/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #define _XOPEN_SOURCE 500 #ifndef __CHECKER__ #include #include #endif #include #include #include #include #include #include #include #include #include #include "kerncompat.h" #include "ctree.h" #include "disk-io.h" #include "transaction.h" #ifdef __CHECKER__ #define BLKGETSIZE64 0 static inline int ioctl(int fd, int define, u64 *size) { return 0; } #endif static u64 parse_size(char *s) { int len = strlen(s); char c; u64 mult = 1; if (!isdigit(s[len - 1])) { c = tolower(s[len - 1]); switch (c) { case 'g': mult *= 1024; case 'm': mult *= 1024; case 'k': mult *= 1024; case 'b': break; default: fprintf(stderr, "Unknown size descriptor %c\n", c); exit(1); } s[len - 1] = '\0'; } return atol(s) * mult; } static int __make_root_dir(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid) { int ret; char buf[8]; struct btrfs_key inode_map; struct btrfs_inode_item inode_item; buf[0] = '.'; buf[1] = '.'; inode_map.objectid = objectid; btrfs_set_key_type(&inode_map, BTRFS_INODE_ITEM_KEY); inode_map.offset = 0; memset(&inode_item, 0, sizeof(inode_item)); btrfs_set_inode_generation(&inode_item, root->fs_info->generation); btrfs_set_inode_size(&inode_item, 0); btrfs_set_inode_nlink(&inode_item, 1); btrfs_set_inode_nblocks(&inode_item, 0); btrfs_set_inode_mode(&inode_item, S_IFDIR | 0555); if (root->fs_info->tree_root == root) btrfs_set_super_root_dir(root->fs_info->disk_super, objectid); ret = btrfs_insert_inode(trans, root, objectid, &inode_item); if (ret) goto error; ret = btrfs_insert_inode_ref(trans, root, "..", 2, objectid, objectid); if (ret) goto error; btrfs_set_root_dirid(&root->root_item, objectid); ret = 0; error: return ret; } static int make_block_groups(struct btrfs_trans_handle *trans, struct btrfs_root *root) { u64 group_size; u64 total_bytes; u64 cur_start; int ret; u64 nr = 0; struct btrfs_block_group_cache *cache; struct cache_tree *bg_cache = &root->fs_info->block_group_cache; root = root->fs_info->extent_root; /* first we bootstrap the things into cache */ group_size = BTRFS_BLOCK_GROUP_SIZE; cache = malloc(sizeof(*cache)); cache->key.objectid = 0; cache->key.offset = group_size; cache->cache.start = 0; cache->cache.size = group_size; btrfs_set_key_type(&cache->key, BTRFS_BLOCK_GROUP_ITEM_KEY); memset(&cache->item, 0, sizeof(cache->item)); btrfs_set_block_group_used(&cache->item, btrfs_super_bytes_used(root->fs_info->disk_super)); ret = insert_existing_cache_extent(bg_cache, &cache->cache); BUG_ON(ret); total_bytes = btrfs_super_total_bytes(root->fs_info->disk_super); cur_start = group_size; while(cur_start < total_bytes) { cache = malloc(sizeof(*cache)); cache->key.objectid = cur_start; cache->key.offset = group_size; cache->cache.start = cur_start; cache->cache.size = group_size; btrfs_set_key_type(&cache->key, BTRFS_BLOCK_GROUP_ITEM_KEY); memset(&cache->item, 0, sizeof(cache->item)); if (nr % 3) cache->item.flags |= BTRFS_BLOCK_GROUP_DATA; ret = insert_existing_cache_extent(bg_cache, &cache->cache); BUG_ON(ret); cur_start += group_size; nr++; } /* then insert all the items */ cur_start = 0; while(cur_start < total_bytes) { struct cache_extent *ce; ce = find_first_cache_extent(bg_cache, cur_start); BUG_ON(!ce); cache = container_of(ce, struct btrfs_block_group_cache, cache); ret = btrfs_insert_block_group(trans, root, &cache->key, &cache->item); BUG_ON(ret); cur_start += group_size; } return 0; } static int make_root_dir(int fd) { struct btrfs_root *root; struct btrfs_super_block super; struct btrfs_trans_handle *trans; int ret; struct btrfs_key location; root = open_ctree_fd(fd, &super); if (!root) { fprintf(stderr, "ctree init failed\n"); return -1; } trans = btrfs_start_transaction(root, 1); ret = make_block_groups(trans, root); ret = __make_root_dir(trans, root->fs_info->tree_root, BTRFS_ROOT_TREE_DIR_OBJECTID); if (ret) goto err; ret = __make_root_dir(trans, root, BTRFS_FIRST_FREE_OBJECTID); if (ret) goto err; memcpy(&location, &root->fs_info->fs_root->root_key, sizeof(location)); location.offset = (u64)-1; ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root, "default", 7, btrfs_super_root_dir(root->fs_info->disk_super), &location, BTRFS_FT_DIR); if (ret) goto err; ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root, "default", 7, location.objectid, BTRFS_ROOT_TREE_DIR_OBJECTID); if (ret) goto err; btrfs_commit_transaction(trans, root, root->fs_info->disk_super); ret = close_ctree(root, &super); err: return ret; } int mkfs(int fd, char *pathname, u64 num_bytes, u32 nodesize, u32 leafsize, u32 sectorsize, u32 stripesize) { struct btrfs_super_block super; struct btrfs_leaf *empty_leaf; struct btrfs_root_item root_item; struct btrfs_item item; struct btrfs_extent_item extent_item; struct btrfs_inode_item *inode_item; char *block; int ret; u32 itemoff; u32 start_block = BTRFS_SUPER_INFO_OFFSET; u32 first_free = BTRFS_SUPER_INFO_OFFSET + sectorsize; btrfs_set_super_generation(&super, 1); btrfs_set_super_bytenr(&super, start_block); btrfs_set_super_root_level(&super, 0); btrfs_set_super_root(&super, first_free); strcpy((char *)(&super.magic), BTRFS_MAGIC); printf("blocksize is %d\n", leafsize); btrfs_set_super_sectorsize(&super, sectorsize); btrfs_set_super_leafsize(&super, leafsize); btrfs_set_super_nodesize(&super, nodesize); btrfs_set_super_stripesize(&super, stripesize); num_bytes = (num_bytes / sectorsize) * sectorsize; btrfs_set_super_total_bytes(&super, num_bytes); btrfs_set_super_bytes_used(&super, start_block + 3 * leafsize + sectorsize); uuid_generate(super.fsid); block = malloc(sectorsize); memset(block, 0, sectorsize); BUG_ON(sizeof(super) > sectorsize); memcpy(block, &super, sizeof(super)); ret = pwrite(fd, block, sectorsize, BTRFS_SUPER_INFO_OFFSET); BUG_ON(ret != sectorsize); /* create the tree of root objects */ empty_leaf = malloc(leafsize); memset(empty_leaf, 0, leafsize); btrfs_set_header_bytenr(&empty_leaf->header, first_free); btrfs_set_header_nritems(&empty_leaf->header, 2); btrfs_set_header_generation(&empty_leaf->header, 1); btrfs_set_header_owner(&empty_leaf->header, BTRFS_ROOT_TREE_OBJECTID); memcpy(empty_leaf->header.fsid, super.fsid, sizeof(empty_leaf->header.fsid)); /* create the items for the root tree */ inode_item = &root_item.inode; memset(inode_item, 0, sizeof(*inode_item)); btrfs_set_inode_generation(inode_item, 1); btrfs_set_inode_size(inode_item, 3); btrfs_set_inode_nlink(inode_item, 1); btrfs_set_inode_nblocks(inode_item, 1); btrfs_set_inode_mode(inode_item, S_IFDIR | 0755); // memset(&root_item, 0, sizeof(root_item)); btrfs_set_root_dirid(&root_item, 0); btrfs_set_root_refs(&root_item, 1); btrfs_set_disk_key_offset(&item.key, 0); btrfs_set_item_size(&item, sizeof(root_item)); btrfs_set_disk_key_type(&item.key, BTRFS_ROOT_ITEM_KEY); itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize) - sizeof(root_item); btrfs_set_root_bytenr(&root_item, first_free + leafsize); root_item.level = 0; btrfs_set_item_offset(&item, itemoff); btrfs_set_disk_key_objectid(&item.key, BTRFS_EXTENT_TREE_OBJECTID); memcpy(empty_leaf->items, &item, sizeof(item)); memcpy(btrfs_leaf_data(empty_leaf) + itemoff, &root_item, sizeof(root_item)); btrfs_set_root_bytenr(&root_item, first_free + leafsize * 2); btrfs_set_root_bytes_used(&root_item, 1); itemoff = itemoff - sizeof(root_item); btrfs_set_item_offset(&item, itemoff); btrfs_set_disk_key_objectid(&item.key, BTRFS_FS_TREE_OBJECTID); memcpy(empty_leaf->items + 1, &item, sizeof(item)); memcpy(btrfs_leaf_data(empty_leaf) + itemoff, &root_item, sizeof(root_item)); ret = pwrite(fd, empty_leaf, leafsize, first_free); /* create the items for the extent tree */ btrfs_set_header_bytenr(&empty_leaf->header, first_free + leafsize); btrfs_set_header_nritems(&empty_leaf->header, 4); /* item1, reserve blocks 0-16 */ btrfs_set_disk_key_objectid(&item.key, 0); btrfs_set_disk_key_offset(&item.key, first_free); btrfs_set_disk_key_type(&item.key, 0); btrfs_set_disk_key_type(&item.key, BTRFS_EXTENT_ITEM_KEY); itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize) - sizeof(struct btrfs_extent_item); btrfs_set_item_offset(&item, itemoff); btrfs_set_item_size(&item, sizeof(struct btrfs_extent_item)); btrfs_set_extent_refs(&extent_item, 1); memcpy(empty_leaf->items, &item, sizeof(item)); memcpy(btrfs_leaf_data(empty_leaf) + btrfs_item_offset(&item), &extent_item, btrfs_item_size(&item)); /* item2, give block 17 to the root */ btrfs_set_disk_key_objectid(&item.key, first_free); btrfs_set_disk_key_offset(&item.key, leafsize); itemoff = itemoff - sizeof(struct btrfs_extent_item); btrfs_set_item_offset(&item, itemoff); memcpy(empty_leaf->items + 1, &item, sizeof(item)); memcpy(btrfs_leaf_data(empty_leaf) + btrfs_item_offset(&item), &extent_item, btrfs_item_size(&item)); /* item3, give block 18 to the extent root */ btrfs_set_disk_key_objectid(&item.key, first_free + leafsize); btrfs_set_disk_key_offset(&item.key, leafsize); itemoff = itemoff - sizeof(struct btrfs_extent_item); btrfs_set_item_offset(&item, itemoff); memcpy(empty_leaf->items + 2, &item, sizeof(item)); memcpy(btrfs_leaf_data(empty_leaf) + btrfs_item_offset(&item), &extent_item, btrfs_item_size(&item)); /* item4, give block 19 to the FS root */ btrfs_set_disk_key_objectid(&item.key, first_free + leafsize * 2); btrfs_set_disk_key_offset(&item.key, leafsize); itemoff = itemoff - sizeof(struct btrfs_extent_item); btrfs_set_item_offset(&item, itemoff); memcpy(empty_leaf->items + 3, &item, sizeof(item)); memcpy(btrfs_leaf_data(empty_leaf) + btrfs_item_offset(&item), &extent_item, btrfs_item_size(&item)); ret = pwrite(fd, empty_leaf, leafsize, first_free + leafsize); if (ret != leafsize) return -1; /* finally create the FS root */ btrfs_set_header_bytenr(&empty_leaf->header, first_free + leafsize * 2); btrfs_set_header_nritems(&empty_leaf->header, 0); ret = pwrite(fd, empty_leaf, leafsize, first_free + leafsize * 2); if (ret != leafsize) return -1; return 0; } u64 device_size(int fd, struct stat *st) { u64 size; if (S_ISREG(st->st_mode)) { return st->st_size; } if (!S_ISBLK(st->st_mode)) { return 0; } if (ioctl(fd, BLKGETSIZE64, &size) >= 0) { return size; } return 0; } static void print_usage(void) { fprintf(stderr, "usage: mkfs.btrfs [ -l leafsize ] [ -n nodesize] dev [ blocks ]\n"); exit(1); } int main(int ac, char **av) { char *file; u64 block_count = 0; int fd; struct stat st; int ret; int i; u32 leafsize = 16 * 1024; u32 sectorsize = 4096; u32 nodesize = 16 * 1024; u32 stripesize = 4096; char *buf = malloc(sectorsize); char *realpath_name; while(1) { int c; c = getopt(ac, av, "l:n:s:"); if (c < 0) break; switch(c) { case 'l': leafsize = parse_size(optarg); break; case 'n': nodesize = parse_size(optarg); break; case 's': stripesize = parse_size(optarg); break; default: print_usage(); } } if (leafsize < sectorsize || (leafsize & (sectorsize - 1))) { fprintf(stderr, "Illegal leafsize %u\n", leafsize); exit(1); } if (nodesize < sectorsize || (nodesize & (sectorsize - 1))) { fprintf(stderr, "Illegal nodesize %u\n", nodesize); exit(1); } ac = ac - optind; if (ac >= 1) { file = av[optind]; if (ac == 2) { block_count = parse_size(av[optind + 1]); if (!block_count) { fprintf(stderr, "error finding block count\n"); exit(1); } } } else { print_usage(); } fd = open(file, O_RDWR); if (fd < 0) { fprintf(stderr, "unable to open %s\n", file); exit(1); } ret = fstat(fd, &st); if (ret < 0) { fprintf(stderr, "unable to stat %s\n", file); exit(1); } if (block_count == 0) { block_count = device_size(fd, &st); if (block_count == 0) { fprintf(stderr, "unable to find %s size\n", file); exit(1); } } block_count /= sectorsize; block_count *= sectorsize; if (block_count < 256 * 1024 * 1024) { fprintf(stderr, "device %s is too small\n", file); exit(1); } memset(buf, 0, sectorsize); for(i = 0; i < 64; i++) { ret = write(fd, buf, sectorsize); if (ret != sectorsize) { fprintf(stderr, "unable to zero fill device\n"); exit(1); } } realpath_name = realpath(file, NULL); ret = mkfs(fd, realpath_name, block_count, nodesize, leafsize, sectorsize, stripesize); if (ret) { fprintf(stderr, "error during mkfs %d\n", ret); exit(1); } ret = make_root_dir(fd); if (ret) { fprintf(stderr, "failed to setup the root directory\n"); exit(1); } printf("fs created on %s nodesize %u leafsize %u sectorsize %u bytes %llu\n", file, nodesize, leafsize, sectorsize, (unsigned long long)block_count); return 0; }