/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #define _XOPEN_SOURCE 500 #define _GNU_SOURCE #ifndef __CHECKER__ #include #include #include "ioctl.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "kerncompat.h" #include "ctree.h" #include "disk-io.h" #include "volumes.h" #include "transaction.h" #include "utils.h" #include "version.h" static u64 index_cnt = 2; struct directory_name_entry { char *dir_name; char *path; ino_t inum; struct list_head list; }; static u64 parse_size(char *s) { int len = strlen(s); char c; u64 mult = 1; u64 ret; s = strdup(s); if (len && !isdigit(s[len - 1])) { c = tolower(s[len - 1]); switch (c) { case 'g': mult *= 1024; case 'm': mult *= 1024; case 'k': mult *= 1024; case 'b': break; default: fprintf(stderr, "Unknown size descriptor %c\n", c); exit(1); } s[len - 1] = '\0'; } ret = atol(s) * mult; free(s); return ret; } static int make_root_dir(struct btrfs_root *root, int mixed) { struct btrfs_trans_handle *trans; struct btrfs_key location; u64 bytes_used; u64 chunk_start = 0; u64 chunk_size = 0; int ret; trans = btrfs_start_transaction(root, 1); bytes_used = btrfs_super_bytes_used(&root->fs_info->super_copy); root->fs_info->system_allocs = 1; ret = btrfs_make_block_group(trans, root, bytes_used, BTRFS_BLOCK_GROUP_SYSTEM, BTRFS_FIRST_CHUNK_TREE_OBJECTID, 0, BTRFS_MKFS_SYSTEM_GROUP_SIZE); BUG_ON(ret); if (mixed) { ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root, &chunk_start, &chunk_size, BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA); BUG_ON(ret); ret = btrfs_make_block_group(trans, root, 0, BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA, BTRFS_FIRST_CHUNK_TREE_OBJECTID, chunk_start, chunk_size); BUG_ON(ret); printf("Created a data/metadata chunk of size %llu\n", chunk_size); } else { ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root, &chunk_start, &chunk_size, BTRFS_BLOCK_GROUP_METADATA); BUG_ON(ret); ret = btrfs_make_block_group(trans, root, 0, BTRFS_BLOCK_GROUP_METADATA, BTRFS_FIRST_CHUNK_TREE_OBJECTID, chunk_start, chunk_size); BUG_ON(ret); } root->fs_info->system_allocs = 0; btrfs_commit_transaction(trans, root); trans = btrfs_start_transaction(root, 1); BUG_ON(!trans); if (!mixed) { ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root, &chunk_start, &chunk_size, BTRFS_BLOCK_GROUP_DATA); BUG_ON(ret); ret = btrfs_make_block_group(trans, root, 0, BTRFS_BLOCK_GROUP_DATA, BTRFS_FIRST_CHUNK_TREE_OBJECTID, chunk_start, chunk_size); BUG_ON(ret); } ret = btrfs_make_root_dir(trans, root->fs_info->tree_root, BTRFS_ROOT_TREE_DIR_OBJECTID); if (ret) goto err; ret = btrfs_make_root_dir(trans, root, BTRFS_FIRST_FREE_OBJECTID); if (ret) goto err; memcpy(&location, &root->fs_info->fs_root->root_key, sizeof(location)); location.offset = (u64)-1; ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root, "default", 7, btrfs_super_root_dir(&root->fs_info->super_copy), &location, BTRFS_FT_DIR, 0); if (ret) goto err; ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root, "default", 7, location.objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 0); if (ret) goto err; btrfs_commit_transaction(trans, root); err: return ret; } static int recow_roots(struct btrfs_trans_handle *trans, struct btrfs_root *root) { int ret; struct extent_buffer *tmp; struct btrfs_fs_info *info = root->fs_info; ret = __btrfs_cow_block(trans, info->fs_root, info->fs_root->node, NULL, 0, &tmp, 0, 0); BUG_ON(ret); free_extent_buffer(tmp); ret = __btrfs_cow_block(trans, info->tree_root, info->tree_root->node, NULL, 0, &tmp, 0, 0); BUG_ON(ret); free_extent_buffer(tmp); ret = __btrfs_cow_block(trans, info->extent_root, info->extent_root->node, NULL, 0, &tmp, 0, 0); BUG_ON(ret); free_extent_buffer(tmp); ret = __btrfs_cow_block(trans, info->chunk_root, info->chunk_root->node, NULL, 0, &tmp, 0, 0); BUG_ON(ret); free_extent_buffer(tmp); ret = __btrfs_cow_block(trans, info->dev_root, info->dev_root->node, NULL, 0, &tmp, 0, 0); BUG_ON(ret); free_extent_buffer(tmp); ret = __btrfs_cow_block(trans, info->csum_root, info->csum_root->node, NULL, 0, &tmp, 0, 0); BUG_ON(ret); free_extent_buffer(tmp); return 0; } static int create_one_raid_group(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 type) { u64 chunk_start; u64 chunk_size; int ret; ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root, &chunk_start, &chunk_size, type); BUG_ON(ret); ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0, type, BTRFS_FIRST_CHUNK_TREE_OBJECTID, chunk_start, chunk_size); BUG_ON(ret); return ret; } static int create_raid_groups(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 data_profile, int data_profile_opt, u64 metadata_profile, int metadata_profile_opt, int mixed) { u64 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy); u64 allowed; int ret; /* * Set default profiles according to number of added devices. * For mixed groups defaults are single/single. */ if (!metadata_profile_opt && !mixed) { metadata_profile = (num_devices > 1) ? BTRFS_BLOCK_GROUP_RAID1 : BTRFS_BLOCK_GROUP_DUP; } if (!data_profile_opt && !mixed) { data_profile = (num_devices > 1) ? BTRFS_BLOCK_GROUP_RAID0 : 0; /* raid0 or single */ } if (num_devices == 1) allowed = BTRFS_BLOCK_GROUP_DUP; else if (num_devices >= 4) { allowed = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; } else allowed = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1; if (metadata_profile & ~allowed) { fprintf(stderr, "unable to create FS with metadata " "profile %llu (have %llu devices)\n", metadata_profile, num_devices); exit(1); } if (data_profile & ~allowed) { fprintf(stderr, "unable to create FS with data " "profile %llu (have %llu devices)\n", data_profile, num_devices); exit(1); } /* allow dup'ed data chunks only in mixed mode */ if (!mixed && (data_profile & BTRFS_BLOCK_GROUP_DUP)) { fprintf(stderr, "dup for data is allowed only in mixed mode\n"); exit(1); } if (allowed & metadata_profile) { u64 meta_flags = BTRFS_BLOCK_GROUP_METADATA; ret = create_one_raid_group(trans, root, BTRFS_BLOCK_GROUP_SYSTEM | (allowed & metadata_profile)); BUG_ON(ret); if (mixed) meta_flags |= BTRFS_BLOCK_GROUP_DATA; ret = create_one_raid_group(trans, root, meta_flags | (allowed & metadata_profile)); BUG_ON(ret); ret = recow_roots(trans, root); BUG_ON(ret); } if (!mixed && num_devices > 1 && (allowed & data_profile)) { ret = create_one_raid_group(trans, root, BTRFS_BLOCK_GROUP_DATA | (allowed & data_profile)); BUG_ON(ret); } return 0; } static int create_data_reloc_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_key location; struct btrfs_root_item root_item; struct extent_buffer *tmp; u64 objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; int ret; ret = btrfs_copy_root(trans, root, root->node, &tmp, objectid); BUG_ON(ret); memcpy(&root_item, &root->root_item, sizeof(root_item)); btrfs_set_root_bytenr(&root_item, tmp->start); btrfs_set_root_level(&root_item, btrfs_header_level(tmp)); btrfs_set_root_generation(&root_item, trans->transid); free_extent_buffer(tmp); location.objectid = objectid; location.type = BTRFS_ROOT_ITEM_KEY; location.offset = 0; ret = btrfs_insert_root(trans, root->fs_info->tree_root, &location, &root_item); BUG_ON(ret); return 0; } static void print_usage(void) { fprintf(stderr, "usage: mkfs.btrfs [options] dev [ dev ... ]\n"); fprintf(stderr, "options:\n"); fprintf(stderr, "\t -A --alloc-start the offset to start the FS\n"); fprintf(stderr, "\t -b --byte-count total number of bytes in the FS\n"); fprintf(stderr, "\t -d --data data profile, raid0, raid1, raid10, dup or single\n"); fprintf(stderr, "\t -l --leafsize size of btree leaves\n"); fprintf(stderr, "\t -L --label set a label\n"); fprintf(stderr, "\t -m --metadata metadata profile, values like data profile\n"); fprintf(stderr, "\t -M --mixed mix metadata and data together\n"); fprintf(stderr, "\t -n --nodesize size of btree nodes\n"); fprintf(stderr, "\t -s --sectorsize min block allocation\n"); fprintf(stderr, "\t -r --rootdir the source directory\n"); fprintf(stderr, "\t -K --nodiscard do not perform whole device TRIM\n"); fprintf(stderr, "%s\n", BTRFS_BUILD_VERSION); exit(1); } static void print_version(void) { fprintf(stderr, "mkfs.btrfs, part of %s\n", BTRFS_BUILD_VERSION); exit(0); } static u64 parse_profile(char *s) { if (strcmp(s, "raid0") == 0) { return BTRFS_BLOCK_GROUP_RAID0; } else if (strcmp(s, "raid1") == 0) { return BTRFS_BLOCK_GROUP_RAID1; } else if (strcmp(s, "raid10") == 0) { return BTRFS_BLOCK_GROUP_RAID10; } else if (strcmp(s, "dup") == 0) { return BTRFS_BLOCK_GROUP_DUP; } else if (strcmp(s, "single") == 0) { return 0; } else { fprintf(stderr, "Unknown profile %s\n", s); print_usage(); } /* not reached */ return 0; } static char *parse_label(char *input) { int i; int len = strlen(input); if (len >= BTRFS_LABEL_SIZE) { fprintf(stderr, "Label %s is too long (max %d)\n", input, BTRFS_LABEL_SIZE - 1); exit(1); } for (i = 0; i < len; i++) { if (input[i] == '/' || input[i] == '\\') { fprintf(stderr, "invalid label %s\n", input); exit(1); } } return strdup(input); } static struct option long_options[] = { { "alloc-start", 1, NULL, 'A'}, { "byte-count", 1, NULL, 'b' }, { "leafsize", 1, NULL, 'l' }, { "label", 1, NULL, 'L'}, { "metadata", 1, NULL, 'm' }, { "mixed", 0, NULL, 'M' }, { "nodesize", 1, NULL, 'n' }, { "sectorsize", 1, NULL, 's' }, { "data", 1, NULL, 'd' }, { "version", 0, NULL, 'V' }, { "rootdir", 1, NULL, 'r' }, { "nodiscard", 0, NULL, 'K' }, { 0, 0, 0, 0} }; static int add_directory_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, ino_t parent_inum, const char *name, struct stat *st, int *dir_index_cnt) { int ret; int name_len; struct btrfs_key location; u8 filetype = 0; name_len = strlen(name); location.objectid = objectid; location.offset = 0; btrfs_set_key_type(&location, BTRFS_INODE_ITEM_KEY); if (S_ISDIR(st->st_mode)) filetype = BTRFS_FT_DIR; if (S_ISREG(st->st_mode)) filetype = BTRFS_FT_REG_FILE; if (S_ISLNK(st->st_mode)) filetype = BTRFS_FT_SYMLINK; ret = btrfs_insert_dir_item(trans, root, name, name_len, parent_inum, &location, filetype, index_cnt); *dir_index_cnt = index_cnt; index_cnt++; return ret; } static int fill_inode_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_inode_item *dst, struct stat *src) { u64 blocks = 0; u64 sectorsize = root->sectorsize; /* * btrfs_inode_item has some reserved fields * and represents on-disk inode entry, so * zero everything to prevent information leak */ memset(dst, 0, sizeof (*dst)); btrfs_set_stack_inode_generation(dst, trans->transid); btrfs_set_stack_inode_size(dst, src->st_size); btrfs_set_stack_inode_nbytes(dst, 0); btrfs_set_stack_inode_block_group(dst, 0); btrfs_set_stack_inode_nlink(dst, src->st_nlink); btrfs_set_stack_inode_uid(dst, src->st_uid); btrfs_set_stack_inode_gid(dst, src->st_gid); btrfs_set_stack_inode_mode(dst, src->st_mode); btrfs_set_stack_inode_rdev(dst, 0); btrfs_set_stack_inode_flags(dst, 0); btrfs_set_stack_timespec_sec(&dst->atime, src->st_atime); btrfs_set_stack_timespec_nsec(&dst->atime, 0); btrfs_set_stack_timespec_sec(&dst->ctime, src->st_ctime); btrfs_set_stack_timespec_nsec(&dst->ctime, 0); btrfs_set_stack_timespec_sec(&dst->mtime, src->st_mtime); btrfs_set_stack_timespec_nsec(&dst->mtime, 0); btrfs_set_stack_timespec_sec(&dst->otime, 0); btrfs_set_stack_timespec_nsec(&dst->otime, 0); if (S_ISDIR(src->st_mode)) { btrfs_set_stack_inode_size(dst, 0); btrfs_set_stack_inode_nlink(dst, 1); } if (S_ISREG(src->st_mode)) { btrfs_set_stack_inode_size(dst, (u64)src->st_size); if (src->st_size <= BTRFS_MAX_INLINE_DATA_SIZE(root)) btrfs_set_stack_inode_nbytes(dst, src->st_size); else { blocks = src->st_size / sectorsize; if (src->st_size % sectorsize) blocks += 1; blocks *= sectorsize; btrfs_set_stack_inode_nbytes(dst, blocks); } } if (S_ISLNK(src->st_mode)) btrfs_set_stack_inode_nbytes(dst, src->st_size + 1); return 0; } static int directory_select(const struct direct *entry) { if ((strncmp(entry->d_name, ".", entry->d_reclen) == 0) || (strncmp(entry->d_name, "..", entry->d_reclen) == 0)) return 0; else return 1; } static void free_namelist(struct direct **files, int count) { int i; if (count < 0) return; for (i = 0; i < count; ++i) free(files[i]); free(files); } static u64 calculate_dir_inode_size(char *dirname) { int count, i; struct direct **files, *cur_file; u64 dir_inode_size = 0; count = scandir(dirname, &files, directory_select, NULL); for (i = 0; i < count; i++) { cur_file = files[i]; dir_inode_size += strlen(cur_file->d_name); } free_namelist(files, count); dir_inode_size *= 2; return dir_inode_size; } static int add_inode_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct stat *st, char *name, u64 self_objectid, ino_t parent_inum, int dir_index_cnt, struct btrfs_inode_item *inode_ret) { int ret; struct btrfs_key inode_key; struct btrfs_inode_item btrfs_inode; u64 objectid; u64 inode_size = 0; int name_len; name_len = strlen(name); fill_inode_item(trans, root, &btrfs_inode, st); objectid = self_objectid; if (S_ISDIR(st->st_mode)) { inode_size = calculate_dir_inode_size(name); btrfs_set_stack_inode_size(&btrfs_inode, inode_size); } inode_key.objectid = objectid; inode_key.offset = 0; btrfs_set_key_type(&inode_key, BTRFS_INODE_ITEM_KEY); ret = btrfs_insert_inode(trans, root, objectid, &btrfs_inode); if (ret) goto fail; ret = btrfs_insert_inode_ref(trans, root, name, name_len, objectid, parent_inum, dir_index_cnt); if (ret) goto fail; *inode_ret = btrfs_inode; fail: return ret; } static int add_xattr_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, const char *file_name) { int ret; int cur_name_len; char xattr_list[XATTR_LIST_MAX]; char *cur_name; char cur_value[XATTR_SIZE_MAX]; char delimiter = '\0'; char *next_location = xattr_list; ret = llistxattr(file_name, xattr_list, XATTR_LIST_MAX); if (ret < 0) { if(errno == ENOTSUP) return 0; fprintf(stderr, "get a list of xattr failed for %s\n", file_name); return ret; } if (ret == 0) return ret; cur_name = strtok(xattr_list, &delimiter); while (cur_name != NULL) { cur_name_len = strlen(cur_name); next_location += cur_name_len + 1; ret = getxattr(file_name, cur_name, cur_value, XATTR_SIZE_MAX); if (ret < 0) { if(errno == ENOTSUP) return 0; fprintf(stderr, "get a xattr value failed for %s attr %s\n", file_name, cur_name); return ret; } ret = btrfs_insert_xattr_item(trans, root, cur_name, cur_name_len, cur_value, ret, objectid); if (ret) { fprintf(stderr, "insert a xattr item failed for %s\n", file_name); } cur_name = strtok(next_location, &delimiter); } return ret; } static int custom_alloc_extent(struct btrfs_root *root, u64 num_bytes, u64 hint_byte, struct btrfs_key *ins) { u64 start; u64 end; u64 last = hint_byte; int ret; int wrapped = 0; struct btrfs_block_group_cache *cache; while (1) { ret = find_first_extent_bit(&root->fs_info->free_space_cache, last, &start, &end, EXTENT_DIRTY); if (ret) { if (wrapped++ == 0) { last = 0; continue; } else { goto fail; } } start = max(last, start); last = end + 1; if (last - start < num_bytes) continue; last = start + num_bytes; if (test_range_bit(&root->fs_info->pinned_extents, start, last - 1, EXTENT_DIRTY, 0)) continue; cache = btrfs_lookup_block_group(root->fs_info, start); BUG_ON(!cache); if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM || last > cache->key.objectid + cache->key.offset) { last = cache->key.objectid + cache->key.offset; continue; } if (cache->flags & (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) { last = cache->key.objectid + cache->key.offset; continue; } clear_extent_dirty(&root->fs_info->free_space_cache, start, start + num_bytes - 1, 0); ins->objectid = start; ins->offset = num_bytes; ins->type = BTRFS_EXTENT_ITEM_KEY; return 0; } fail: fprintf(stderr, "not enough free space\n"); return -ENOSPC; } static int record_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *inode, u64 file_pos, u64 disk_bytenr, u64 num_bytes) { int ret; struct btrfs_fs_info *info = root->fs_info; struct btrfs_root *extent_root = info->extent_root; struct extent_buffer *leaf; struct btrfs_file_extent_item *fi; struct btrfs_key ins_key; struct btrfs_path path; struct btrfs_extent_item *ei; btrfs_init_path(&path); ins_key.objectid = objectid; ins_key.offset = 0; btrfs_set_key_type(&ins_key, BTRFS_EXTENT_DATA_KEY); ret = btrfs_insert_empty_item(trans, root, &path, &ins_key, sizeof(*fi)); if (ret) goto fail; leaf = path.nodes[0]; fi = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_file_extent_item); btrfs_set_file_extent_generation(leaf, fi, trans->transid); btrfs_set_file_extent_type(leaf, fi, BTRFS_FILE_EXTENT_REG); btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); btrfs_set_file_extent_disk_num_bytes(leaf, fi, num_bytes); btrfs_set_file_extent_offset(leaf, fi, 0); btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); btrfs_set_file_extent_compression(leaf, fi, 0); btrfs_set_file_extent_encryption(leaf, fi, 0); btrfs_set_file_extent_other_encoding(leaf, fi, 0); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(root, &path); ins_key.objectid = disk_bytenr; ins_key.offset = num_bytes; ins_key.type = BTRFS_EXTENT_ITEM_KEY; ret = btrfs_insert_empty_item(trans, extent_root, &path, &ins_key, sizeof(*ei)); if (ret == 0) { leaf = path.nodes[0]; ei = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_extent_item); btrfs_set_extent_refs(leaf, ei, 0); btrfs_set_extent_generation(leaf, ei, trans->transid); btrfs_set_extent_flags(leaf, ei, BTRFS_EXTENT_FLAG_DATA); btrfs_mark_buffer_dirty(leaf); ret = btrfs_update_block_group(trans, root, disk_bytenr, num_bytes, 1, 0); if (ret) goto fail; } else if (ret != -EEXIST) { goto fail; } ret = btrfs_inc_extent_ref(trans, root, disk_bytenr, num_bytes, 0, root->root_key.objectid, objectid, 0); fail: btrfs_release_path(root, &path); return ret; } static int add_symbolic_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, const char *path_name) { int ret; u64 sectorsize = root->sectorsize; char *buf = malloc(sectorsize); ret = readlink(path_name, buf, sectorsize); if (ret <= 0) { fprintf(stderr, "readlink failed for %s\n", path_name); goto fail; } if (ret >= sectorsize) { fprintf(stderr, "symlink too long for %s", path_name); ret = -1; goto fail; } buf[ret] = '\0'; /* readlink does not do it for us */ ret = btrfs_insert_inline_extent(trans, root, objectid, 0, buf, ret + 1); fail: free(buf); return ret; } static int add_file_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_inode_item *btrfs_inode, u64 objectid, ino_t parent_inum, struct stat *st, const char *path_name, int out_fd) { int ret = -1; ssize_t ret_read; u64 bytes_read = 0; char *buffer = NULL; struct btrfs_key key; int blocks; u32 sectorsize = root->sectorsize; u64 first_block = 0; u64 num_blocks = 0; int fd; fd = open(path_name, O_RDONLY); if (fd == -1) { fprintf(stderr, "%s open failed\n", path_name); goto end; } blocks = st->st_size / sectorsize; if (st->st_size % sectorsize) blocks += 1; if (st->st_size <= BTRFS_MAX_INLINE_DATA_SIZE(root)) { buffer = malloc(st->st_size); ret_read = pread64(fd, buffer, st->st_size, bytes_read); if (ret_read == -1) { fprintf(stderr, "%s read failed\n", path_name); goto end; } ret = btrfs_insert_inline_extent(trans, root, objectid, 0, buffer, st->st_size); goto end; } ret = custom_alloc_extent(root, blocks * sectorsize, 0, &key); if (ret) goto end; first_block = key.objectid; bytes_read = 0; buffer = malloc(sectorsize); do { memset(buffer, 0, sectorsize); ret_read = pread64(fd, buffer, sectorsize, bytes_read); if (ret_read == -1) { fprintf(stderr, "%s read failed\n", path_name); goto end; } ret = pwrite64(out_fd, buffer, sectorsize, first_block + bytes_read); if (ret != sectorsize) { fprintf(stderr, "output file write failed\n"); goto end; } /* checksum for file data */ ret = btrfs_csum_file_block(trans, root->fs_info->csum_root, first_block + (blocks * sectorsize), first_block + bytes_read, buffer, sectorsize); if (ret) { fprintf(stderr, "%s checksum failed\n", path_name); goto end; } bytes_read += ret_read; num_blocks++; } while (ret_read == sectorsize); if (num_blocks > 0) { ret = record_file_extent(trans, root, objectid, btrfs_inode, first_block, first_block, blocks * sectorsize); if (ret) goto end; } end: if (buffer) free(buffer); close(fd); return ret; } static char *make_path(char *dir, char *name) { char *path; path = malloc(strlen(dir) + strlen(name) + 2); if (!path) return NULL; strcpy(path, dir); if (dir[strlen(dir) - 1] != '/') strcat(path, "/"); strcat(path, name); return path; } static int traverse_directory(struct btrfs_trans_handle *trans, struct btrfs_root *root, char *dir_name, struct directory_name_entry *dir_head, int out_fd) { int ret = 0; struct btrfs_inode_item cur_inode; struct btrfs_inode_item *inode_item; int count, i, dir_index_cnt; struct direct **files; struct stat st; struct directory_name_entry *dir_entry, *parent_dir_entry; struct direct *cur_file; ino_t parent_inum, cur_inum; ino_t highest_inum = 0; char *parent_dir_name; struct btrfs_path path; struct extent_buffer *leaf; struct btrfs_key root_dir_key; u64 root_dir_inode_size = 0; /* Add list for source directory */ dir_entry = malloc(sizeof(struct directory_name_entry)); dir_entry->dir_name = dir_name; dir_entry->path = strdup(dir_name); parent_inum = highest_inum + BTRFS_FIRST_FREE_OBJECTID; dir_entry->inum = parent_inum; list_add_tail(&dir_entry->list, &dir_head->list); btrfs_init_path(&path); root_dir_key.objectid = btrfs_root_dirid(&root->root_item); root_dir_key.offset = 0; btrfs_set_key_type(&root_dir_key, BTRFS_INODE_ITEM_KEY); ret = btrfs_lookup_inode(trans, root, &path, &root_dir_key, 1); if (ret) { fprintf(stderr, "root dir lookup error\n"); return -1; } leaf = path.nodes[0]; inode_item = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_inode_item); root_dir_inode_size = calculate_dir_inode_size(dir_name); btrfs_set_inode_size(leaf, inode_item, root_dir_inode_size); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(root, &path); do { parent_dir_entry = list_entry(dir_head->list.next, struct directory_name_entry, list); list_del(&parent_dir_entry->list); parent_inum = parent_dir_entry->inum; parent_dir_name = parent_dir_entry->dir_name; if (chdir(parent_dir_entry->path)) { fprintf(stderr, "chdir error for %s\n", parent_dir_name); goto fail_no_files; } count = scandir(parent_dir_entry->path, &files, directory_select, NULL); if (count == -1) { fprintf(stderr, "scandir for %s failed: %s\n", parent_dir_name, strerror (errno)); goto fail; } for (i = 0; i < count; i++) { cur_file = files[i]; if (lstat(cur_file->d_name, &st) == -1) { fprintf(stderr, "lstat failed for file %s\n", cur_file->d_name); goto fail; } cur_inum = ++highest_inum + BTRFS_FIRST_FREE_OBJECTID; ret = add_directory_items(trans, root, cur_inum, parent_inum, cur_file->d_name, &st, &dir_index_cnt); if (ret) { fprintf(stderr, "add_directory_items failed\n"); goto fail; } ret = add_inode_items(trans, root, &st, cur_file->d_name, cur_inum, parent_inum, dir_index_cnt, &cur_inode); if (ret) { fprintf(stderr, "add_inode_items failed\n"); goto fail; } ret = add_xattr_item(trans, root, cur_inum, cur_file->d_name); if (ret) { fprintf(stderr, "add_xattr_item failed\n"); if(ret != -ENOTSUP) goto fail; } if (S_ISDIR(st.st_mode)) { dir_entry = malloc(sizeof(struct directory_name_entry)); dir_entry->dir_name = cur_file->d_name; dir_entry->path = make_path(parent_dir_entry->path, cur_file->d_name); dir_entry->inum = cur_inum; list_add_tail(&dir_entry->list, &dir_head->list); } else if (S_ISREG(st.st_mode)) { ret = add_file_items(trans, root, &cur_inode, cur_inum, parent_inum, &st, cur_file->d_name, out_fd); if (ret) { fprintf(stderr, "add_file_items failed\n"); goto fail; } } else if (S_ISLNK(st.st_mode)) { ret = add_symbolic_link(trans, root, cur_inum, cur_file->d_name); if (ret) { fprintf(stderr, "add_symbolic_link failed\n"); goto fail; } } } free_namelist(files, count); free(parent_dir_entry->path); free(parent_dir_entry); index_cnt = 2; } while (!list_empty(&dir_head->list)); return 0; fail: free_namelist(files, count); fail_no_files: free(parent_dir_entry->path); free(parent_dir_entry); return -1; } static int open_target(char *output_name) { int output_fd; output_fd = open(output_name, O_CREAT | O_RDWR | O_TRUNC, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH); return output_fd; } static int create_chunks(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 num_of_meta_chunks, u64 size_of_data) { u64 chunk_start; u64 chunk_size; u64 meta_type = BTRFS_BLOCK_GROUP_METADATA; u64 data_type = BTRFS_BLOCK_GROUP_DATA; u64 minimum_data_chunk_size = 8 * 1024 * 1024; u64 i; int ret; for (i = 0; i < num_of_meta_chunks; i++) { ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root, &chunk_start, &chunk_size, meta_type); BUG_ON(ret); ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0, meta_type, BTRFS_FIRST_CHUNK_TREE_OBJECTID, chunk_start, chunk_size); BUG_ON(ret); set_extent_dirty(&root->fs_info->free_space_cache, chunk_start, chunk_start + chunk_size - 1, 0); } if (size_of_data < minimum_data_chunk_size) size_of_data = minimum_data_chunk_size; ret = btrfs_alloc_data_chunk(trans, root->fs_info->extent_root, &chunk_start, size_of_data, data_type); BUG_ON(ret); ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0, data_type, BTRFS_FIRST_CHUNK_TREE_OBJECTID, chunk_start, size_of_data); BUG_ON(ret); set_extent_dirty(&root->fs_info->free_space_cache, chunk_start, chunk_start + size_of_data - 1, 0); return ret; } static int make_image(char *source_dir, struct btrfs_root *root, int out_fd) { int ret; struct btrfs_trans_handle *trans; struct stat root_st; struct directory_name_entry dir_head; ret = lstat(source_dir, &root_st); if (ret) { fprintf(stderr, "unable to lstat the %s\n", source_dir); goto fail; } INIT_LIST_HEAD(&dir_head.list); trans = btrfs_start_transaction(root, 1); ret = traverse_directory(trans, root, source_dir, &dir_head, out_fd); if (ret) { fprintf(stderr, "unable to traverse_directory\n"); goto fail; } btrfs_commit_transaction(trans, root); printf("Making image is completed.\n"); return 0; fail: fprintf(stderr, "Making image is aborted.\n"); return -1; } static u64 size_sourcedir(char *dir_name, u64 sectorsize, u64 *num_of_meta_chunks_ret, u64 *size_of_data_ret) { u64 dir_size = 0; u64 total_size = 0; int ret; char command[1024]; char path[512]; char *file_name = "temp_file"; FILE *file; u64 default_chunk_size = 8 * 1024 * 1024; /* 8MB */ u64 allocated_meta_size = 8 * 1024 * 1024; /* 8MB */ u64 allocated_total_size = 20 * 1024 * 1024; /* 20MB */ u64 num_of_meta_chunks = 0; u64 num_of_allocated_meta_chunks = allocated_meta_size / default_chunk_size; ret = sprintf(command, "du -B 4096 -s "); if (ret < 0) { fprintf(stderr, "error executing sprintf for du command\n"); return -1; } strcat(command, dir_name); strcat(command, " > "); strcat(command, file_name); ret = system(command); file = fopen(file_name, "r"); ret = fscanf(file, "%lld %s\n", &dir_size, path); fclose(file); remove(file_name); dir_size *= sectorsize; *size_of_data_ret = dir_size; num_of_meta_chunks = (dir_size / 2) / default_chunk_size; if (((dir_size / 2) % default_chunk_size) != 0) num_of_meta_chunks++; if (num_of_meta_chunks <= num_of_allocated_meta_chunks) num_of_meta_chunks = 0; else num_of_meta_chunks -= num_of_allocated_meta_chunks; total_size = allocated_total_size + dir_size + (num_of_meta_chunks * default_chunk_size); *num_of_meta_chunks_ret = num_of_meta_chunks; return total_size; } static int zero_output_file(int out_fd, u64 size, u32 sectorsize) { int len = sectorsize; int loop_num = size / sectorsize; u64 location = 0; char *buf = malloc(len); int ret = 0, i; ssize_t written; if (!buf) return -ENOMEM; memset(buf, 0, len); for (i = 0; i < loop_num; i++) { written = pwrite64(out_fd, buf, len, location); if (written != len) ret = -EIO; location += sectorsize; } free(buf); return ret; } int main(int ac, char **av) { char *file; struct btrfs_root *root; struct btrfs_trans_handle *trans; char *label = NULL; char *first_file; u64 block_count = 0; u64 dev_block_count = 0; u64 blocks[7]; u64 alloc_start = 0; u64 metadata_profile = 0; u64 data_profile = 0; u32 leafsize = getpagesize(); u32 sectorsize = 4096; u32 nodesize = leafsize; u32 stripesize = 4096; int zero_end = 1; int option_index = 0; int fd; int ret; int i; int mixed = 0; int data_profile_opt = 0; int metadata_profile_opt = 0; int nodiscard = 0; char *source_dir = NULL; int source_dir_set = 0; u64 num_of_meta_chunks = 0; u64 size_of_data = 0; u64 source_dir_size = 0; char *pretty_buf; while(1) { int c; c = getopt_long(ac, av, "A:b:l:n:s:m:d:L:r:VMK", long_options, &option_index); if (c < 0) break; switch(c) { case 'A': alloc_start = parse_size(optarg); break; case 'd': data_profile = parse_profile(optarg); data_profile_opt = 1; break; case 'l': case 'n': nodesize = parse_size(optarg); leafsize = parse_size(optarg); break; case 'L': label = parse_label(optarg); break; case 'm': metadata_profile = parse_profile(optarg); metadata_profile_opt = 1; break; case 'M': mixed = 1; break; case 's': sectorsize = parse_size(optarg); break; case 'b': block_count = parse_size(optarg); if (block_count <= 1024*1024*1024) { printf("SMALL VOLUME: forcing mixed " "metadata/data groups\n"); mixed = 1; } zero_end = 0; break; case 'V': print_version(); break; case 'r': source_dir = optarg; source_dir_set = 1; break; case 'K': nodiscard=1; break; default: print_usage(); } } sectorsize = max(sectorsize, (u32)getpagesize()); if (leafsize < sectorsize || (leafsize & (sectorsize - 1))) { fprintf(stderr, "Illegal leafsize %u\n", leafsize); exit(1); } if (nodesize < sectorsize || (nodesize & (sectorsize - 1))) { fprintf(stderr, "Illegal nodesize %u\n", nodesize); exit(1); } ac = ac - optind; if (ac == 0) print_usage(); printf("\nWARNING! - %s IS EXPERIMENTAL\n", BTRFS_BUILD_VERSION); printf("WARNING! - see http://btrfs.wiki.kernel.org before using\n\n"); if (source_dir == 0) { file = av[optind++]; ret = check_mounted(file); if (ret < 0) { fprintf(stderr, "error checking %s mount status\n", file); exit(1); } if (ret == 1) { fprintf(stderr, "%s is mounted\n", file); exit(1); } ac--; fd = open(file, O_RDWR); if (fd < 0) { fprintf(stderr, "unable to open %s\n", file); exit(1); } first_file = file; ret = btrfs_prepare_device(fd, file, zero_end, &dev_block_count, block_count, &mixed, nodiscard); if (block_count && block_count > dev_block_count) { fprintf(stderr, "%s is smaller than requested size\n", file); exit(1); } } else { ac = 0; file = av[optind++]; fd = open_target(file); if (fd < 0) { fprintf(stderr, "unable to open the %s\n", file); exit(1); } first_file = file; source_dir_size = size_sourcedir(source_dir, sectorsize, &num_of_meta_chunks, &size_of_data); if(block_count < source_dir_size) block_count = source_dir_size; ret = zero_output_file(fd, block_count, sectorsize); if (ret) { fprintf(stderr, "unable to zero the output file\n"); exit(1); } } if (mixed) { if (metadata_profile != data_profile) { fprintf(stderr, "With mixed block groups data and metadata " "profiles must be the same\n"); exit(1); } } blocks[0] = BTRFS_SUPER_INFO_OFFSET; for (i = 1; i < 7; i++) { blocks[i] = BTRFS_SUPER_INFO_OFFSET + 1024 * 1024 + leafsize * i; } ret = make_btrfs(fd, file, label, blocks, dev_block_count, nodesize, leafsize, sectorsize, stripesize); if (ret) { fprintf(stderr, "error during mkfs %d\n", ret); exit(1); } root = open_ctree(file, 0, O_RDWR); if (!root) { fprintf(stderr, "ctree init failed\n"); exit(1); } root->fs_info->alloc_start = alloc_start; ret = make_root_dir(root, mixed); if (ret) { fprintf(stderr, "failed to setup the root directory\n"); exit(1); } trans = btrfs_start_transaction(root, 1); if (ac == 0) goto raid_groups; btrfs_register_one_device(file); zero_end = 1; while(ac-- > 0) { int old_mixed = mixed; file = av[optind++]; ret = check_mounted(file); if (ret < 0) { fprintf(stderr, "error checking %s mount status\n", file); exit(1); } if (ret == 1) { fprintf(stderr, "%s is mounted\n", file); exit(1); } fd = open(file, O_RDWR); if (fd < 0) { fprintf(stderr, "unable to open %s\n", file); exit(1); } ret = btrfs_device_already_in_root(root, fd, BTRFS_SUPER_INFO_OFFSET); if (ret) { fprintf(stderr, "skipping duplicate device %s in FS\n", file); close(fd); continue; } ret = btrfs_prepare_device(fd, file, zero_end, &dev_block_count, block_count, &mixed, nodiscard); mixed = old_mixed; BUG_ON(ret); ret = btrfs_add_to_fsid(trans, root, fd, file, dev_block_count, sectorsize, sectorsize, sectorsize); BUG_ON(ret); btrfs_register_one_device(file); } raid_groups: if (!source_dir_set) { ret = create_raid_groups(trans, root, data_profile, data_profile_opt, metadata_profile, metadata_profile_opt, mixed); BUG_ON(ret); } ret = create_data_reloc_tree(trans, root); BUG_ON(ret); if (mixed) { struct btrfs_super_block *super = &root->fs_info->super_copy; u64 flags = btrfs_super_incompat_flags(super); flags |= BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS; btrfs_set_super_incompat_flags(super, flags); } printf("fs created label %s on %s\n\tnodesize %u leafsize %u " "sectorsize %u size %s\n", label, first_file, nodesize, leafsize, sectorsize, pretty_buf = pretty_sizes(btrfs_super_total_bytes(&root->fs_info->super_copy))); free(pretty_buf); printf("%s\n", BTRFS_BUILD_VERSION); btrfs_commit_transaction(trans, root); if (source_dir_set) { trans = btrfs_start_transaction(root, 1); ret = create_chunks(trans, root, num_of_meta_chunks, size_of_data); BUG_ON(ret); btrfs_commit_transaction(trans, root); ret = make_image(source_dir, root, fd); BUG_ON(ret); } ret = close_ctree(root); BUG_ON(ret); free(label); return 0; }