summaryrefslogtreecommitdiff
path: root/Documentation/btrfs-man5.asciidoc
blob: 2bb95767577660e239601129e1a0b2ec22aa1753 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
btrfs-man5(5)
==============

NAME
----
btrfs-man5 - topics about the BTRFS filesystem (mount options, supported file attributes and other)

DESCRIPTION
-----------
This document describes topics related to BTRFS that are not specific to the
tools.  Currently covers:

1. mount options

2. file attributes

MOUNT OPTIONS
-------------

This section describes mount options specific to BTRFS.  For the generic mount
options please refer to `mount`(8) manpage. The options are sorted alphabetically
(discarding the 'no' prefix).

*acl*::
*noacl*::
(default: on)
+
Enable/disable support for Posix Access Control Lists (ACLs).  See the
`acl`(5) manual page for more information about ACLs.

*alloc_start='bytes'*::
(default: 1M, minimum: 1M)
+
Debugging option to force all block allocations above a certain
byte threshold on each block device.  The value is specified in
bytes, optionally with a K, M, or G suffix (case insensitive).
+
This option was used for testing and has not practial use, it's slated to be
removed in the future.

*autodefrag*::
*noautodefrag*::
(since: 3.0, default: off)
+
Enable automatic file defragmentation.
When enabled, small random writes into files (in a range of tens of kilobytes,
currently it's 64K) are detected and queued up for the defragmentation process.
Not well suited for large database workloads.
+
The read latency may increase due to reading the adjacent blocks that make up the
range for defragmentation, successive write will merge the blocks in the new
location.
+
WARNING: Defragmenting with Linux kernel versions < 3.9 or ≥ 3.14-rc2 as
well as with Linux stable kernel versions ≥ 3.10.31, ≥ 3.12.12 or
≥ 3.13.4 will break up the ref-links of CoW data (for example files
copied with `cp --reflink`, snapshots or de-duplicated data).
This may cause considerable increase of space usage depending on the
broken up ref-links.

*barrier*::
*nobarrier*::
(default: on)
+
Ensure that all IO write operations make it through the device cache and are stored
permanently when the filesystem is at it's consistency checkpoint. This
typically means that a flush command is sent to the device that will
synchronize all pending data and ordinary metadata blocks, then writes the
superblock and issues another flush.
+
The write flushes incur a slight hit and also prevent the IO block
scheduler to reorder requests in more effective way. Disabling barriers gets
rid of that penalty but will most certainly lead to a corrupted filesystem in
case of a crash or power loss. The ordinary metadata blocks could be yet
unwrittent at the time the new superblock is stored permanently, expecting that
the block pointers to metadata were stored permanently before.
+
On a device with a volatile battery-backed write-back cache, the 'nobarrier'
option will not lead to filesystem corruption as the pending blocks are
supposed to make it to the permanent storage.

*check_int*::
*check_int_data*::
*check_int_print_mask='value'*::
(since: 3.0, default: off)
+
These debugging options control the behavior of the integrity checking
module (the BTRFS_FS_CHECK_INTEGRITY config option required). +
+
`check_int` enables the integrity checker module, which examines all
block write requests to ensure on-disk consistency, at a large
memory and CPU cost. +
+
`check_int_data` includes extent data in the integrity checks, and
implies the check_int option. +
+
`check_int_print_mask` takes a bitmask of BTRFSIC_PRINT_MASK_* values
as defined in 'fs/btrfs/check-integrity.c', to control the integrity
checker module behavior. +
+
See comments at the top of 'fs/btrfs/check-integrity.c'
for more info.

*clear_cache*::
Force clearing and rebuilding of the disk space cache if something
has gone wrong. See also: 'space_cache'.

*commit='seconds'*::
(since: 3.12, default: 30)
+
Set the interval of periodic commit. Higher
values defer data being synced to permanent storage with obvious
consequences when the system crashes. The upper bound is not forced,
but a warning is printed if it's more than 300 seconds (5 minutes).

*compress*::
*compress='type'*::
*compress-force*::
*compress-force='type'*::
(default: off)
+
Control BTRFS file data compression.  Type may be specified as 'zlib',
'lzo' or 'no' (for no compression, used for remounting).  If no type
is specified, 'zlib' is used.  If compress-force is specified,
all files will be compressed, whether or not they compress well.
+
NOTE: If compression is enabled, 'nodatacow' and 'nodatasum' are disabled.

*datacow*::
*nodatacow*::
(default: on)
+
Enable data copy-on-write for newly created files.
'Nodatacow' implies 'nodatasum', and disables 'compression'. All files created
under 'nodatacow' are also set the NOCOW file attribute (see `chattr`(1)).

*datasum*::
*nodatasum*::
(default: on)
+
Enable data checksumming for newly created files.
'Datasum' implies 'datacow', ie. the normal mode of operation. All files created
under 'nodatasum' inherit the "no checksums" property, however there's no
corresponding file attribute (see `chattr`(1)).

*degraded*::
(default: off)
+
Allow mounts with less devices than the raid profile constraints
require.  A read-write mount (or remount) may fail with too many devices
missing, for example if a stripe member is completely missing from RAID0.

*device='devicepath'*::
Specify a path to a device that will be scanned for BTRFS filesystem during
mount. This is usually done automatically by a device manager (like udev) or
using the *btrfs device scan* command (eg. run from the initial ramdisk). In
cases where this is not possible the 'device' mount option can help.
+
NOTE: booting eg. a RAID1 system may fail even if all filesystem's 'device'
paths are provided as the actual device nodes may not be discovered by the
system at that point.

*discard*::
*nodiscard*::
(default: off)
+
Enable discarding of freed file blocks using TRIM operation.  This is useful
for SSD devices, thinly provisioned LUNs or virtual machine images where the
backing device understands the operation. Depending on support of the
underlying device, the operation may severly hurt performance in case the TRIM
operation is synchronous (eg. with SATA devices up to revision 3.0).
+
If discarding is not necessary to be done at the block freeing time, there's
*fstrim* tool that lets the filesystem discard all free blocks in a batch,
possibly not much interfering with other operations.

*enospc_debug*::
*noenospc_debug*::
(default: off)
+
Enable verbose output for some ENOSPC conditions. It's safe to use but can
be noisy if the system hits reaches near-full state.

*fatal_errors='action'*::
(since: 3.4, default: bug)
+
Action to take when encountering a fatal error.
+
*bug*::::
'BUG()' on a fatal error, the system will stay in the crashed state and may be
still partially usable, but reboot is required for full operation
+
*panic*::::
'panic()' on a fatal error, depending on other system configuration, this may
be followed by a reboot. Please refer to the documentation of kernel boot
parameters, eg. 'panic', 'oops' or 'crashkernel'.

*flushoncommit*::
*noflushoncommit*::
(default: on)
+
This option forces any data dirtied by a write in a prior transaction to commit
as part of the current commit.  This makes the committed state a fully
consistent view of the file system from the application's perspective (i.e., it
includes all completed file system operations).  This was previously the
behavior only when a snapshot was created.
+
Disabling flushing may improve performance but is not crash-safe.

*inode_cache*::
*noinode_cache*::
(since: 3.0, default: off)
+
Enable free inode number caching. Not recommended to use unless files on your
filesystem get assigned inode numbers that are approaching 2^64^. Normally, new
files in each subvolume get assigned incrementally (plus one from the last
time) and are not reused. The mount option turns on caching of the existing
inode numbers and reuse of inode numbers of deleted files.
+
This option may slow down your system at first run, or after mounting without
the option.
+
NOTE: Defaults to off due to a potential overflow problem when the free space
checksums don't fit inside a single page.

*max_inline='bytes'*::
(default: min(8192, page size) )
+
Specify the maximum amount of space, in bytes, that can be inlined in
a metadata B-tree leaf.  The value is specified in bytes, optionally
with a K suffix (case insensitive).  In practice, this value
is limited by the filesystem block size (named 'sectorsize' at mkfs time),
and memory page size of the system. In case of sectorsize limit, there's
some space unavailable due to leaf headers.  For example, a 4k sectorsize, max
inline data is ~3900 bytes.
+
Inlining can be completely turned off specifying 0. This will increase data
block slack if file sizes are much smaller than block size but will reduce
metadata consumption in return.

*metadata_ratio='value'*::
(default: 0, internal logic)
+
Specifies that 1 metadata chunk should be allocated after every 'value' data
chunks. Default behaviour depends on internal logic, some percent of unused
metadata space is attempted to be maintained but is not always possible if
there's not space left for chunk allocation. The option could be useful to
override the internal logic in favor of the metadata allocation if the expected
workload is supposed to be metadata intense (snapshots, reflinks, xattrs,
inlined files).

*recovery*::
(since: 3.2, default: off)
+
Enable autorecovery attempts if a bad tree root is found at mount time.
Currently this scans a backup list of several previous tree roots and tries to
use the first readable. This can be used with read-only mounts as well.

*rescan_uuid_tree*::
(since: 3.12, default: off)
+
Force check and rebuild procedure of the UUID tree. This should not
normally be needed.

*skip_balance*::
(since: 3.3, default: off)
+
Skip automatic resume of interrupted balance operation after mount.
May be resumed with *btrfs balance resume* or the paused state can be removed
by *btrfs balance cancel*.

*space_cache*::
*nospace_cache*::
('nospace_cache' since: 3.2, default: on)
+
Disable freespace cache loading without clearing the cache and the free space
cache will not be used during the mount. This affects performance as searching
for new free blocks could take longer. On the other hand, managing the space
cache consumes some resources.

*ssd*::
*nossd*::
*ssd_spread*::
(default: SSD autodetected)
+
Options to control SSD allocation schemes.  By default, BTRFS will
enable or disable SSD allocation heuristics depending on whether a
rotational or nonrotational disk is in use.  The 'ssd' and 'nossd' options
can override this autodetection.
+
The 'ssd_spread' mount option attempts to allocate into bigger and aligned
chunks of unused space, and may perform better on low-end SSDs.  'ssd_spread'
implies 'ssd', enabling all other SSD heuristics as well.

*subvol='path'*::
Mount subvolume from 'path' rather than the toplevel subvolume. The
'path' is absolute (ie. starts at the toplevel subvolume).
This mount option overrides the default subvolume set for the given filesystem.

*subvolid='subvolid'*::
Mount subvolume specified by a 'subvolid' number rather than the toplevel
subvolume.  You can use *btrfs subvolume list* to see subvolume ID numbers.
This mount option overrides the default subvolume set for the given filesystem.

*subvolrootid='objectid'*::
(irrelevant since: 3.2, formally deprecated since: 3.10)
+
A workaround option from times (pre 3.2) when it was not possible to mount a
subvolume that did not reside directly under the toplevel subvolume.

*thread_pool='number'*::
(default: min(NRCPUS + 2, 8) )
+
The number of worker threads to allocate. NRCPUS is number of on-line CPUs
detected at the time of mount. Small number leads to less parallelism in
processing data and metadata, higher numbers could lead to a performance due to
increased locking contention, cache-line bouncing or costly data transfers
between local CPU memories.

*treelog*::
*notreelog*::
(default: on)
+
Enable the tree logging used for 'fsync' and 'O_SYNC' writes. The tree log
stores changes without the need of a full filesystem sync. The log operations
are flushed at sync and transaction commit. If the system crashes between two
such syncs, the pending tree log operations are replayed during mount.
+
WARNING: currently, the tree log is replayed even with a read-only mount!
+
The tree log could contain new files/directories, these would not exist on
a mounted filesystm if the log is not replayed.

*user_subvol_rm_allowed*::
(default: off)
+
Allow subvolumes to be deleted by their respective owner. Otherwise, only the
root user can do that.

FILE ATTRIBUTES
---------------
The btrfs filesystem supports setting the following file attributes using the
`chattr`(1) utility:

*a*::
'append only', new writes are always written at the end of the file

*A*::
'no atime updates'

*c*::
'compress data', all data written after this attribute is set will be compressed.
Please note that compression is also affected by the mount options or the parent
directory attributes.
+
When set on a directory, all newly created files will inherit this attribute.

*C*::
'no copy-on-write', file modifications are done in-place
+
When set on a directory, all newly created files will inherit this attribute.
+
NOTE: due to implementation limitations, this flag can be set/unset only on
empty files.

*d*::
'no dump', makes sense with 3rd party tools like `dump`(8), on BTRFS the
attribute can be set/unset on no other special handling is done

*D*::
'synchronous directory updates', for more details search `open`(2) for 'O_SYNC'
and 'O_DSYNC'

*i*::
'immutable', no file data and metadata changes allowed even to the root user as
long as this attribute is set (obviously the exception is unsetting the attribute)

*S*::
'synchronous updates', for more details search `open`(2) for 'O_SYNC' and
'O_DSYNC'

*X*::
'no compression', permanently turn off compression on the given file, other
compression mount options will not affect that
+
When set on a directory, all newly created files will inherit this attribute.

No other attributes are supported.  For the complete list please refer to the
`chattr`(1) manual page.

SEE ALSO
--------
`acl`(5),
`btrfs`(8),
`chattr`(1),
`fstrim`(8),
`mkfs.btrfs`(8),
`mount`(8)