/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #define _XOPEN_SOURCE 600 #define __USE_XOPEN2K #include #include #ifndef __CHECKER__ #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include "kerncompat.h" #include "radix-tree.h" #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "crc32c.h" #include "utils.h" #include "volumes.h" #include "ioctl.h" #ifdef __CHECKER__ #define BLKGETSIZE64 0 static inline int ioctl(int fd, int define, u64 *size) { return 0; } #endif #ifndef BLKDISCARD #define BLKDISCARD _IO(0x12,119) #endif static int discard_blocks(int fd, u64 start, u64 len) { u64 range[2] = { start, len }; if (ioctl(fd, BLKDISCARD, &range) < 0) return errno; return 0; } static u64 reference_root_table[] = { [1] = BTRFS_ROOT_TREE_OBJECTID, [2] = BTRFS_EXTENT_TREE_OBJECTID, [3] = BTRFS_CHUNK_TREE_OBJECTID, [4] = BTRFS_DEV_TREE_OBJECTID, [5] = BTRFS_FS_TREE_OBJECTID, [6] = BTRFS_CSUM_TREE_OBJECTID, }; int make_btrfs(int fd, const char *device, const char *label, u64 blocks[7], u64 num_bytes, u32 nodesize, u32 leafsize, u32 sectorsize, u32 stripesize) { struct btrfs_super_block super; struct extent_buffer *buf; struct btrfs_root_item root_item; struct btrfs_disk_key disk_key; struct btrfs_extent_item *extent_item; struct btrfs_inode_item *inode_item; struct btrfs_chunk *chunk; struct btrfs_dev_item *dev_item; struct btrfs_dev_extent *dev_extent; u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; u8 *ptr; int i; int ret; u32 itemoff; u32 nritems = 0; u64 first_free; u64 ref_root; u32 array_size; u32 item_size; first_free = BTRFS_SUPER_INFO_OFFSET + sectorsize * 2 - 1; first_free &= ~((u64)sectorsize - 1); memset(&super, 0, sizeof(super)); num_bytes = (num_bytes / sectorsize) * sectorsize; uuid_generate(super.fsid); uuid_generate(super.dev_item.uuid); uuid_generate(chunk_tree_uuid); btrfs_set_super_bytenr(&super, blocks[0]); btrfs_set_super_num_devices(&super, 1); strncpy((char *)&super.magic, BTRFS_MAGIC, sizeof(super.magic)); btrfs_set_super_generation(&super, 1); btrfs_set_super_root(&super, blocks[1]); btrfs_set_super_chunk_root(&super, blocks[3]); btrfs_set_super_total_bytes(&super, num_bytes); btrfs_set_super_bytes_used(&super, 6 * leafsize); btrfs_set_super_sectorsize(&super, sectorsize); btrfs_set_super_leafsize(&super, leafsize); btrfs_set_super_nodesize(&super, nodesize); btrfs_set_super_stripesize(&super, stripesize); btrfs_set_super_csum_type(&super, BTRFS_CSUM_TYPE_CRC32); btrfs_set_super_chunk_root_generation(&super, 1); btrfs_set_super_cache_generation(&super, -1); if (label) strncpy(super.label, label, BTRFS_LABEL_SIZE - 1); buf = malloc(sizeof(*buf) + max(sectorsize, leafsize)); /* create the tree of root objects */ memset(buf->data, 0, leafsize); buf->len = leafsize; btrfs_set_header_bytenr(buf, blocks[1]); btrfs_set_header_nritems(buf, 4); btrfs_set_header_generation(buf, 1); btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); btrfs_set_header_owner(buf, BTRFS_ROOT_TREE_OBJECTID); write_extent_buffer(buf, super.fsid, (unsigned long) btrfs_header_fsid(buf), BTRFS_FSID_SIZE); write_extent_buffer(buf, chunk_tree_uuid, (unsigned long) btrfs_header_chunk_tree_uuid(buf), BTRFS_UUID_SIZE); /* create the items for the root tree */ memset(&root_item, 0, sizeof(root_item)); inode_item = &root_item.inode; btrfs_set_stack_inode_generation(inode_item, 1); btrfs_set_stack_inode_size(inode_item, 3); btrfs_set_stack_inode_nlink(inode_item, 1); btrfs_set_stack_inode_nbytes(inode_item, leafsize); btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); btrfs_set_root_refs(&root_item, 1); btrfs_set_root_used(&root_item, leafsize); btrfs_set_root_generation(&root_item, 1); memset(&disk_key, 0, sizeof(disk_key)); btrfs_set_disk_key_type(&disk_key, BTRFS_ROOT_ITEM_KEY); btrfs_set_disk_key_offset(&disk_key, 0); nritems = 0; itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize) - sizeof(root_item); btrfs_set_root_bytenr(&root_item, blocks[2]); btrfs_set_disk_key_objectid(&disk_key, BTRFS_EXTENT_TREE_OBJECTID); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(buf, nritems), sizeof(root_item)); write_extent_buffer(buf, &root_item, btrfs_item_ptr_offset(buf, nritems), sizeof(root_item)); nritems++; itemoff = itemoff - sizeof(root_item); btrfs_set_root_bytenr(&root_item, blocks[4]); btrfs_set_disk_key_objectid(&disk_key, BTRFS_DEV_TREE_OBJECTID); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(buf, nritems), sizeof(root_item)); write_extent_buffer(buf, &root_item, btrfs_item_ptr_offset(buf, nritems), sizeof(root_item)); nritems++; itemoff = itemoff - sizeof(root_item); btrfs_set_root_bytenr(&root_item, blocks[5]); btrfs_set_disk_key_objectid(&disk_key, BTRFS_FS_TREE_OBJECTID); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(buf, nritems), sizeof(root_item)); write_extent_buffer(buf, &root_item, btrfs_item_ptr_offset(buf, nritems), sizeof(root_item)); nritems++; itemoff = itemoff - sizeof(root_item); btrfs_set_root_bytenr(&root_item, blocks[6]); btrfs_set_disk_key_objectid(&disk_key, BTRFS_CSUM_TREE_OBJECTID); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(buf, nritems), sizeof(root_item)); write_extent_buffer(buf, &root_item, btrfs_item_ptr_offset(buf, nritems), sizeof(root_item)); nritems++; csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[1]); BUG_ON(ret != leafsize); /* create the items for the extent tree */ memset(buf->data+sizeof(struct btrfs_header), 0, leafsize-sizeof(struct btrfs_header)); nritems = 0; itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize); for (i = 1; i < 7; i++) { BUG_ON(blocks[i] < first_free); BUG_ON(blocks[i] < blocks[i - 1]); /* create extent item */ itemoff -= sizeof(struct btrfs_extent_item) + sizeof(struct btrfs_tree_block_info); btrfs_set_disk_key_objectid(&disk_key, blocks[i]); btrfs_set_disk_key_offset(&disk_key, leafsize); btrfs_set_disk_key_type(&disk_key, BTRFS_EXTENT_ITEM_KEY); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(buf, nritems), sizeof(struct btrfs_extent_item) + sizeof(struct btrfs_tree_block_info)); extent_item = btrfs_item_ptr(buf, nritems, struct btrfs_extent_item); btrfs_set_extent_refs(buf, extent_item, 1); btrfs_set_extent_generation(buf, extent_item, 1); btrfs_set_extent_flags(buf, extent_item, BTRFS_EXTENT_FLAG_TREE_BLOCK); nritems++; /* create extent ref */ ref_root = reference_root_table[i]; btrfs_set_disk_key_objectid(&disk_key, blocks[i]); btrfs_set_disk_key_offset(&disk_key, ref_root); btrfs_set_disk_key_type(&disk_key, BTRFS_TREE_BLOCK_REF_KEY); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(buf, nritems), 0); nritems++; } btrfs_set_header_bytenr(buf, blocks[2]); btrfs_set_header_owner(buf, BTRFS_EXTENT_TREE_OBJECTID); btrfs_set_header_nritems(buf, nritems); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[2]); BUG_ON(ret != leafsize); /* create the chunk tree */ memset(buf->data+sizeof(struct btrfs_header), 0, leafsize-sizeof(struct btrfs_header)); nritems = 0; item_size = sizeof(*dev_item); itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize) - item_size; /* first device 1 (there is no device 0) */ btrfs_set_disk_key_objectid(&disk_key, BTRFS_DEV_ITEMS_OBJECTID); btrfs_set_disk_key_offset(&disk_key, 1); btrfs_set_disk_key_type(&disk_key, BTRFS_DEV_ITEM_KEY); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(buf, nritems), item_size); dev_item = btrfs_item_ptr(buf, nritems, struct btrfs_dev_item); btrfs_set_device_id(buf, dev_item, 1); btrfs_set_device_generation(buf, dev_item, 0); btrfs_set_device_total_bytes(buf, dev_item, num_bytes); btrfs_set_device_bytes_used(buf, dev_item, BTRFS_MKFS_SYSTEM_GROUP_SIZE); btrfs_set_device_io_align(buf, dev_item, sectorsize); btrfs_set_device_io_width(buf, dev_item, sectorsize); btrfs_set_device_sector_size(buf, dev_item, sectorsize); btrfs_set_device_type(buf, dev_item, 0); write_extent_buffer(buf, super.dev_item.uuid, (unsigned long)btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE); write_extent_buffer(buf, super.fsid, (unsigned long)btrfs_device_fsid(dev_item), BTRFS_UUID_SIZE); read_extent_buffer(buf, &super.dev_item, (unsigned long)dev_item, sizeof(*dev_item)); nritems++; item_size = btrfs_chunk_item_size(1); itemoff = itemoff - item_size; /* then we have chunk 0 */ btrfs_set_disk_key_objectid(&disk_key, BTRFS_FIRST_CHUNK_TREE_OBJECTID); btrfs_set_disk_key_offset(&disk_key, 0); btrfs_set_disk_key_type(&disk_key, BTRFS_CHUNK_ITEM_KEY); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(buf, nritems), item_size); chunk = btrfs_item_ptr(buf, nritems, struct btrfs_chunk); btrfs_set_chunk_length(buf, chunk, BTRFS_MKFS_SYSTEM_GROUP_SIZE); btrfs_set_chunk_owner(buf, chunk, BTRFS_EXTENT_TREE_OBJECTID); btrfs_set_chunk_stripe_len(buf, chunk, 64 * 1024); btrfs_set_chunk_type(buf, chunk, BTRFS_BLOCK_GROUP_SYSTEM); btrfs_set_chunk_io_align(buf, chunk, sectorsize); btrfs_set_chunk_io_width(buf, chunk, sectorsize); btrfs_set_chunk_sector_size(buf, chunk, sectorsize); btrfs_set_chunk_num_stripes(buf, chunk, 1); btrfs_set_stripe_devid_nr(buf, chunk, 0, 1); btrfs_set_stripe_offset_nr(buf, chunk, 0, 0); nritems++; write_extent_buffer(buf, super.dev_item.uuid, (unsigned long)btrfs_stripe_dev_uuid(&chunk->stripe), BTRFS_UUID_SIZE); /* copy the key for the chunk to the system array */ ptr = super.sys_chunk_array; array_size = sizeof(disk_key); memcpy(ptr, &disk_key, sizeof(disk_key)); ptr += sizeof(disk_key); /* copy the chunk to the system array */ read_extent_buffer(buf, ptr, (unsigned long)chunk, item_size); array_size += item_size; ptr += item_size; btrfs_set_super_sys_array_size(&super, array_size); btrfs_set_header_bytenr(buf, blocks[3]); btrfs_set_header_owner(buf, BTRFS_CHUNK_TREE_OBJECTID); btrfs_set_header_nritems(buf, nritems); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[3]); /* create the device tree */ memset(buf->data+sizeof(struct btrfs_header), 0, leafsize-sizeof(struct btrfs_header)); nritems = 0; itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize) - sizeof(struct btrfs_dev_extent); btrfs_set_disk_key_objectid(&disk_key, 1); btrfs_set_disk_key_offset(&disk_key, 0); btrfs_set_disk_key_type(&disk_key, BTRFS_DEV_EXTENT_KEY); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(buf, nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(buf, nritems), sizeof(struct btrfs_dev_extent)); dev_extent = btrfs_item_ptr(buf, nritems, struct btrfs_dev_extent); btrfs_set_dev_extent_chunk_tree(buf, dev_extent, BTRFS_CHUNK_TREE_OBJECTID); btrfs_set_dev_extent_chunk_objectid(buf, dev_extent, BTRFS_FIRST_CHUNK_TREE_OBJECTID); btrfs_set_dev_extent_chunk_offset(buf, dev_extent, 0); write_extent_buffer(buf, chunk_tree_uuid, (unsigned long)btrfs_dev_extent_chunk_tree_uuid(dev_extent), BTRFS_UUID_SIZE); btrfs_set_dev_extent_length(buf, dev_extent, BTRFS_MKFS_SYSTEM_GROUP_SIZE); nritems++; btrfs_set_header_bytenr(buf, blocks[4]); btrfs_set_header_owner(buf, BTRFS_DEV_TREE_OBJECTID); btrfs_set_header_nritems(buf, nritems); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[4]); /* create the FS root */ memset(buf->data+sizeof(struct btrfs_header), 0, leafsize-sizeof(struct btrfs_header)); btrfs_set_header_bytenr(buf, blocks[5]); btrfs_set_header_owner(buf, BTRFS_FS_TREE_OBJECTID); btrfs_set_header_nritems(buf, 0); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[5]); BUG_ON(ret != leafsize); /* finally create the csum root */ memset(buf->data+sizeof(struct btrfs_header), 0, leafsize-sizeof(struct btrfs_header)); btrfs_set_header_bytenr(buf, blocks[6]); btrfs_set_header_owner(buf, BTRFS_CSUM_TREE_OBJECTID); btrfs_set_header_nritems(buf, 0); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[6]); BUG_ON(ret != leafsize); /* and write out the super block */ BUG_ON(sizeof(super) > sectorsize); memset(buf->data, 0, sectorsize); memcpy(buf->data, &super, sizeof(super)); buf->len = sectorsize; csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, sectorsize, blocks[0]); BUG_ON(ret != sectorsize); free(buf); return 0; } static u64 device_size(int fd, struct stat *st) { u64 size; if (S_ISREG(st->st_mode)) { return st->st_size; } if (!S_ISBLK(st->st_mode)) { return 0; } if (ioctl(fd, BLKGETSIZE64, &size) >= 0) { return size; } return 0; } static int zero_blocks(int fd, off_t start, size_t len) { char *buf = malloc(len); int ret = 0; ssize_t written; if (!buf) return -ENOMEM; memset(buf, 0, len); written = pwrite(fd, buf, len, start); if (written != len) ret = -EIO; free(buf); return ret; } static int zero_dev_start(int fd) { off_t start = 0; size_t len = 2 * 1024 * 1024; #ifdef __sparc__ /* don't overwrite the disk labels on sparc */ start = 1024; len -= 1024; #endif return zero_blocks(fd, start, len); } static int zero_dev_end(int fd, u64 dev_size) { size_t len = 2 * 1024 * 1024; off_t start = dev_size - len; return zero_blocks(fd, start, len); } int btrfs_add_to_fsid(struct btrfs_trans_handle *trans, struct btrfs_root *root, int fd, char *path, u64 block_count, u32 io_width, u32 io_align, u32 sectorsize) { struct btrfs_super_block *disk_super; struct btrfs_super_block *super = &root->fs_info->super_copy; struct btrfs_device *device; struct btrfs_dev_item *dev_item; char *buf; u64 total_bytes; u64 num_devs; int ret; device = kmalloc(sizeof(*device), GFP_NOFS); if (!device) return -ENOMEM; buf = kmalloc(sectorsize, GFP_NOFS); if (!buf) { kfree(device); return -ENOMEM; } BUG_ON(sizeof(*disk_super) > sectorsize); memset(buf, 0, sectorsize); disk_super = (struct btrfs_super_block *)buf; dev_item = &disk_super->dev_item; uuid_generate(device->uuid); device->devid = 0; device->type = 0; device->io_width = io_width; device->io_align = io_align; device->sector_size = sectorsize; device->fd = fd; device->writeable = 1; device->total_bytes = block_count; device->bytes_used = 0; device->total_ios = 0; device->dev_root = root->fs_info->dev_root; ret = btrfs_add_device(trans, root, device); BUG_ON(ret); total_bytes = btrfs_super_total_bytes(super) + block_count; btrfs_set_super_total_bytes(super, total_bytes); num_devs = btrfs_super_num_devices(super) + 1; btrfs_set_super_num_devices(super, num_devs); memcpy(disk_super, super, sizeof(*disk_super)); printf("adding device %s id %llu\n", path, (unsigned long long)device->devid); btrfs_set_super_bytenr(disk_super, BTRFS_SUPER_INFO_OFFSET); btrfs_set_stack_device_id(dev_item, device->devid); btrfs_set_stack_device_type(dev_item, device->type); btrfs_set_stack_device_io_align(dev_item, device->io_align); btrfs_set_stack_device_io_width(dev_item, device->io_width); btrfs_set_stack_device_sector_size(dev_item, device->sector_size); btrfs_set_stack_device_total_bytes(dev_item, device->total_bytes); btrfs_set_stack_device_bytes_used(dev_item, device->bytes_used); memcpy(&dev_item->uuid, device->uuid, BTRFS_UUID_SIZE); ret = pwrite(fd, buf, sectorsize, BTRFS_SUPER_INFO_OFFSET); BUG_ON(ret != sectorsize); kfree(buf); list_add(&device->dev_list, &root->fs_info->fs_devices->devices); device->fs_devices = root->fs_info->fs_devices; return 0; } int btrfs_prepare_device(int fd, char *file, int zero_end, u64 *block_count_ret, u64 max_block_count, int *mixed, int nodiscard) { u64 block_count; u64 bytenr; struct stat st; int i, ret; ret = fstat(fd, &st); if (ret < 0) { fprintf(stderr, "unable to stat %s\n", file); exit(1); } block_count = device_size(fd, &st); if (block_count == 0) { fprintf(stderr, "unable to find %s size\n", file); exit(1); } if (max_block_count) block_count = min(block_count, max_block_count); zero_end = 1; if (block_count < 1024 * 1024 * 1024 && !(*mixed)) { printf("SMALL VOLUME: forcing mixed metadata/data groups\n"); *mixed = 1; } if (!nodiscard) { /* * We intentionally ignore errors from the discard ioctl. It is * not necessary for the mkfs functionality but just an optimization. */ discard_blocks(fd, 0, block_count); } ret = zero_dev_start(fd); if (ret) { fprintf(stderr, "failed to zero device start %d\n", ret); exit(1); } for (i = 0 ; i < BTRFS_SUPER_MIRROR_MAX; i++) { bytenr = btrfs_sb_offset(i); if (bytenr >= block_count) break; zero_blocks(fd, bytenr, BTRFS_SUPER_INFO_SIZE); } if (zero_end) { ret = zero_dev_end(fd, block_count); if (ret) { fprintf(stderr, "failed to zero device end %d\n", ret); exit(1); } } *block_count_ret = block_count; return 0; } int btrfs_make_root_dir(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid) { int ret; struct btrfs_inode_item inode_item; time_t now = time(NULL); memset(&inode_item, 0, sizeof(inode_item)); btrfs_set_stack_inode_generation(&inode_item, trans->transid); btrfs_set_stack_inode_size(&inode_item, 0); btrfs_set_stack_inode_nlink(&inode_item, 1); btrfs_set_stack_inode_nbytes(&inode_item, root->leafsize); btrfs_set_stack_inode_mode(&inode_item, S_IFDIR | 0755); btrfs_set_stack_timespec_sec(&inode_item.atime, now); btrfs_set_stack_timespec_nsec(&inode_item.atime, 0); btrfs_set_stack_timespec_sec(&inode_item.ctime, now); btrfs_set_stack_timespec_nsec(&inode_item.ctime, 0); btrfs_set_stack_timespec_sec(&inode_item.mtime, now); btrfs_set_stack_timespec_nsec(&inode_item.mtime, 0); btrfs_set_stack_timespec_sec(&inode_item.otime, 0); btrfs_set_stack_timespec_nsec(&inode_item.otime, 0); if (root->fs_info->tree_root == root) btrfs_set_super_root_dir(&root->fs_info->super_copy, objectid); ret = btrfs_insert_inode(trans, root, objectid, &inode_item); if (ret) goto error; ret = btrfs_insert_inode_ref(trans, root, "..", 2, objectid, objectid, 0); if (ret) goto error; btrfs_set_root_dirid(&root->root_item, objectid); ret = 0; error: return ret; } /* checks if a device is a loop device */ int is_loop_device (const char* device) { struct stat statbuf; if(stat(device, &statbuf) < 0) return -errno; return (S_ISBLK(statbuf.st_mode) && MAJOR(statbuf.st_rdev) == LOOP_MAJOR); } /* Takes a loop device path (e.g. /dev/loop0) and returns * the associated file (e.g. /images/my_btrfs.img) */ int resolve_loop_device(const char* loop_dev, char* loop_file, int max_len) { int loop_fd; int ret_ioctl; struct loop_info loopinfo; if ((loop_fd = open(loop_dev, O_RDONLY)) < 0) return -errno; ret_ioctl = ioctl(loop_fd, LOOP_GET_STATUS, &loopinfo); close(loop_fd); if (ret_ioctl == 0) { strncpy(loop_file, loopinfo.lo_name, max_len); if (max_len > 0) loop_file[max_len-1] = 0; } else return -errno; return 0; } /* Checks whether a and b are identical or device * files associated with the same block device */ int is_same_blk_file(const char* a, const char* b) { struct stat st_buf_a, st_buf_b; char real_a[PATH_MAX]; char real_b[PATH_MAX]; if(!realpath(a, real_a) || !realpath(b, real_b)) { return -errno; } /* Identical path? */ if(strcmp(real_a, real_b) == 0) return 1; if(stat(a, &st_buf_a) < 0 || stat(b, &st_buf_b) < 0) { if (errno == ENOENT) return 0; return -errno; } /* Same blockdevice? */ if(S_ISBLK(st_buf_a.st_mode) && S_ISBLK(st_buf_b.st_mode) && st_buf_a.st_rdev == st_buf_b.st_rdev) { return 1; } /* Hardlink? */ if (st_buf_a.st_dev == st_buf_b.st_dev && st_buf_a.st_ino == st_buf_b.st_ino) { return 1; } return 0; } /* checks if a and b are identical or device * files associated with the same block device or * if one file is a loop device that uses the other * file. */ int is_same_loop_file(const char* a, const char* b) { char res_a[PATH_MAX]; char res_b[PATH_MAX]; const char* final_a; const char* final_b; int ret; /* Resolve a if it is a loop device */ if((ret = is_loop_device(a)) < 0) { if (ret == -ENOENT) return 0; return ret; } else if (ret) { if ((ret = resolve_loop_device(a, res_a, sizeof(res_a))) < 0) return ret; final_a = res_a; } else { final_a = a; } /* Resolve b if it is a loop device */ if ((ret = is_loop_device(b)) < 0) { if (ret == -ENOENT) return 0; return ret; } else if (ret) { if((ret = resolve_loop_device(b, res_b, sizeof(res_b))) < 0) return ret; final_b = res_b; } else { final_b = b; } return is_same_blk_file(final_a, final_b); } /* Checks if a file exists and is a block or regular file*/ int is_existing_blk_or_reg_file(const char* filename) { struct stat st_buf; if(stat(filename, &st_buf) < 0) { if(errno == ENOENT) return 0; else return -errno; } return (S_ISBLK(st_buf.st_mode) || S_ISREG(st_buf.st_mode)); } /* Checks if a file is used (directly or indirectly via a loop device) * by a device in fs_devices */ int blk_file_in_dev_list(struct btrfs_fs_devices* fs_devices, const char* file) { int ret; struct list_head *head; struct list_head *cur; struct btrfs_device *device; head = &fs_devices->devices; list_for_each(cur, head) { device = list_entry(cur, struct btrfs_device, dev_list); if((ret = is_same_loop_file(device->name, file))) return ret; } return 0; } /* * returns 1 if the device was mounted, < 0 on error or 0 if everything * is safe to continue. */ int check_mounted(const char* file) { int fd; int ret; fd = open(file, O_RDONLY); if (fd < 0) { fprintf (stderr, "check_mounted(): Could not open %s\n", file); return -errno; } ret = check_mounted_where(fd, file, NULL, 0, NULL); close(fd); return ret; } int check_mounted_where(int fd, const char *file, char *where, int size, struct btrfs_fs_devices **fs_dev_ret) { int ret; u64 total_devs = 1; int is_btrfs; struct btrfs_fs_devices *fs_devices_mnt = NULL; FILE *f; struct mntent *mnt; /* scan the initial device */ ret = btrfs_scan_one_device(fd, file, &fs_devices_mnt, &total_devs, BTRFS_SUPER_INFO_OFFSET); is_btrfs = (ret >= 0); /* scan other devices */ if (is_btrfs && total_devs > 1) { if((ret = btrfs_scan_for_fsid(fs_devices_mnt, total_devs, 1))) return ret; } /* iterate over the list of currently mountes filesystems */ if ((f = setmntent ("/proc/mounts", "r")) == NULL) return -errno; while ((mnt = getmntent (f)) != NULL) { if(is_btrfs) { if(strcmp(mnt->mnt_type, "btrfs") != 0) continue; ret = blk_file_in_dev_list(fs_devices_mnt, mnt->mnt_fsname); } else { /* ignore entries in the mount table that are not associated with a file*/ if((ret = is_existing_blk_or_reg_file(mnt->mnt_fsname)) < 0) goto out_mntloop_err; else if(!ret) continue; ret = is_same_loop_file(file, mnt->mnt_fsname); } if(ret < 0) goto out_mntloop_err; else if(ret) break; } /* Did we find an entry in mnt table? */ if (mnt && size && where) { strncpy(where, mnt->mnt_dir, size); where[size-1] = 0; } if (fs_dev_ret) *fs_dev_ret = fs_devices_mnt; ret = (mnt != NULL); out_mntloop_err: endmntent (f); return ret; } /* Gets the mount point of btrfs filesystem that is using the specified device. * Returns 0 is everything is good, <0 if we have an error. * TODO: Fix this fucntion and check_mounted to work with multiple drive BTRFS * setups. */ int get_mountpt(char *dev, char *mntpt, size_t size) { struct mntent *mnt; FILE *f; int ret = 0; f = setmntent("/proc/mounts", "r"); if (f == NULL) return -errno; while ((mnt = getmntent(f)) != NULL ) { if (strcmp(dev, mnt->mnt_fsname) == 0) { strncpy(mntpt, mnt->mnt_dir, size); if (size) mntpt[size-1] = 0; break; } } if (mnt == NULL) { /* We didn't find an entry so lets report an error */ ret = -1; } return ret; } struct pending_dir { struct list_head list; char name[256]; }; void btrfs_register_one_device(char *fname) { struct btrfs_ioctl_vol_args args; int fd; int ret; int e; fd = open("/dev/btrfs-control", O_RDONLY); if (fd < 0) { fprintf(stderr, "failed to open /dev/btrfs-control " "skipping device registration\n"); return; } strncpy(args.name, fname, BTRFS_PATH_NAME_MAX); args.name[BTRFS_PATH_NAME_MAX-1] = 0; ret = ioctl(fd, BTRFS_IOC_SCAN_DEV, &args); e = errno; if(ret<0){ fprintf(stderr, "ERROR: unable to scan the device '%s' - %s\n", fname, strerror(e)); } close(fd); } int btrfs_scan_one_dir(char *dirname, int run_ioctl) { DIR *dirp = NULL; struct dirent *dirent; struct pending_dir *pending; struct stat st; int ret; int fd; int dirname_len; int pathlen; char *fullpath; struct list_head pending_list; struct btrfs_fs_devices *tmp_devices; u64 num_devices; INIT_LIST_HEAD(&pending_list); pending = malloc(sizeof(*pending)); if (!pending) return -ENOMEM; strcpy(pending->name, dirname); again: dirname_len = strlen(pending->name); pathlen = 1024; fullpath = malloc(pathlen); dirname = pending->name; if (!fullpath) { ret = -ENOMEM; goto fail; } dirp = opendir(dirname); if (!dirp) { fprintf(stderr, "Unable to open %s for scanning\n", dirname); return -ENOENT; } while(1) { dirent = readdir(dirp); if (!dirent) break; if (dirent->d_name[0] == '.') continue; if (dirname_len + strlen(dirent->d_name) + 2 > pathlen) { ret = -EFAULT; goto fail; } snprintf(fullpath, pathlen, "%s/%s", dirname, dirent->d_name); ret = lstat(fullpath, &st); if (ret < 0) { fprintf(stderr, "failed to stat %s\n", fullpath); continue; } if (S_ISLNK(st.st_mode)) continue; if (S_ISDIR(st.st_mode)) { struct pending_dir *next = malloc(sizeof(*next)); if (!next) { ret = -ENOMEM; goto fail; } strcpy(next->name, fullpath); list_add_tail(&next->list, &pending_list); } if (!S_ISBLK(st.st_mode)) { continue; } fd = open(fullpath, O_RDONLY); if (fd < 0) { fprintf(stderr, "failed to read %s: %s\n", fullpath, strerror(errno)); continue; } ret = btrfs_scan_one_device(fd, fullpath, &tmp_devices, &num_devices, BTRFS_SUPER_INFO_OFFSET); if (ret == 0 && run_ioctl > 0) { btrfs_register_one_device(fullpath); } close(fd); } if (!list_empty(&pending_list)) { free(pending); pending = list_entry(pending_list.next, struct pending_dir, list); list_del(&pending->list); closedir(dirp); dirp = NULL; goto again; } ret = 0; fail: free(pending); if (dirp) closedir(dirp); return ret; } int btrfs_scan_for_fsid(struct btrfs_fs_devices *fs_devices, u64 total_devs, int run_ioctls) { int ret; ret = btrfs_scan_block_devices(run_ioctls); if (ret) ret = btrfs_scan_one_dir("/dev", run_ioctls); return ret; } int btrfs_device_already_in_root(struct btrfs_root *root, int fd, int super_offset) { struct btrfs_super_block *disk_super; char *buf; int ret = 0; buf = malloc(BTRFS_SUPER_INFO_SIZE); if (!buf) { ret = -ENOMEM; goto out; } ret = pread(fd, buf, BTRFS_SUPER_INFO_SIZE, super_offset); if (ret != BTRFS_SUPER_INFO_SIZE) goto brelse; ret = 0; disk_super = (struct btrfs_super_block *)buf; if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, sizeof(disk_super->magic))) goto brelse; if (!memcmp(disk_super->fsid, root->fs_info->super_copy.fsid, BTRFS_FSID_SIZE)) ret = 1; brelse: free(buf); out: return ret; } static char *size_strs[] = { "", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"}; char *pretty_sizes(u64 size) { int num_divs = 0; int pretty_len = 16; u64 last_size = size; u64 fract_size = size; float fraction; char *pretty; while(size > 0) { fract_size = last_size; last_size = size; size /= 1024; num_divs++; } if (num_divs == 0) num_divs = 1; if (num_divs > ARRAY_SIZE(size_strs)) return NULL; fraction = (float)fract_size / 1024; pretty = malloc(pretty_len); snprintf(pretty, pretty_len, "%.2f%s", fraction, size_strs[num_divs-1]); return pretty; } /* * Checks to make sure that the label matches our requirements. * Returns: 0 if everything is safe and usable -1 if the label is too long -2 if the label contains an invalid character */ int check_label(char *input) { int i; int len = strlen(input); if (len > BTRFS_LABEL_SIZE) { return -1; } for (i = 0; i < len; i++) { if (input[i] == '/' || input[i] == '\\') { return -2; } } return 0; } int btrfs_scan_block_devices(int run_ioctl) { struct stat st; int ret; int fd; struct btrfs_fs_devices *tmp_devices; u64 num_devices; FILE *proc_partitions; int i; char buf[1024]; char fullpath[110]; int scans = 0; int special; scan_again: proc_partitions = fopen("/proc/partitions","r"); if (!proc_partitions) { fprintf(stderr, "Unable to open '/proc/partitions' for scanning\n"); return -ENOENT; } /* skip the header */ for(i=0; i < 2 ; i++) if(!fgets(buf, 1023, proc_partitions)){ fprintf(stderr, "Unable to read '/proc/partitions' for scanning\n"); fclose(proc_partitions); return -ENOENT; } strcpy(fullpath,"/dev/"); while(fgets(buf, 1023, proc_partitions)) { i = sscanf(buf," %*d %*d %*d %99s", fullpath+5); /* * multipath and MD devices may register as a btrfs filesystem * both through the original block device and through * the special (/dev/mapper or /dev/mdX) entry. * This scans the special entries last */ special = strncmp(fullpath, "/dev/dm-", strlen("/dev/dm-")) == 0; if (!special) special = strncmp(fullpath, "/dev/md", strlen("/dev/md")) == 0; if (scans == 0 && special) continue; if (scans > 0 && !special) continue; ret = lstat(fullpath, &st); if (ret < 0) { fprintf(stderr, "failed to stat %s\n", fullpath); continue; } if (!S_ISBLK(st.st_mode)) { continue; } fd = open(fullpath, O_RDONLY); if (fd < 0) { fprintf(stderr, "failed to read %s\n", fullpath); continue; } ret = btrfs_scan_one_device(fd, fullpath, &tmp_devices, &num_devices, BTRFS_SUPER_INFO_OFFSET); if (ret == 0 && run_ioctl > 0) { btrfs_register_one_device(fullpath); } close(fd); } fclose(proc_partitions); if (scans == 0) { scans++; goto scan_again; } return 0; }