#!/usr/bin/env python # # Copyright (C) 2007 Oracle. All rights reserved. # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public # License v2 as published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public # License along with this program; if not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 021110-1307, USA. # import sys, os, signal, time, commands, tempfile from optparse import OptionParser from matplotlib import rcParams from matplotlib.font_manager import fontManager, FontProperties import numpy rcParams['numerix'] = 'numpy' rcParams['backend'] = 'Agg' rcParams['interactive'] = 'False' from pylab import * class AnnoteFinder: """ callback for matplotlib to display an annotation when points are clicked on. The point which is closest to the click and within xtol and ytol is identified. Register this function like this: scatter(xdata, ydata) af = AnnoteFinder(xdata, ydata, annotes) connect('button_press_event', af) """ def __init__(self, axis=None): if axis is None: self.axis = gca() else: self.axis= axis self.drawnAnnotations = {} self.links = [] def clear(self): for k in self.drawnAnnotations.keys(): self.drawnAnnotations[k].set_visible(False) def __call__(self, event): if event.inaxes: if event.button != 1: self.clear() draw() return clickX = event.xdata clickY = event.ydata if (self.axis is None) or (self.axis==event.inaxes): self.drawAnnote(event.inaxes, clickX, clickY) def drawAnnote(self, axis, x, y): """ Draw the annotation on the plot """ if self.drawnAnnotations.has_key((x,y)): markers = self.drawnAnnotations[(x,y)] markers.set_visible(not markers.get_visible()) draw() else: t = axis.text(x,y, "(%3.2f, %3.2f)"%(x,y), bbox=dict(facecolor='red', alpha=0.8)) self.drawnAnnotations[(x,y)] = t draw() def loaddata(fh,delimiter=None, converters=None): def iter(fh, delimiter, converters): global total_data global total_metadata for i,line in enumerate(fh): line = line.split(' ') start = float(line[0]) len = float(line[1]) owner = float(line[10]) if owner <= 255: total_metadata += int(len) else: total_data += int(len) if start < zoommin or (zoommax != 0 and start > zoommax): continue yield start yield len yield owner X = numpy.fromiter(iter(fh, delimiter, converters), dtype=float) return X def run_debug_tree(device): p = os.popen('debug-tree -e ' + device) data = loaddata(p) return data def shapeit(X): lines = len(X) / 3 X.shape = (lines, 3) def line_picker(line, mouseevent): if mouseevent.xdata is None: return False, dict() print "%d %d\n", mouseevent.xdata, mouseevent.ydata return False, dict() def xycalc(byte): byte = byte / bytes_per_cell yval = floor(byte / num_cells) xval = byte % num_cells return (xval, yval + 1) def plotone(a, xvals, yvals, owner): global data_lines global meta_lines if owner: if options.meta_only: return color = "blue" label = "Data" else: if options.data_only: return color = "green" label = "Metadata" lines = a.plot(xvals, yvals, 's', color=color, mfc=color, mec=color, markersize=.23, label=label) if owner and not data_lines: data_lines = lines elif not owner and not meta_lines: meta_lines = lines def parse_zoom(): def parse_num(s): mult = 1 c = s.lower()[-1] if c == 't': mult = 1024 * 1024 * 1024 * 1024 elif c == 'g': mult = 1024 * 1024 * 1024 elif c == 'm': mult = 1024 * 1024 elif c == 'k': mult = 1024 else: c = None if c: num = int(s[:-1]) * mult else: num = int(s) return num if not options.zoom: return (0, 0) vals = options.zoom.split(':') if len(vals) != 2: sys.stderr.write("warning: unable to parse zoom %s\n" % options.zoom) return (0, 0) zoommin = parse_num(vals[0]) zoommax = parse_num(vals[1]) return (zoommin, zoommax) usage = "usage: %prog [options]" parser = OptionParser(usage=usage) parser.add_option("-d", "--device", help="Btrfs device", default="") parser.add_option("-i", "--input-file", help="debug-tree data", default="") parser.add_option("-o", "--output", help="Output file", default="blocks.png") parser.add_option("-z", "--zoom", help="Zoom", default=None) parser.add_option("", "--data-only", help="Only print data blocks", default=False, action="store_true") parser.add_option("", "--meta-only", help="Only print metadata blocks", default=False, action="store_true") (options,args) = parser.parse_args() if not options.device and not options.input_file: parser.print_help() sys.exit(1) zoommin, zoommax = parse_zoom() total_data = 0 total_metadata = 0 data_lines = [] meta_lines = [] if options.device: data = run_debug_tree(options.device) elif options.input_file: data = loaddata(file(options.input_file)) shapeit(data) # try to drop out the least common data points by creating # a historgram of the sectors seen. sectors = data[:,0] sizes = data[:,1] datalen = len(data) sectormax = numpy.max(sectors) sectormin = 0 num_cells = 800 total_cells = num_cells * num_cells byte_range = sectormax - sectormin bytes_per_cell = byte_range / total_cells f = figure(figsize=(8,6)) # Throughput goes at the botoom a = subplot(1, 1, 1) datai = 0 xvals = [] yvals = [] last = 0 while datai < datalen: row = data[datai] datai += 1 byte = row[0] size = row[1] owner = row[2] if owner <= 255: owner = 0 else: owner = 1 if len(xvals) and owner != last: plotone(a, xvals, yvals, last) xvals = [] yvals = [] cell = 0 while cell < size: xy = xycalc(byte) byte += bytes_per_cell cell += bytes_per_cell if xy: xvals.append(xy[0]) yvals.append(xy[1]) last = owner if xvals: plotone(a, xvals, yvals, last) # make sure the final second goes on the x axes ticks = [] a.set_xticks(ticks) ticks = a.get_yticks() first_tick = ticks[1] * bytes_per_cell * num_cells if first_tick > 1024 * 1024 * 1024 * 1024: scale = 1024 * 1024 * 1024 * 1024; scalestr = "TB" elif first_tick > 1024 * 1024 * 1024: scale = 1024 * 1024 * 1024; scalestr = "GB" elif first_tick > 1024 * 1024: scale = 1024 * 1024; scalestr = "MB" elif first_tick > 1024: scale = 1024; scalestr = "KB" else: scalestr = "Bytes" scale = 1 ylabels = [ str(int((x * bytes_per_cell * num_cells) / scale)) for x in ticks ] a.set_yticklabels(ylabels) a.set_ylabel('Disk offset (%s)' % scalestr) a.set_xlim(0, num_cells) a.set_title('Blocks') lines = [] labels = [] if data_lines: lines += data_lines labels += ["Data"] if meta_lines: lines += meta_lines labels += ["Metadata"] a.legend(lines, labels, loc=(.9, 1.02), shadow=True, pad=0.5, numpoints=1, handletextsep = 0.005, labelsep = 0.01, markerscale=10, prop=FontProperties(size='x-small') ) if total_data == 0: percent_meta = 100 else: percent_meta = (float(total_metadata) / float(total_data)) * 100 print "Total metadata bytes %d data %d ratio %.3f" % (total_metadata, total_data, percent_meta) print "saving graph to %s" % options.output savefig(options.output, orientation='landscape') show()