fs_info->dev_root->node); if (fs_info->extent_root) free_extent_buffer(fs_info->extent_root->node); if (fs_info->tree_root) free_extent_buffer(fs_info->tree_root->node); out_chunk: if (fs_info->chunk_root) free_extent_buffer(fs_info->chunk_root->node); out_devices: close_all_devices(fs_info); out_cleanup: extent_io_tree_cleanup(&fs_info->extent_cache); extent_io_tree_cleanup(&fs_info->free_space_cache); extent_io_tree_cleanup(&fs_info->block_group_cache); extent_io_tree_cleanup(&fs_info->pinned_extents); extent_io_tree_cleanup(&fs_info->pending_del); extent_io_tree_cleanup(&fs_info->extent_ins); out: free(tree_root); free(extent_root); free(chunk_root); free(dev_root); free(csum_root); free(fs_info); return NULL; } struct btrfs_fs_info *open_ctree_fs_info(const char *filename, u64 sb_bytenr, u64 root_tree_bytenr, int writes, int partial) { int fp; struct btrfs_fs_info *info; int flags = O_CREAT | O_RDWR; if (!writes) flags = O_RDONLY; fp = open(filename, flags, 0600); if (fp < 0) { fprintf (stderr, "Could not open %s\n", filename); return NULL; } info = __open_ctree_fd(fp, filename, sb_bytenr, root_tree_bytenr, writes, partial); close(fp); return info; } struct btrfs_root *open_ctree(const char *filename, u64 sb_bytenr, int writes) { struct btrfs_fs_info *info; info = open_ctree_fs_info(filename, sb_bytenr, 0, writes, 0); if (!info) return NULL; return info->fs_root; } struct btrfs_root *open_ctree_fd(int fp, const char *path, u64 sb_bytenr, int writes) { struct btrfs_fs_info *info; info = __open_ctree_fd(fp, path, sb_bytenr, 0, writes, 0); if (!info) return NULL; return info->fs_root; } int btrfs_read_dev_super(int fd, struct btrfs_super_block *sb, u64 sb_bytenr) { u8 fsid[BTRFS_FSID_SIZE]; int fsid_is_initialized = 0; struct btrfs_super_block buf; int i; int ret; u64 transid = 0; u64 bytenr; if (sb_bytenr != BTRFS_SUPER_INFO_OFFSET) { ret = pread64(fd, &buf, sizeof(buf), sb_bytenr); if (ret < sizeof(buf)) return -1; if (btrfs_super_bytenr(&buf) != sb_bytenr || buf.magic != cpu_to_le64(BTRFS_MAGIC)) return -1; memcpy(sb, &buf, sizeof(*sb)); return 0; } for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { bytenr = btrfs_sb_offset(i); ret = pread64(fd, &buf, sizeof(buf), bytenr); if (ret < sizeof(buf)) break; if (btrfs_super_bytenr(&buf) != bytenr ) continue; /* if magic is NULL, the device was removed */ if (buf.magic == 0 && i == 0) return -1; if (buf.magic != cpu_to_le64(BTRFS_MAGIC)) continue; if (!fsid_is_initialized) { memcpy(fsid, buf.fsid, sizeof(fsid)); fsid_is_initialized = 1; } else if (memcmp(fsid, buf.fsid, sizeof(fsid))) { /* * the superblocks (the original one and * its backups) contain data of different * filesystems -> the super cannot be trusted */ continue; } if (btrfs_super_generation(&buf) > transid) { memcpy(sb, &buf, sizeof(*sb)); transid = btrfs_super_generation(&buf); } } return transid > 0 ? 0 : -1; } int write_dev_supers(struct btrfs_root *root, struct btrfs_super_block *sb, struct btrfs_device *device) { u64 bytenr; u32 crc; int i, ret; if (root->fs_info->super_bytenr != BTRFS_SUPER_INFO_OFFSET) { btrfs_set_super_bytenr(sb, root->fs_info->super_bytenr); crc = ~(u32)0; crc = btrfs_csum_data(NULL, (char *)sb + BTRFS_CSUM_SIZE, crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); btrfs_csum_final(crc, (char *)&sb->csum[0]); /* * super_copy is BTRFS_SUPER_INFO_SIZE bytes and is * zero filled, we can use it directly */ ret = pwrite64(device->fd, root->fs_info->super_copy, BTRFS_SUPER_INFO_SIZE, root->fs_info->super_bytenr); BUG_ON(ret != BTRFS_SUPER_INFO_SIZE); return 0; } for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { bytenr = btrfs_sb_offset(i); if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes) break; btrfs_set_super_bytenr(sb, bytenr); crc = ~(u32)0; crc = btrfs_csum_data(NULL, (char *)sb + BTRFS_CSUM_SIZE, crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); btrfs_csum_final(crc, (char *)&sb->csum[0]); /* * super_copy is BTRFS_SUPER_INFO_SIZE bytes and is * zero filled, we can use it directly */ ret = pwrite64(device->fd, root->fs_info->super_copy, BTRFS_SUPER_INFO_SIZE, bytenr); BUG_ON(ret != BTRFS_SUPER_INFO_SIZE); } return 0; } int write_all_supers(struct btrfs_root *root) { struct list_head *cur; struct list_head *head = &root->fs_info->fs_devices->devices; struct btrfs_device *dev; struct btrfs_super_block *sb; struct btrfs_dev_item *dev_item; int ret; u64 flags; sb = root->fs_info->super_copy; dev_item = &sb->dev_item; list_for_each(cur, head) { dev = list_entry(cur, struct btrfs_device, dev_list); if (!dev->writeable) continue; btrfs_set_stack_device_generation(dev_item, 0); btrfs_set_stack_device_type(dev_item, dev->type); btrfs_set_stack_device_id(dev_item, dev->devid); btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); btrfs_set_stack_device_io_align(dev_item, dev->io_align); btrfs_set_stack_device_io_width(dev_item, dev->io_width); btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); flags = btrfs_super_flags(sb); btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); ret = write_dev_supers(root, sb, dev); BUG_ON(ret); } return 0; } int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root *root) { int ret; struct btrfs_root *tree_root = root->fs_info->tree_root; struct btrfs_root *chunk_root = root->fs_info->chunk_root; if (root->fs_info->readonly) return 0; btrfs_set_super_generation(root->fs_info->super_copy, trans->transid); btrfs_set_super_root(root->fs_info->super_copy, tree_root->node->start); btrfs_set_super_root_level(root->fs_info->super_copy, btrfs_header_level(tree_root->node)); btrfs_set_super_chunk_root(root->fs_info->super_copy, chunk_root->node->start); btrfs_set_super_chunk_root_level(root->fs_info->super_copy, btrfs_header_level(chunk_root->node)); btrfs_set_super_chunk_root_generation(root->fs_info->super_copy, btrfs_header_generation(chunk_root->node)); ret = write_all_supers(root); if (ret) fprintf(stderr, "failed to write new super block err %d\n", ret); return ret; } static int close_all_devices(struct btrfs_fs_info *fs_info) { struct list_head *list; struct btrfs_device *device; list = &fs_info->fs_devices->devices; while (!list_empty(list)) { device = list_entry(list->next, struct btrfs_device, dev_list); list_del_init(&device->dev_list); if (device->fd) { fsync(device->fd); if (posix_fadvise(device->fd, 0, 0, POSIX_FADV_DONTNEED)) fprintf(stderr, "Warning, could not drop caches\n"); } close(device->fd); kfree(device->name); kfree(device->label); kfree(device); } kfree(fs_info->fs_devices); return 0; } static void free_mapping_cache(struct btrfs_fs_info *fs_info) { struct cache_tree *cache_tree = &fs_info->mapping_tree.cache_tree; struct cache_extent *ce; struct map_lookup *map; while ((ce = find_first_cache_extent(cache_tree, 0))) { map = container_of(ce, struct map_lookup, ce); remove_cache_extent(cache_tree, ce); kfree(map); } } int close_ctree(struct btrfs_root *root) { int ret; struct btrfs_trans_handle *trans; struct btrfs_fs_info *fs_info = root->fs_info; if (fs_info->last_trans_committed != fs_info->generation) { trans = btrfs_start_transaction(root, 1); btrfs_commit_transaction(trans, root); trans = btrfs_start_transaction(root, 1); ret = commit_tree_roots(trans, fs_info); BUG_ON(ret); ret = __commit_transaction(trans, root); BUG_ON(ret); write_ctree_super(trans, root); btrfs_free_transaction(root, trans); } btrfs_free_block_groups(fs_info); free_fs_roots(fs_info); if (fs_info->extent_root->node) free_extent_buffer(fs_info->extent_root->node); if (fs_info->tree_root->node) free_extent_buffer(fs_info->tree_root->node); if (fs_info->chunk_root->node) free_extent_buffer(fs_info->chunk_root->node); if (fs_info->dev_root->node) free_extent_buffer(fs_info->dev_root->node); if (fs_info->csum_root->node) free_extent_buffer(fs_info->csum_root->node); if (fs_info->log_root_tree) { if (fs_info->log_root_tree->node) free_extent_buffer(fs_info->log_root_tree->node); free(fs_info->log_root_tree); } close_all_devices(fs_info); free_mapping_cache(fs_info); extent_io_tree_cleanup(&fs_info->extent_cache); extent_io_tree_cleanup(&fs_info->free_space_cache); extent_io_tree_cleanup(&fs_info->block_group_cache); extent_io_tree_cleanup(&fs_info->pinned_extents); extent_io_tree_cleanup(&fs_info->pending_del); extent_io_tree_cleanup(&fs_info->extent_ins); free(fs_info->tree_root); free(fs_info->extent_root); free(fs_info->chunk_root); free(fs_info->dev_root); free(fs_info->csum_root); free(fs_info); return 0; } int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *eb) { return clear_extent_buffer_dirty(eb); } int wait_on_tree_block_writeback(struct btrfs_root *root, struct extent_buffer *eb) { return 0; } void btrfs_mark_buffer_dirty(struct extent_buffer *eb) { set_extent_buffer_dirty(eb); } int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) { int ret; ret = extent_buffer_uptodate(buf); if (!ret) return ret; ret = verify_parent_transid(buf->tree, buf, parent_transid, 1); return !ret; } int btrfs_set_buffer_uptodate(struct extent_buffer *eb) { return set_extent_buffer_uptodate(eb); }