/* * Copyright (C) 2007 Oracle. All rights reserved. * Copyright (C) 2008 Morey Roof. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #define _XOPEN_SOURCE 700 #define __USE_XOPEN2K8 #define __XOPEN2K8 /* due to an error in dirent.h, to get dirfd() */ #define _GNU_SOURCE /* O_NOATIME */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kerncompat.h" #include "radix-tree.h" #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "crc32c.h" #include "utils.h" #include "volumes.h" #include "ioctl.h" #ifndef BLKDISCARD #define BLKDISCARD _IO(0x12,119) #endif /* * Discard the given range in one go */ static int discard_range(int fd, u64 start, u64 len) { u64 range[2] = { start, len }; if (ioctl(fd, BLKDISCARD, &range) < 0) return errno; return 0; } /* * Discard blocks in the given range in 1G chunks, the process is interruptible */ static int discard_blocks(int fd, u64 start, u64 len) { while (len > 0) { /* 1G granularity */ u64 chunk_size = min_t(u64, len, 1*1024*1024*1024); int ret; ret = discard_range(fd, start, chunk_size); if (ret) return ret; len -= chunk_size; start += chunk_size; } return 0; } static u64 reference_root_table[] = { [1] = BTRFS_ROOT_TREE_OBJECTID, [2] = BTRFS_EXTENT_TREE_OBJECTID, [3] = BTRFS_CHUNK_TREE_OBJECTID, [4] = BTRFS_DEV_TREE_OBJECTID, [5] = BTRFS_FS_TREE_OBJECTID, [6] = BTRFS_CSUM_TREE_OBJECTID, }; int test_uuid_unique(char *fs_uuid) { int unique = 1; blkid_dev_iterate iter = NULL; blkid_dev dev = NULL; blkid_cache cache = NULL; if (blkid_get_cache(&cache, 0) < 0) { printf("ERROR: lblkid cache get failed\n"); return 1; } blkid_probe_all(cache); iter = blkid_dev_iterate_begin(cache); blkid_dev_set_search(iter, "UUID", fs_uuid); while (blkid_dev_next(iter, &dev) == 0) { dev = blkid_verify(cache, dev); if (dev) { unique = 0; break; } } blkid_dev_iterate_end(iter); blkid_put_cache(cache); return unique; } int make_btrfs(int fd, const char *device, const char *label, char *fs_uuid, u64 blocks[7], u64 num_bytes, u32 nodesize, u32 leafsize, u32 sectorsize, u32 stripesize, u64 features) { struct btrfs_super_block super; struct extent_buffer *buf = NULL; struct btrfs_root_item root_item; struct btrfs_disk_key disk_key; struct btrfs_extent_item *extent_item; struct btrfs_inode_item *inode_item; struct btrfs_chunk *chunk; struct btrfs_dev_item *dev_item; struct btrfs_dev_extent *dev_extent; u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; u8 *ptr; int i; int ret; u32 itemoff; u32 nritems = 0; u64 first_free; u64 ref_root; u32 array_size; u32 item_size; int skinny_metadata = !!(features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA); first_free = BTRFS_SUPER_INFO_OFFSET + sectorsize * 2 - 1; first_free &= ~((u64)sectorsize - 1); memset(&super, 0, sizeof(super)); num_bytes = (num_bytes / sectorsize) * sectorsize; if (fs_uuid) { if (uuid_parse(fs_uuid, super.fsid) != 0) { fprintf(stderr, "could not parse UUID: %s\n", fs_uuid); ret = -EINVAL; goto out; } if (!test_uuid_unique(fs_uuid)) { fprintf(stderr, "non-unique UUID: %s\n", fs_uuid); ret = -EBUSY; goto out; } } else { uuid_generate(super.fsid); } uuid_generate(super.dev_item.uuid); uuid_generate(chunk_tree_uuid); btrfs_set_super_bytenr(&super, blocks[0]); btrfs_set_super_num_devices(&super, 1); btrfs_set_super_magic(&super, BTRFS_MAGIC); btrfs_set_super_generation(&super, 1); btrfs_set_super_root(&super, blocks[1]); btrfs_set_super_chunk_root(&super, blocks[3]); btrfs_set_super_total_bytes(&super, num_bytes); btrfs_set_super_bytes_used(&super, 6 * leafsize); btrfs_set_super_sectorsize(&super, sectorsize); btrfs_set_super_leafsize(&super, leafsize); btrfs_set_super_nodesize(&super, nodesize); btrfs_set_super_stripesize(&super, stripesize); btrfs_set_super_csum_type(&super, BTRFS_CSUM_TYPE_CRC32); btrfs_set_super_chunk_root_generation(&super, 1); btrfs_set_super_cache_generation(&super, -1); btrfs_set_super_incompat_flags(&super, features); if (label) strncpy(super.label, label, BTRFS_LABEL_SIZE - 1); buf = malloc(sizeof(*buf) + max(sectorsize, leafsize)); /* create the tree of root objects */ memset(buf->data, 0, leafsize); buf->len = leafsize; btrfs_set_header_bytenr(buf, blocks[1]); btrfs_set_header_nritems(buf, 4); btrfs_set_header_generation(buf, 1); btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); btrfs_set_header_owner(buf, BTRFS_ROOT_TREE_OBJECTID); write_extent_buffer(buf, super.fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); write_extent_buffer(buf, chunk_tree_uuid, btrfs_header_chunk_tree_uuid(buf), BTRFS_UUID_SIZE); /* create the items for the root tree */ memset(&root_item, 0, sizeof(root_item)); inode_item = &root_item.inode; btrfs_set_stack_inode_generation(inode_item, 1); btrfs_set_stack_inode_size(inode_item, 3); btrfs_set_stack_inode_nlink(inode_item, 1); btrfs_set_stack_inode_nbytes(inode_item, leafsize); btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); btrfs_set_root_refs(&root_item, 1); btrfs_set_root_used(&root_item, leafsize); btrfs_set_root_generation(&root_item, 1); memset(&disk_key, 0, sizeof(disk_key)); btrfs_set_disk_key_type(&disk_key, BTRFS_ROOT_ITEM_KEY); btrfs_set_disk_key_offset(&disk_key, 0); nritems = 0; itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize) - sizeof(root_item); btrfs_set_root_bytenr(&root_item, blocks[2]); btrfs_set_disk_key_objectid(&disk_key, BTRFS_EXTENT_TREE_OBJECTID); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), sizeof(root_item)); write_extent_buffer(buf, &root_item, btrfs_item_ptr_offset(buf, nritems), sizeof(root_item)); nritems++; itemoff = itemoff - sizeof(root_item); btrfs_set_root_bytenr(&root_item, blocks[4]); btrfs_set_disk_key_objectid(&disk_key, BTRFS_DEV_TREE_OBJECTID); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), sizeof(root_item)); write_extent_buffer(buf, &root_item, btrfs_item_ptr_offset(buf, nritems), sizeof(root_item)); nritems++; itemoff = itemoff - sizeof(root_item); btrfs_set_root_bytenr(&root_item, blocks[5]); btrfs_set_disk_key_objectid(&disk_key, BTRFS_FS_TREE_OBJECTID); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), sizeof(root_item)); write_extent_buffer(buf, &root_item, btrfs_item_ptr_offset(buf, nritems), sizeof(root_item)); nritems++; itemoff = itemoff - sizeof(root_item); btrfs_set_root_bytenr(&root_item, blocks[6]); btrfs_set_disk_key_objectid(&disk_key, BTRFS_CSUM_TREE_OBJECTID); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), sizeof(root_item)); write_extent_buffer(buf, &root_item, btrfs_item_ptr_offset(buf, nritems), sizeof(root_item)); nritems++; csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[1]); if (ret != leafsize) { ret = (ret < 0 ? -errno : -EIO); goto out; } /* create the items for the extent tree */ memset(buf->data+sizeof(struct btrfs_header), 0, leafsize-sizeof(struct btrfs_header)); nritems = 0; itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize); for (i = 1; i < 7; i++) { item_size = sizeof(struct btrfs_extent_item); if (!skinny_metadata) item_size += sizeof(struct btrfs_tree_block_info); BUG_ON(blocks[i] < first_free); BUG_ON(blocks[i] < blocks[i - 1]); /* create extent item */ itemoff -= item_size; btrfs_set_disk_key_objectid(&disk_key, blocks[i]); if (skinny_metadata) { btrfs_set_disk_key_type(&disk_key, BTRFS_METADATA_ITEM_KEY); btrfs_set_disk_key_offset(&disk_key, 0); } else { btrfs_set_disk_key_type(&disk_key, BTRFS_EXTENT_ITEM_KEY); btrfs_set_disk_key_offset(&disk_key, leafsize); } btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), item_size); extent_item = btrfs_item_ptr(buf, nritems, struct btrfs_extent_item); btrfs_set_extent_refs(buf, extent_item, 1); btrfs_set_extent_generation(buf, extent_item, 1); btrfs_set_extent_flags(buf, extent_item, BTRFS_EXTENT_FLAG_TREE_BLOCK); nritems++; /* create extent ref */ ref_root = reference_root_table[i]; btrfs_set_disk_key_objectid(&disk_key, blocks[i]); btrfs_set_disk_key_offset(&disk_key, ref_root); btrfs_set_disk_key_type(&disk_key, BTRFS_TREE_BLOCK_REF_KEY); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), 0); nritems++; } btrfs_set_header_bytenr(buf, blocks[2]); btrfs_set_header_owner(buf, BTRFS_EXTENT_TREE_OBJECTID); btrfs_set_header_nritems(buf, nritems); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[2]); if (ret != leafsize) { ret = (ret < 0 ? -errno : -EIO); goto out; } /* create the chunk tree */ memset(buf->data+sizeof(struct btrfs_header), 0, leafsize-sizeof(struct btrfs_header)); nritems = 0; item_size = sizeof(*dev_item); itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize) - item_size; /* first device 1 (there is no device 0) */ btrfs_set_disk_key_objectid(&disk_key, BTRFS_DEV_ITEMS_OBJECTID); btrfs_set_disk_key_offset(&disk_key, 1); btrfs_set_disk_key_type(&disk_key, BTRFS_DEV_ITEM_KEY); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), item_size); dev_item = btrfs_item_ptr(buf, nritems, struct btrfs_dev_item); btrfs_set_device_id(buf, dev_item, 1); btrfs_set_device_generation(buf, dev_item, 0); btrfs_set_device_total_bytes(buf, dev_item, num_bytes); btrfs_set_device_bytes_used(buf, dev_item, BTRFS_MKFS_SYSTEM_GROUP_SIZE); btrfs_set_device_io_align(buf, dev_item, sectorsize); btrfs_set_device_io_width(buf, dev_item, sectorsize); btrfs_set_device_sector_size(buf, dev_item, sectorsize); btrfs_set_device_type(buf, dev_item, 0); write_extent_buffer(buf, super.dev_item.uuid, (unsigned long)btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE); write_extent_buffer(buf, super.fsid, (unsigned long)btrfs_device_fsid(dev_item), BTRFS_UUID_SIZE); read_extent_buffer(buf, &super.dev_item, (unsigned long)dev_item, sizeof(*dev_item)); nritems++; item_size = btrfs_chunk_item_size(1); itemoff = itemoff - item_size; /* then we have chunk 0 */ btrfs_set_disk_key_objectid(&disk_key, BTRFS_FIRST_CHUNK_TREE_OBJECTID); btrfs_set_disk_key_offset(&disk_key, 0); btrfs_set_disk_key_type(&disk_key, BTRFS_CHUNK_ITEM_KEY); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), item_size); chunk = btrfs_item_ptr(buf, nritems, struct btrfs_chunk); btrfs_set_chunk_length(buf, chunk, BTRFS_MKFS_SYSTEM_GROUP_SIZE); btrfs_set_chunk_owner(buf, chunk, BTRFS_EXTENT_TREE_OBJECTID); btrfs_set_chunk_stripe_len(buf, chunk, 64 * 1024); btrfs_set_chunk_type(buf, chunk, BTRFS_BLOCK_GROUP_SYSTEM); btrfs_set_chunk_io_align(buf, chunk, sectorsize); btrfs_set_chunk_io_width(buf, chunk, sectorsize); btrfs_set_chunk_sector_size(buf, chunk, sectorsize); btrfs_set_chunk_num_stripes(buf, chunk, 1); btrfs_set_stripe_devid_nr(buf, chunk, 0, 1); btrfs_set_stripe_offset_nr(buf, chunk, 0, 0); nritems++; write_extent_buffer(buf, super.dev_item.uuid, (unsigned long)btrfs_stripe_dev_uuid(&chunk->stripe), BTRFS_UUID_SIZE); /* copy the key for the chunk to the system array */ ptr = super.sys_chunk_array; array_size = sizeof(disk_key); memcpy(ptr, &disk_key, sizeof(disk_key)); ptr += sizeof(disk_key); /* copy the chunk to the system array */ read_extent_buffer(buf, ptr, (unsigned long)chunk, item_size); array_size += item_size; ptr += item_size; btrfs_set_super_sys_array_size(&super, array_size); btrfs_set_header_bytenr(buf, blocks[3]); btrfs_set_header_owner(buf, BTRFS_CHUNK_TREE_OBJECTID); btrfs_set_header_nritems(buf, nritems); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[3]); if (ret != leafsize) { ret = (ret < 0 ? -errno : -EIO); goto out; } /* create the device tree */ memset(buf->data+sizeof(struct btrfs_header), 0, leafsize-sizeof(struct btrfs_header)); nritems = 0; itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize) - sizeof(struct btrfs_dev_extent); btrfs_set_disk_key_objectid(&disk_key, 1); btrfs_set_disk_key_offset(&disk_key, 0); btrfs_set_disk_key_type(&disk_key, BTRFS_DEV_EXTENT_KEY); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), sizeof(struct btrfs_dev_extent)); dev_extent = btrfs_item_ptr(buf, nritems, struct btrfs_dev_extent); btrfs_set_dev_extent_chunk_tree(buf, dev_extent, BTRFS_CHUNK_TREE_OBJECTID); btrfs_set_dev_extent_chunk_objectid(buf, dev_extent, BTRFS_FIRST_CHUNK_TREE_OBJECTID); btrfs_set_dev_extent_chunk_offset(buf, dev_extent, 0); write_extent_buffer(buf, chunk_tree_uuid, (unsigned long)btrfs_dev_extent_chunk_tree_uuid(dev_extent), BTRFS_UUID_SIZE); btrfs_set_dev_extent_length(buf, dev_extent, BTRFS_MKFS_SYSTEM_GROUP_SIZE); nritems++; btrfs_set_header_bytenr(buf, blocks[4]); btrfs_set_header_owner(buf, BTRFS_DEV_TREE_OBJECTID); btrfs_set_header_nritems(buf, nritems); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[4]); if (ret != leafsize) { ret = (ret < 0 ? -errno : -EIO); goto out; } /* create the FS root */ memset(buf->data+sizeof(struct btrfs_header), 0, leafsize-sizeof(struct btrfs_header)); btrfs_set_header_bytenr(buf, blocks[5]); btrfs_set_header_owner(buf, BTRFS_FS_TREE_OBJECTID); btrfs_set_header_nritems(buf, 0); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[5]); if (ret != leafsize) { ret = (ret < 0 ? -errno : -EIO); goto out; } /* finally create the csum root */ memset(buf->data+sizeof(struct btrfs_header), 0, leafsize-sizeof(struct btrfs_header)); btrfs_set_header_bytenr(buf, blocks[6]); btrfs_set_header_owner(buf, BTRFS_CSUM_TREE_OBJECTID); btrfs_set_header_nritems(buf, 0); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[6]); if (ret != leafsize) { ret = (ret < 0 ? -errno : -EIO); goto out; } /* and write out the super block */ BUG_ON(sizeof(super) > sectorsize); memset(buf->data, 0, sectorsize); memcpy(buf->data, &super, sizeof(super)); buf->len = sectorsize; csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, sectorsize, blocks[0]); if (ret != sectorsize) { ret = (ret < 0 ? -errno : -EIO); goto out; } ret = 0; out: free(buf); return ret; } u64 btrfs_device_size(int fd, struct stat *st) { u64 size; if (S_ISREG(st->st_mode)) { return st->st_size; } if (!S_ISBLK(st->st_mode)) { return 0; } if (ioctl(fd, BLKGETSIZE64, &size) >= 0) { return size; } return 0; } static int zero_blocks(int fd, off_t start, size_t len) { char *buf = malloc(len); int ret = 0; ssize_t written; if (!buf) return -ENOMEM; memset(buf, 0, len); written = pwrite(fd, buf, len, start); if (written != len) ret = -EIO; free(buf); return ret; } static int zero_dev_start(int fd) { off_t start = 0; size_t len = 2 * 1024 * 1024; #ifdef __sparc__ /* don't overwrite the disk labels on sparc */ start = 1024; len -= 1024; #endif return zero_blocks(fd, start, len); } static int zero_dev_end(int fd, u64 dev_size) { size_t len = 2 * 1024 * 1024; off_t start = dev_size - len; return zero_blocks(fd, start, len); } int btrfs_add_to_fsid(struct btrfs_trans_handle *trans, struct btrfs_root *root, int fd, char *path, u64 block_count, u32 io_width, u32 io_align, u32 sectorsize) { struct btrfs_super_block *disk_super; struct btrfs_super_block *super = root->fs_info->super_copy; struct btrfs_device *device; struct btrfs_dev_item *dev_item; char *buf; u64 total_bytes; u64 num_devs; int ret; device = kzalloc(sizeof(*device), GFP_NOFS); if (!device) return -ENOMEM; buf = kmalloc(sectorsize, GFP_NOFS); if (!buf) { kfree(device); return -ENOMEM; } BUG_ON(sizeof(*disk_super) > sectorsize); memset(buf, 0, sectorsize); disk_super = (struct btrfs_super_block *)buf; dev_item = &disk_super->dev_item; uuid_generate(device->uuid); device->devid = 0; device->type = 0; device->io_width = io_width; device->io_align = io_align; device->sector_size = sectorsize; device->fd = fd; device->writeable = 1; device->total_bytes = block_count; device->bytes_used = 0; device->total_ios = 0; device->dev_root = root->fs_info->dev_root; ret = btrfs_add_device(trans, root, device); BUG_ON(ret); total_bytes = btrfs_super_total_bytes(super) + block_count; btrfs_set_super_total_bytes(super, total_bytes); num_devs = btrfs_super_num_devices(super) + 1; btrfs_set_super_num_devices(super, num_devs); memcpy(disk_super, super, sizeof(*disk_super)); printf("adding device %s id %llu\n", path, (unsigned long long)device->devid); btrfs_set_super_bytenr(disk_super, BTRFS_SUPER_INFO_OFFSET); btrfs_set_stack_device_id(dev_item, device->devid); btrfs_set_stack_device_type(dev_item, device->type); btrfs_set_stack_device_io_align(dev_item, device->io_align); btrfs_set_stack_device_io_width(dev_item, device->io_width); btrfs_set_stack_device_sector_size(dev_item, device->sector_size); btrfs_set_stack_device_total_bytes(dev_item, device->total_bytes); btrfs_set_stack_device_bytes_used(dev_item, device->bytes_used); memcpy(&dev_item->uuid, device->uuid, BTRFS_UUID_SIZE); ret = pwrite(fd, buf, sectorsize, BTRFS_SUPER_INFO_OFFSET); BUG_ON(ret != sectorsize); kfree(buf); list_add(&device->dev_list, &root->fs_info->fs_devices->devices); device->fs_devices = root->fs_info->fs_devices; return 0; } int btrfs_prepare_device(int fd, char *file, int zero_end, u64 *block_count_ret, u64 max_block_count, int *mixed, int discard) { u64 block_count; u64 bytenr; struct stat st; int i, ret; ret = fstat(fd, &st); if (ret < 0) { fprintf(stderr, "unable to stat %s\n", file); return 1; } block_count = btrfs_device_size(fd, &st); if (block_count == 0) { fprintf(stderr, "unable to find %s size\n", file); return 1; } if (max_block_count) block_count = min(block_count, max_block_count); if (block_count < 1024 * 1024 * 1024 && !(*mixed)) { printf("SMALL VOLUME: forcing mixed metadata/data groups\n"); *mixed = 1; } if (discard) { /* * We intentionally ignore errors from the discard ioctl. It * is not necessary for the mkfs functionality but just an * optimization. */ if (discard_range(fd, 0, 0) == 0) { fprintf(stderr, "Performing full device TRIM (%s) ...\n", pretty_size(block_count)); discard_blocks(fd, 0, block_count); } } ret = zero_dev_start(fd); if (ret) goto zero_dev_error; for (i = 0 ; i < BTRFS_SUPER_MIRROR_MAX; i++) { bytenr = btrfs_sb_offset(i); if (bytenr >= block_count) break; ret = zero_blocks(fd, bytenr, BTRFS_SUPER_INFO_SIZE); if (ret) goto zero_dev_error; } if (zero_end) { ret = zero_dev_end(fd, block_count); if (ret) goto zero_dev_error; } *block_count_ret = block_count; zero_dev_error: if (ret < 0) { fprintf(stderr, "ERROR: failed to zero device '%s' - %s\n", file, strerror(-ret)); return 1; } else if (ret > 0) { fprintf(stderr, "ERROR: failed to zero device '%s' - %d\n", file, ret); return 1; } return 0; } int btrfs_make_root_dir(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid) { int ret; struct btrfs_inode_item inode_item; time_t now = time(NULL); memset(&inode_item, 0, sizeof(inode_item)); btrfs_set_stack_inode_generation(&inode_item, trans->transid); btrfs_set_stack_inode_size(&inode_item, 0); btrfs_set_stack_inode_nlink(&inode_item, 1); btrfs_set_stack_inode_nbytes(&inode_item, root->leafsize); btrfs_set_stack_inode_mode(&inode_item, S_IFDIR | 0755); btrfs_set_stack_timespec_sec(&inode_item.atime, now); btrfs_set_stack_timespec_nsec(&inode_item.atime, 0); btrfs_set_stack_timespec_sec(&inode_item.ctime, now); btrfs_set_stack_timespec_nsec(&inode_item.ctime, 0); btrfs_set_stack_timespec_sec(&inode_item.mtime, now); btrfs_set_stack_timespec_nsec(&inode_item.mtime, 0); btrfs_set_stack_timespec_sec(&inode_item.otime, 0); btrfs_set_stack_timespec_nsec(&inode_item.otime, 0); if (root->fs_info->tree_root == root) btrfs_set_super_root_dir(root->fs_info->super_copy, objectid); ret = btrfs_insert_inode(trans, root, objectid, &inode_item); if (ret) goto error; ret = btrfs_insert_inode_ref(trans, root, "..", 2, objectid, objectid, 0); if (ret) goto error; btrfs_set_root_dirid(&root->root_item, objectid); ret = 0; error: return ret; } /* * checks if a path is a block device node * Returns negative errno on failure, otherwise * returns 1 for blockdev, 0 for not-blockdev */ int is_block_device(const char *path) { struct stat statbuf; if (stat(path, &statbuf) < 0) return -errno; return S_ISBLK(statbuf.st_mode); } /* * check if given path is a mount point * return 1 if yes. 0 if no. -1 for error */ int is_mount_point(const char *path) { FILE *f; struct mntent *mnt; int ret = 0; f = setmntent("/proc/self/mounts", "r"); if (f == NULL) return -1; while ((mnt = getmntent(f)) != NULL) { if (strcmp(mnt->mnt_dir, path)) continue; ret = 1; break; } endmntent(f); return ret; } /* * Find the mount point for a mounted device. * On success, returns 0 with mountpoint in *mp. * On failure, returns -errno (not mounted yields -EINVAL) * Is noisy on failures, expects to be given a mounted device. */ int get_btrfs_mount(const char *dev, char *mp, size_t mp_size) { int ret; int fd = -1; ret = is_block_device(dev); if (ret <= 0) { if (!ret) { fprintf(stderr, "%s is not a block device\n", dev); ret = -EINVAL; } else { fprintf(stderr, "Could not check %s: %s\n", dev, strerror(-ret)); } goto out; } fd = open(dev, O_RDONLY); if (fd < 0) { ret = -errno; fprintf(stderr, "Could not open %s: %s\n", dev, strerror(errno)); goto out; } ret = check_mounted_where(fd, dev, mp, mp_size, NULL); if (!ret) { ret = -EINVAL; } else { /* mounted, all good */ ret = 0; } out: if (fd != -1) close(fd); return ret; } /* * Given a pathname, return a filehandle to: * the original pathname or, * if the pathname is a mounted btrfs device, to its mountpoint. * * On error, return -1, errno should be set. */ int open_path_or_dev_mnt(const char *path, DIR **dirstream) { char mp[BTRFS_PATH_NAME_MAX + 1]; int fdmnt; if (is_block_device(path)) { int ret; ret = get_btrfs_mount(path, mp, sizeof(mp)); if (ret < 0) { /* not a mounted btrfs dev */ errno = EINVAL; return -1; } fdmnt = open_file_or_dir(mp, dirstream); } else { fdmnt = open_file_or_dir(path, dirstream); } return fdmnt; } /* checks if a device is a loop device */ static int is_loop_device (const char* device) { struct stat statbuf; if(stat(device, &statbuf) < 0) return -errno; return (S_ISBLK(statbuf.st_mode) && MAJOR(statbuf.st_rdev) == LOOP_MAJOR); } /* Takes a loop device path (e.g. /dev/loop0) and returns * the associated file (e.g. /images/my_btrfs.img) */ static int resolve_loop_device(const char* loop_dev, char* loop_file, int max_len) { int ret; FILE *f; char fmt[20]; char p[PATH_MAX]; char real_loop_dev[PATH_MAX]; if (!realpath(loop_dev, real_loop_dev)) return -errno; snprintf(p, PATH_MAX, "/sys/block/%s/loop/backing_file", strrchr(real_loop_dev, '/')); if (!(f = fopen(p, "r"))) return -errno; snprintf(fmt, 20, "%%%i[^\n]", max_len-1); ret = fscanf(f, fmt, loop_file); fclose(f); if (ret == EOF) return -errno; return 0; } /* Checks whether a and b are identical or device * files associated with the same block device */ static int is_same_blk_file(const char* a, const char* b) { struct stat st_buf_a, st_buf_b; char real_a[PATH_MAX]; char real_b[PATH_MAX]; if(!realpath(a, real_a)) strcpy(real_a, a); if (!realpath(b, real_b)) strcpy(real_b, b); /* Identical path? */ if(strcmp(real_a, real_b) == 0) return 1; if(stat(a, &st_buf_a) < 0 || stat(b, &st_buf_b) < 0) { if (errno == ENOENT) return 0; return -errno; } /* Same blockdevice? */ if(S_ISBLK(st_buf_a.st_mode) && S_ISBLK(st_buf_b.st_mode) && st_buf_a.st_rdev == st_buf_b.st_rdev) { return 1; } /* Hardlink? */ if (st_buf_a.st_dev == st_buf_b.st_dev && st_buf_a.st_ino == st_buf_b.st_ino) { return 1; } return 0; } /* checks if a and b are identical or device * files associated with the same block device or * if one file is a loop device that uses the other * file. */ static int is_same_loop_file(const char* a, const char* b) { char res_a[PATH_MAX]; char res_b[PATH_MAX]; const char* final_a = NULL; const char* final_b = NULL; int ret; /* Resolve a if it is a loop device */ if((ret = is_loop_device(a)) < 0) { if (ret == -ENOENT) return 0; return ret; } else if (ret) { ret = resolve_loop_device(a, res_a, sizeof(res_a)); if (ret < 0) { if (errno != EPERM) return ret; } else { final_a = res_a; } } else { final_a = a; } /* Resolve b if it is a loop device */ if ((ret = is_loop_device(b)) < 0) { if (ret == -ENOENT) return 0; return ret; } else if (ret) { ret = resolve_loop_device(b, res_b, sizeof(res_b)); if (ret < 0) { if (errno != EPERM) return ret; } else { final_b = res_b; } } else { final_b = b; } return is_same_blk_file(final_a, final_b); } /* Checks if a file exists and is a block or regular file*/ static int is_existing_blk_or_reg_file(const char* filename) { struct stat st_buf; if(stat(filename, &st_buf) < 0) { if(errno == ENOENT) return 0; else return -errno; } return (S_ISBLK(st_buf.st_mode) || S_ISREG(st_buf.st_mode)); } /* Checks if a file is used (directly or indirectly via a loop device) * by a device in fs_devices */ static int blk_file_in_dev_list(struct btrfs_fs_devices* fs_devices, const char* file) { int ret; struct list_head *head; struct list_head *cur; struct btrfs_device *device; head = &fs_devices->devices; list_for_each(cur, head) { device = list_entry(cur, struct btrfs_device, dev_list); if((ret = is_same_loop_file(device->name, file))) return ret; } return 0; } /* * Resolve a pathname to a device mapper node to /dev/mapper/ * Returns NULL on invalid input or malloc failure; Other failures * will be handled by the caller using the input pathame. */ char *canonicalize_dm_name(const char *ptname) { FILE *f; size_t sz; char path[PATH_MAX], name[PATH_MAX], *res = NULL; if (!ptname || !*ptname) return NULL; snprintf(path, sizeof(path), "/sys/block/%s/dm/name", ptname); if (!(f = fopen(path, "r"))) return NULL; /* read \n from sysfs */ if (fgets(name, sizeof(name), f) && (sz = strlen(name)) > 1) { name[sz - 1] = '\0'; snprintf(path, sizeof(path), "/dev/mapper/%s", name); if (access(path, F_OK) == 0) res = strdup(path); } fclose(f); return res; } /* * Resolve a pathname to a canonical device node, e.g. /dev/sda1 or * to a device mapper pathname. * Returns NULL on invalid input or malloc failure; Other failures * will be handled by the caller using the input pathame. */ char *canonicalize_path(const char *path) { char *canonical, *p; if (!path || !*path) return NULL; canonical = realpath(path, NULL); if (!canonical) return strdup(path); p = strrchr(canonical, '/'); if (p && strncmp(p, "/dm-", 4) == 0 && isdigit(*(p + 4))) { char *dm = canonicalize_dm_name(p + 1); if (dm) { free(canonical); return dm; } } return canonical; } /* * returns 1 if the device was mounted, < 0 on error or 0 if everything * is safe to continue. */ int check_mounted(const char* file) { int fd; int ret; fd = open(file, O_RDONLY); if (fd < 0) { fprintf (stderr, "check_mounted(): Could not open %s\n", file); return -errno; } ret = check_mounted_where(fd, file, NULL, 0, NULL); close(fd); return ret; } int check_mounted_where(int fd, const char *file, char *where, int size, struct btrfs_fs_devices **fs_dev_ret) { int ret; u64 total_devs = 1; int is_btrfs; struct btrfs_fs_devices *fs_devices_mnt = NULL; FILE *f; struct mntent *mnt; /* scan the initial device */ ret = btrfs_scan_one_device(fd, file, &fs_devices_mnt, &total_devs, BTRFS_SUPER_INFO_OFFSET); is_btrfs = (ret >= 0); /* scan other devices */ if (is_btrfs && total_devs > 1) { if ((ret = btrfs_scan_for_fsid(!BTRFS_UPDATE_KERNEL))) return ret; } /* iterate over the list of currently mountes filesystems */ if ((f = setmntent ("/proc/self/mounts", "r")) == NULL) return -errno; while ((mnt = getmntent (f)) != NULL) { if(is_btrfs) { if(strcmp(mnt->mnt_type, "btrfs") != 0) continue; ret = blk_file_in_dev_list(fs_devices_mnt, mnt->mnt_fsname); } else { /* ignore entries in the mount table that are not associated with a file*/ if((ret = is_existing_blk_or_reg_file(mnt->mnt_fsname)) < 0) goto out_mntloop_err; else if(!ret) continue; ret = is_same_loop_file(file, mnt->mnt_fsname); } if(ret < 0) goto out_mntloop_err; else if(ret) break; } /* Did we find an entry in mnt table? */ if (mnt && size && where) { strncpy(where, mnt->mnt_dir, size); where[size-1] = 0; } if (fs_dev_ret) *fs_dev_ret = fs_devices_mnt; ret = (mnt != NULL); out_mntloop_err: endmntent (f); return ret; } struct pending_dir { struct list_head list; char name[PATH_MAX]; }; void btrfs_register_one_device(char *fname) { struct btrfs_ioctl_vol_args args; int fd; int ret; int e; fd = open("/dev/btrfs-control", O_RDONLY); if (fd < 0) { fprintf(stderr, "failed to open /dev/btrfs-control " "skipping device registration: %s\n", strerror(errno)); return; } strncpy(args.name, fname, BTRFS_PATH_NAME_MAX); args.name[BTRFS_PATH_NAME_MAX-1] = 0; ret = ioctl(fd, BTRFS_IOC_SCAN_DEV, &args); e = errno; if(ret<0){ fprintf(stderr, "ERROR: device scan failed '%s' - %s\n", fname, strerror(e)); } close(fd); } int btrfs_scan_one_dir(char *dirname, int run_ioctl) { DIR *dirp = NULL; struct dirent *dirent; struct pending_dir *pending; struct stat st; int ret; int fd; int dirname_len; char *fullpath; struct list_head pending_list; struct btrfs_fs_devices *tmp_devices; u64 num_devices; INIT_LIST_HEAD(&pending_list); pending = malloc(sizeof(*pending)); if (!pending) return -ENOMEM; strcpy(pending->name, dirname); again: dirname_len = strlen(pending->name); fullpath = malloc(PATH_MAX); dirname = pending->name; if (!fullpath) { ret = -ENOMEM; goto fail; } dirp = opendir(dirname); if (!dirp) { fprintf(stderr, "Unable to open %s for scanning\n", dirname); ret = -errno; goto fail; } while(1) { dirent = readdir(dirp); if (!dirent) break; if (dirent->d_name[0] == '.') continue; if (dirname_len + strlen(dirent->d_name) + 2 > PATH_MAX) { ret = -EFAULT; goto fail; } snprintf(fullpath, PATH_MAX, "%s/%s", dirname, dirent->d_name); ret = lstat(fullpath, &st); if (ret < 0) { fprintf(stderr, "failed to stat %s\n", fullpath); continue; } if (S_ISLNK(st.st_mode)) continue; if (S_ISDIR(st.st_mode)) { struct pending_dir *next = malloc(sizeof(*next)); if (!next) { ret = -ENOMEM; goto fail; } strcpy(next->name, fullpath); list_add_tail(&next->list, &pending_list); } if (!S_ISBLK(st.st_mode)) { continue; } fd = open(fullpath, O_RDONLY); if (fd < 0) { /* ignore the following errors: ENXIO (device don't exists) ENOMEDIUM (No medium found -> like a cd tray empty) */ if(errno != ENXIO && errno != ENOMEDIUM) fprintf(stderr, "failed to read %s: %s\n", fullpath, strerror(errno)); continue; } ret = btrfs_scan_one_device(fd, fullpath, &tmp_devices, &num_devices, BTRFS_SUPER_INFO_OFFSET); if (ret == 0 && run_ioctl > 0) { btrfs_register_one_device(fullpath); } close(fd); } if (!list_empty(&pending_list)) { free(pending); pending = list_entry(pending_list.next, struct pending_dir, list); free(fullpath); list_del(&pending->list); closedir(dirp); dirp = NULL; goto again; } ret = 0; fail: free(pending); free(fullpath); while (!list_empty(&pending_list)) { pending = list_entry(pending_list.next, struct pending_dir, list); list_del(&pending->list); free(pending); } if (dirp) closedir(dirp); return ret; } int btrfs_scan_for_fsid(int run_ioctls) { int ret; ret = scan_for_btrfs(BTRFS_SCAN_PROC, run_ioctls); if (ret) ret = scan_for_btrfs(BTRFS_SCAN_DEV, run_ioctls); return ret; } int btrfs_device_already_in_root(struct btrfs_root *root, int fd, int super_offset) { struct btrfs_super_block *disk_super; char *buf; int ret = 0; buf = malloc(BTRFS_SUPER_INFO_SIZE); if (!buf) { ret = -ENOMEM; goto out; } ret = pread(fd, buf, BTRFS_SUPER_INFO_SIZE, super_offset); if (ret != BTRFS_SUPER_INFO_SIZE) goto brelse; ret = 0; disk_super = (struct btrfs_super_block *)buf; if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) goto brelse; if (!memcmp(disk_super->fsid, root->fs_info->super_copy->fsid, BTRFS_FSID_SIZE)) ret = 1; brelse: free(buf); out: return ret; } static char *size_strs[] = { "", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB"}; int pretty_size_snprintf(u64 size, char *str, size_t str_bytes) { int num_divs = 0; float fraction; if (str_bytes == 0) return 0; if( size < 1024 ){ fraction = size; num_divs = 0; } else { u64 last_size = size; num_divs = 0; while(size >= 1024){ last_size = size; size /= 1024; num_divs ++; } if (num_divs >= ARRAY_SIZE(size_strs)) { str[0] = '\0'; return -1; } fraction = (float)last_size / 1024; } return snprintf(str, str_bytes, "%.2f%s", fraction, size_strs[num_divs]); } /* * __strncpy__null - strncpy with null termination * @dest: the target array * @src: the source string * @n: maximum bytes to copy (size of *dest) * * Like strncpy, but ensures destination is null-terminated. * * Copies the string pointed to by src, including the terminating null * byte ('\0'), to the buffer pointed to by dest, up to a maximum * of n bytes. Then ensure that dest is null-terminated. */ char *__strncpy__null(char *dest, const char *src, size_t n) { strncpy(dest, src, n); if (n > 0) dest[n - 1] = '\0'; return dest; } /* * Checks to make sure that the label matches our requirements. * Returns: 0 if everything is safe and usable -1 if the label is too long */ static int check_label(const char *input) { int len = strlen(input); if (len > BTRFS_LABEL_SIZE - 1) { fprintf(stderr, "ERROR: Label %s is too long (max %d)\n", input, BTRFS_LABEL_SIZE - 1); return -1; } return 0; } static int set_label_unmounted(const char *dev, const char *label) { struct btrfs_trans_handle *trans; struct btrfs_root *root; int ret; ret = check_mounted(dev); if (ret < 0) { fprintf(stderr, "FATAL: error checking %s mount status\n", dev); return -1; } if (ret > 0) { fprintf(stderr, "ERROR: dev %s is mounted, use mount point\n", dev); return -1; } /* Open the super_block at the default location * and as read-write. */ root = open_ctree(dev, 0, OPEN_CTREE_WRITES); if (!root) /* errors are printed by open_ctree() */ return -1; trans = btrfs_start_transaction(root, 1); snprintf(root->fs_info->super_copy->label, BTRFS_LABEL_SIZE, "%s", label); btrfs_commit_transaction(trans, root); /* Now we close it since we are done. */ close_ctree(root); return 0; } static int set_label_mounted(const char *mount_path, const char *label) { int fd; fd = open(mount_path, O_RDONLY | O_NOATIME); if (fd < 0) { fprintf(stderr, "ERROR: unable to access '%s'\n", mount_path); return -1; } if (ioctl(fd, BTRFS_IOC_SET_FSLABEL, label) < 0) { fprintf(stderr, "ERROR: unable to set label %s\n", strerror(errno)); close(fd); return -1; } close(fd); return 0; } static int get_label_unmounted(const char *dev, char *label) { struct btrfs_root *root; int ret; ret = check_mounted(dev); if (ret < 0) { fprintf(stderr, "FATAL: error checking %s mount status\n", dev); return -1; } if (ret > 0) { fprintf(stderr, "ERROR: dev %s is mounted, use mount point\n", dev); return -1; } /* Open the super_block at the default location * and as read-only. */ root = open_ctree(dev, 0, 0); if(!root) return -1; memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE); /* Now we close it since we are done. */ close_ctree(root); return 0; } /* * If a partition is mounted, try to get the filesystem label via its * mounted path rather than device. Return the corresponding error * the user specified the device path. */ int get_label_mounted(const char *mount_path, char *labelp) { char label[BTRFS_LABEL_SIZE]; int fd; fd = open(mount_path, O_RDONLY | O_NOATIME); if (fd < 0) { fprintf(stderr, "ERROR: unable to access '%s'\n", mount_path); return -1; } memset(label, '\0', sizeof(label)); if (ioctl(fd, BTRFS_IOC_GET_FSLABEL, label) < 0) { fprintf(stderr, "ERROR: unable get label %s\n", strerror(errno)); close(fd); return -1; } strncpy(labelp, label, sizeof(label)); close(fd); return 0; } int get_label(const char *btrfs_dev, char *label) { int ret; if (is_existing_blk_or_reg_file(btrfs_dev)) ret = get_label_unmounted(btrfs_dev, label); else ret = get_label_mounted(btrfs_dev, label); return ret; } int set_label(const char *btrfs_dev, const char *label) { if (check_label(label)) return -1; return is_existing_blk_or_reg_file(btrfs_dev) ? set_label_unmounted(btrfs_dev, label) : set_label_mounted(btrfs_dev, label); } int btrfs_scan_block_devices(int run_ioctl) { struct stat st; int ret; int fd; struct btrfs_fs_devices *tmp_devices; u64 num_devices; FILE *proc_partitions; int i; char buf[1024]; char fullpath[110]; int scans = 0; int special; scan_again: proc_partitions = fopen("/proc/partitions","r"); if (!proc_partitions) { fprintf(stderr, "Unable to open '/proc/partitions' for scanning\n"); return -ENOENT; } /* skip the header */ for (i = 0; i < 2; i++) if (!fgets(buf, 1023, proc_partitions)) { fprintf(stderr, "Unable to read '/proc/partitions' for scanning\n"); fclose(proc_partitions); return -ENOENT; } strcpy(fullpath,"/dev/"); while(fgets(buf, 1023, proc_partitions)) { i = sscanf(buf," %*d %*d %*d %99s", fullpath+5); /* * multipath and MD devices may register as a btrfs filesystem * both through the original block device and through * the special (/dev/mapper or /dev/mdX) entry. * This scans the special entries last */ special = strncmp(fullpath, "/dev/dm-", strlen("/dev/dm-")) == 0; if (!special) special = strncmp(fullpath, "/dev/md", strlen("/dev/md")) == 0; if (scans == 0 && special) continue; if (scans > 0 && !special) continue; ret = lstat(fullpath, &st); if (ret < 0) { fprintf(stderr, "failed to stat %s\n", fullpath); continue; } if (!S_ISBLK(st.st_mode)) { continue; } fd = open(fullpath, O_RDONLY); if (fd < 0) { if (errno != ENOMEDIUM) fprintf(stderr, "failed to open %s: %s\n", fullpath, strerror(errno)); continue; } ret = btrfs_scan_one_device(fd, fullpath, &tmp_devices, &num_devices, BTRFS_SUPER_INFO_OFFSET); if (ret == 0 && run_ioctl > 0) { btrfs_register_one_device(fullpath); } close(fd); } fclose(proc_partitions); if (scans == 0) { scans++; goto scan_again; } return 0; } u64 parse_size(char *s) { int i; char c; u64 mult = 1; for (i = 0; s && s[i] && isdigit(s[i]); i++) ; if (!i) { fprintf(stderr, "ERROR: size value is empty\n"); exit(50); } if (s[i]) { c = tolower(s[i]); switch (c) { case 'e': mult *= 1024; /* fallthrough */ case 'p': mult *= 1024; /* fallthrough */ case 't': mult *= 1024; /* fallthrough */ case 'g': mult *= 1024; /* fallthrough */ case 'm': mult *= 1024; /* fallthrough */ case 'k': mult *= 1024; /* fallthrough */ case 'b': break; default: fprintf(stderr, "ERROR: Unknown size descriptor " "'%c'\n", c); exit(1); } } if (s[i] && s[i+1]) { fprintf(stderr, "ERROR: Illegal suffix contains " "character '%c' in wrong position\n", s[i+1]); exit(51); } return strtoull(s, NULL, 10) * mult; } int open_file_or_dir3(const char *fname, DIR **dirstream, int open_flags) { int ret; struct stat st; int fd; ret = stat(fname, &st); if (ret < 0) { return -1; } if (S_ISDIR(st.st_mode)) { *dirstream = opendir(fname); if (!*dirstream) return -1; fd = dirfd(*dirstream); } else if (S_ISREG(st.st_mode) || S_ISLNK(st.st_mode)) { fd = open(fname, open_flags); } else { /* * we set this on purpose, in case the caller output * strerror(errno) as success */ errno = EINVAL; return -1; } if (fd < 0) { fd = -1; if (*dirstream) closedir(*dirstream); } return fd; } int open_file_or_dir(const char *fname, DIR **dirstream) { return open_file_or_dir3(fname, dirstream, O_RDWR); } void close_file_or_dir(int fd, DIR *dirstream) { if (dirstream) closedir(dirstream); else if (fd >= 0) close(fd); } int get_device_info(int fd, u64 devid, struct btrfs_ioctl_dev_info_args *di_args) { int ret; di_args->devid = devid; memset(&di_args->uuid, '\0', sizeof(di_args->uuid)); ret = ioctl(fd, BTRFS_IOC_DEV_INFO, di_args); return ret ? -errno : 0; } /* * For a given path, fill in the ioctl fs_ and info_ args. * If the path is a btrfs mountpoint, fill info for all devices. * If the path is a btrfs device, fill in only that device. * * The path provided must be either on a mounted btrfs fs, * or be a mounted btrfs device. * * Returns 0 on success, or a negative errno. */ int get_fs_info(char *path, struct btrfs_ioctl_fs_info_args *fi_args, struct btrfs_ioctl_dev_info_args **di_ret) { int fd = -1; int ret = 0; int ndevs = 0; int i = 0; struct btrfs_fs_devices *fs_devices_mnt = NULL; struct btrfs_ioctl_dev_info_args *di_args; char mp[BTRFS_PATH_NAME_MAX + 1]; DIR *dirstream = NULL; memset(fi_args, 0, sizeof(*fi_args)); if (is_block_device(path)) { struct btrfs_super_block *disk_super; char buf[BTRFS_SUPER_INFO_SIZE]; u64 devid; /* Ensure it's mounted, then set path to the mountpoint */ fd = open(path, O_RDONLY); if (fd < 0) { ret = -errno; fprintf(stderr, "Couldn't open %s: %s\n", path, strerror(errno)); goto out; } ret = check_mounted_where(fd, path, mp, sizeof(mp), &fs_devices_mnt); if (!ret) { ret = -EINVAL; goto out; } if (ret < 0) goto out; path = mp; /* Only fill in this one device */ fi_args->num_devices = 1; disk_super = (struct btrfs_super_block *)buf; ret = btrfs_read_dev_super(fd, disk_super, BTRFS_SUPER_INFO_OFFSET); if (ret < 0) { ret = -EIO; goto out; } devid = btrfs_stack_device_id(&disk_super->dev_item); fi_args->max_id = devid; i = devid; memcpy(fi_args->fsid, fs_devices_mnt->fsid, BTRFS_FSID_SIZE); close(fd); } /* at this point path must not be for a block device */ fd = open_file_or_dir(path, &dirstream); if (fd < 0) { ret = -errno; goto out; } /* fill in fi_args if not just a single device */ if (fi_args->num_devices != 1) { ret = ioctl(fd, BTRFS_IOC_FS_INFO, fi_args); if (ret < 0) { ret = -errno; goto out; } } if (!fi_args->num_devices) goto out; di_args = *di_ret = malloc(fi_args->num_devices * sizeof(*di_args)); if (!di_args) { ret = -errno; goto out; } for (; i <= fi_args->max_id; ++i) { BUG_ON(ndevs >= fi_args->num_devices); ret = get_device_info(fd, i, &di_args[ndevs]); if (ret == -ENODEV) continue; if (ret) goto out; ndevs++; } /* * only when the only dev we wanted to find is not there then * let any error be returned */ if (fi_args->num_devices != 1) { BUG_ON(ndevs == 0); ret = 0; } out: close_file_or_dir(fd, dirstream); return ret; } #define isoctal(c) (((c) & ~7) == '0') static inline void translate(char *f, char *t) { while (*f != '\0') { if (*f == '\\' && isoctal(f[1]) && isoctal(f[2]) && isoctal(f[3])) { *t++ = 64*(f[1] & 7) + 8*(f[2] & 7) + (f[3] & 7); f += 4; } else *t++ = *f++; } *t = '\0'; return; } /* * Checks if the swap device. * Returns 1 if swap device, < 0 on error or 0 if not swap device. */ static int is_swap_device(const char *file) { FILE *f; struct stat st_buf; dev_t dev; ino_t ino = 0; char tmp[PATH_MAX]; char buf[PATH_MAX]; char *cp; int ret = 0; if (stat(file, &st_buf) < 0) return -errno; if (S_ISBLK(st_buf.st_mode)) dev = st_buf.st_rdev; else if (S_ISREG(st_buf.st_mode)) { dev = st_buf.st_dev; ino = st_buf.st_ino; } else return 0; if ((f = fopen("/proc/swaps", "r")) == NULL) return 0; /* skip the first line */ if (fgets(tmp, sizeof(tmp), f) == NULL) goto out; while (fgets(tmp, sizeof(tmp), f) != NULL) { if ((cp = strchr(tmp, ' ')) != NULL) *cp = '\0'; if ((cp = strchr(tmp, '\t')) != NULL) *cp = '\0'; translate(tmp, buf); if (stat(buf, &st_buf) != 0) continue; if (S_ISBLK(st_buf.st_mode)) { if (dev == st_buf.st_rdev) { ret = 1; break; } } else if (S_ISREG(st_buf.st_mode)) { if (dev == st_buf.st_dev && ino == st_buf.st_ino) { ret = 1; break; } } } out: fclose(f); return ret; } /* * Check for existing filesystem or partition table on device. * Returns: * 1 for existing fs or partition * 0 for nothing found * -1 for internal error */ static int check_overwrite( char *device) { const char *type; blkid_probe pr = NULL; int ret; blkid_loff_t size; if (!device || !*device) return 0; ret = -1; /* will reset on success of all setup calls */ pr = blkid_new_probe_from_filename(device); if (!pr) goto out; size = blkid_probe_get_size(pr); if (size < 0) goto out; /* nothing to overwrite on a 0-length device */ if (size == 0) { ret = 0; goto out; } ret = blkid_probe_enable_partitions(pr, 1); if (ret < 0) goto out; ret = blkid_do_fullprobe(pr); if (ret < 0) goto out; /* * Blkid returns 1 for nothing found and 0 when it finds a signature, * but we want the exact opposite, so reverse the return value here. * * In addition print some useful diagnostics about what actually is * on the device. */ if (ret) { ret = 0; goto out; } if (!blkid_probe_lookup_value(pr, "TYPE", &type, NULL)) { fprintf(stderr, "%s appears to contain an existing " "filesystem (%s).\n", device, type); } else if (!blkid_probe_lookup_value(pr, "PTTYPE", &type, NULL)) { fprintf(stderr, "%s appears to contain a partition " "table (%s).\n", device, type); } else { fprintf(stderr, "%s appears to contain something weird " "according to blkid\n", device); } ret = 1; out: if (pr) blkid_free_probe(pr); if (ret == -1) fprintf(stderr, "probe of %s failed, cannot detect " "existing filesystem.\n", device); return ret; } int test_num_disk_vs_raid(u64 metadata_profile, u64 data_profile, u64 dev_cnt, int mixed, char *estr) { size_t sz = 100; u64 allowed = 0; switch (dev_cnt) { default: case 4: allowed |= BTRFS_BLOCK_GROUP_RAID10; case 3: allowed |= BTRFS_BLOCK_GROUP_RAID6; case 2: allowed |= BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5; break; case 1: allowed |= BTRFS_BLOCK_GROUP_DUP; } if (metadata_profile & ~allowed) { snprintf(estr, sz, "unable to create FS with metadata " "profile %llu (have %llu devices)\n", metadata_profile, dev_cnt); return 1; } if (data_profile & ~allowed) { snprintf(estr, sz, "unable to create FS with data " "profile %llu (have %llu devices)\n", metadata_profile, dev_cnt); return 1; } if (!mixed && (data_profile & BTRFS_BLOCK_GROUP_DUP)) { snprintf(estr, sz, "dup for data is allowed only in mixed mode"); return 1; } return 0; } /* Check if disk is suitable for btrfs * returns: * 1: something is wrong, estr provides the error * 0: all is fine */ int test_dev_for_mkfs(char *file, int force_overwrite, char *estr) { int ret, fd; size_t sz = 100; struct stat st; ret = is_swap_device(file); if (ret < 0) { snprintf(estr, sz, "error checking %s status: %s\n", file, strerror(-ret)); return 1; } if (ret == 1) { snprintf(estr, sz, "%s is a swap device\n", file); return 1; } if (!force_overwrite) { if (check_overwrite(file)) { snprintf(estr, sz, "Use the -f option to force overwrite.\n"); return 1; } } ret = check_mounted(file); if (ret < 0) { snprintf(estr, sz, "error checking %s mount status\n", file); return 1; } if (ret == 1) { snprintf(estr, sz, "%s is mounted\n", file); return 1; } /* check if the device is busy */ fd = open(file, O_RDWR|O_EXCL); if (fd < 0) { snprintf(estr, sz, "unable to open %s: %s\n", file, strerror(errno)); return 1; } if (fstat(fd, &st)) { snprintf(estr, sz, "unable to stat %s: %s\n", file, strerror(errno)); close(fd); return 1; } if (!S_ISBLK(st.st_mode)) { fprintf(stderr, "'%s' is not a block device\n", file); close(fd); return 1; } close(fd); return 0; } int btrfs_scan_lblkid(int update_kernel) { int fd = -1; int ret; u64 num_devices; struct btrfs_fs_devices *tmp_devices; blkid_dev_iterate iter = NULL; blkid_dev dev = NULL; blkid_cache cache = NULL; char path[PATH_MAX]; if (blkid_get_cache(&cache, 0) < 0) { printf("ERROR: lblkid cache get failed\n"); return 1; } blkid_probe_all(cache); iter = blkid_dev_iterate_begin(cache); blkid_dev_set_search(iter, "TYPE", "btrfs"); while (blkid_dev_next(iter, &dev) == 0) { dev = blkid_verify(cache, dev); if (!dev) continue; /* if we are here its definitely a btrfs disk*/ strncpy(path, blkid_dev_devname(dev), PATH_MAX); fd = open(path, O_RDONLY); if (fd < 0) { printf("ERROR: could not open %s\n", path); continue; } ret = btrfs_scan_one_device(fd, path, &tmp_devices, &num_devices, BTRFS_SUPER_INFO_OFFSET); if (ret) { printf("ERROR: could not scan %s\n", path); close (fd); continue; } close(fd); if (update_kernel) btrfs_register_one_device(path); } blkid_dev_iterate_end(iter); blkid_put_cache(cache); return 0; } /* * scans devs for the btrfs */ int scan_for_btrfs(int where, int update_kernel) { int ret = 0; switch (where) { case BTRFS_SCAN_PROC: ret = btrfs_scan_block_devices(update_kernel); break; case BTRFS_SCAN_DEV: ret = btrfs_scan_one_dir("/dev", update_kernel); break; case BTRFS_SCAN_LBLKID: ret = btrfs_scan_lblkid(update_kernel); break; } return ret; } int is_vol_small(char *file) { int fd = -1; int e; struct stat st; u64 size; fd = open(file, O_RDONLY); if (fd < 0) return -errno; if (fstat(fd, &st) < 0) { e = -errno; close(fd); return e; } size = btrfs_device_size(fd, &st); if (size == 0) { close(fd); return -1; } if (size < 1024 * 1024 * 1024) { close(fd); return 1; } else { close(fd); return 0; } } /* * This reads a line from the stdin and only returns non-zero if the * first whitespace delimited token is a case insensitive match with yes * or y. */ int ask_user(char *question) { char buf[30] = {0,}; char *saveptr = NULL; char *answer; printf("%s [y/N]: ", question); return fgets(buf, sizeof(buf) - 1, stdin) && (answer = strtok_r(buf, " \t\n\r", &saveptr)) && (!strcasecmp(answer, "yes") || !strcasecmp(answer, "y")); } /* * For a given: * - file or directory return the containing tree root id * - subvolume return it's own tree id * - BTRFS_EMPTY_SUBVOL_DIR_OBJECTID (directory with ino == 2) the result is * undefined and function returns -1 */ int lookup_ino_rootid(int fd, u64 *rootid) { struct btrfs_ioctl_ino_lookup_args args; int ret; int e; memset(&args, 0, sizeof(args)); args.treeid = 0; args.objectid = BTRFS_FIRST_FREE_OBJECTID; ret = ioctl(fd, BTRFS_IOC_INO_LOOKUP, &args); e = errno; if (ret) { fprintf(stderr, "ERROR: Failed to lookup root id - %s\n", strerror(e)); return ret; } *rootid = args.treeid; return 0; } int find_mount_root(const char *path, char **mount_root) { FILE *mnttab; int fd; struct mntent *ent; int len; int ret; int longest_matchlen = 0; char *longest_match = NULL; fd = open(path, O_RDONLY | O_NOATIME); if (fd < 0) return -errno; close(fd); mnttab = setmntent("/proc/self/mounts", "r"); if (!mnttab) return -errno; while ((ent = getmntent(mnttab))) { len = strlen(ent->mnt_dir); if (strncmp(ent->mnt_dir, path, len) == 0) { /* match found */ if (longest_matchlen < len) { free(longest_match); longest_matchlen = len; longest_match = strdup(ent->mnt_dir); } } } endmntent(mnttab); if (!longest_match) { fprintf(stderr, "ERROR: Failed to find mount root for path %s.\n", path); return -ENOENT; } ret = 0; *mount_root = realpath(longest_match, NULL); if (!*mount_root) ret = -errno; free(longest_match); return ret; }