summaryrefslogtreecommitdiff
path: root/refclock.c
blob: 26193f6e6e4fd6207388dd115acad76777526cb2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
/*
  chronyd/chronyc - Programs for keeping computer clocks accurate.

 **********************************************************************
 * Copyright (C) Miroslav Lichvar  2009-2011, 2013-2014
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 * 
 **********************************************************************

  =======================================================================

  Routines implementing reference clocks.

  */

#include "config.h"

#include "array.h"
#include "refclock.h"
#include "reference.h"
#include "conf.h"
#include "local.h"
#include "memory.h"
#include "util.h"
#include "sources.h"
#include "logging.h"
#include "regress.h"
#include "sched.h"

/* list of refclock drivers */
extern RefclockDriver RCL_SHM_driver;
extern RefclockDriver RCL_SOCK_driver;
extern RefclockDriver RCL_PPS_driver;
extern RefclockDriver RCL_PHC_driver;

struct FilterSample {
  double offset;
  double dispersion;
  struct timeval sample_time;
};

struct MedianFilter {
  int length;
  int index;
  int used;
  int last;
  int avg_var_n;
  double avg_var;
  double max_var;
  struct FilterSample *samples;
  int *selected;
  double *x_data;
  double *y_data;
  double *w_data;
};

struct RCL_Instance_Record {
  RefclockDriver *driver;
  void *data;
  char *driver_parameter;
  int driver_parameter_length;
  int driver_poll;
  int driver_polled;
  int poll;
  int leap_status;
  int pps_rate;
  int pps_active;
  struct MedianFilter filter;
  uint32_t ref_id;
  uint32_t lock_ref;
  double offset;
  double delay;
  double precision;
  SCH_TimeoutID timeout_id;
  SRC_Instance source;
};

/* Array of RCL_Instance_Record */
static ARR_Instance refclocks;

static LOG_FileID logfileid;

static int valid_sample_time(RCL_Instance instance, struct timeval *tv);
static int pps_stratum(RCL_Instance instance, struct timeval *tv);
static void poll_timeout(void *arg);
static void slew_samples(struct timeval *raw, struct timeval *cooked, double dfreq,
             double doffset, LCL_ChangeType change_type, void *anything);
static void add_dispersion(double dispersion, void *anything);
static void log_sample(RCL_Instance instance, struct timeval *sample_time, int filtered, int pulse, double raw_offset, double cooked_offset, double dispersion);

static void filter_init(struct MedianFilter *filter, int length, double max_dispersion);
static void filter_fini(struct MedianFilter *filter);
static void filter_reset(struct MedianFilter *filter);
static double filter_get_avg_sample_dispersion(struct MedianFilter *filter);
static void filter_add_sample(struct MedianFilter *filter, struct timeval *sample_time, double offset, double dispersion);
static int filter_get_last_sample(struct MedianFilter *filter, struct timeval *sample_time, double *offset, double *dispersion);
static int filter_select_samples(struct MedianFilter *filter);
static int filter_get_sample(struct MedianFilter *filter, struct timeval *sample_time, double *offset, double *dispersion);
static void filter_slew_samples(struct MedianFilter *filter, struct timeval *when, double dfreq, double doffset);
static void filter_add_dispersion(struct MedianFilter *filter, double dispersion);

static RCL_Instance
get_refclock(unsigned int index)
{
  return (RCL_Instance)ARR_GetElement(refclocks, index);
}

void
RCL_Initialise(void)
{
  refclocks = ARR_CreateInstance(sizeof (struct RCL_Instance_Record));

  CNF_AddRefclocks();

  if (ARR_GetSize(refclocks) > 0) {
    LCL_AddParameterChangeHandler(slew_samples, NULL);
    LCL_AddDispersionNotifyHandler(add_dispersion, NULL);
  }

  logfileid = CNF_GetLogRefclocks() ? LOG_FileOpen("refclocks",
      "   Date (UTC) Time         Refid  DP L P  Raw offset   Cooked offset      Disp.")
    : -1;
}

void
RCL_Finalise(void)
{
  unsigned int i;

  for (i = 0; i < ARR_GetSize(refclocks); i++) {
    RCL_Instance inst = get_refclock(i);

    if (inst->driver->fini)
      inst->driver->fini(inst);

    filter_fini(&inst->filter);
    Free(inst->driver_parameter);
    SRC_DestroyInstance(inst->source);
  }

  if (ARR_GetSize(refclocks) > 0) {
    LCL_RemoveParameterChangeHandler(slew_samples, NULL);
    LCL_RemoveDispersionNotifyHandler(add_dispersion, NULL);
  }

  ARR_DestroyInstance(refclocks);
}

int
RCL_AddRefclock(RefclockParameters *params)
{
  int pps_source = 0;

  RCL_Instance inst = ARR_GetNewElement(refclocks);

  if (strcmp(params->driver_name, "SHM") == 0) {
    inst->driver = &RCL_SHM_driver;
    inst->precision = 1e-6;
  } else if (strcmp(params->driver_name, "SOCK") == 0) {
    inst->driver = &RCL_SOCK_driver;
    inst->precision = 1e-9;
    pps_source = 1;
  } else if (strcmp(params->driver_name, "PPS") == 0) {
    inst->driver = &RCL_PPS_driver;
    inst->precision = 1e-9;
    pps_source = 1;
  } else if (strcmp(params->driver_name, "PHC") == 0) {
    inst->driver = &RCL_PHC_driver;
    inst->precision = 1e-9;
  } else {
    LOG_FATAL(LOGF_Refclock, "unknown refclock driver %s", params->driver_name);
    return 0;
  }

  if (!inst->driver->init && !inst->driver->poll) {
    LOG_FATAL(LOGF_Refclock, "refclock driver %s is not compiled in", params->driver_name);
    return 0;
  }

  inst->data = NULL;
  inst->driver_parameter = params->driver_parameter;
  inst->driver_parameter_length = 0;
  inst->driver_poll = params->driver_poll;
  inst->poll = params->poll;
  inst->driver_polled = 0;
  inst->leap_status = LEAP_Normal;
  inst->pps_rate = params->pps_rate;
  inst->pps_active = 0;
  inst->lock_ref = params->lock_ref_id;
  inst->offset = params->offset;
  inst->delay = params->delay;
  if (params->precision > 0.0)
    inst->precision = params->precision;
  inst->timeout_id = -1;
  inst->source = NULL;

  if (inst->driver_parameter) {
    int i;

    inst->driver_parameter_length = strlen(inst->driver_parameter);
    for (i = 0; i < inst->driver_parameter_length; i++)
      if (inst->driver_parameter[i] == ':')
        inst->driver_parameter[i] = '\0';
  }

  if (pps_source) {
    if (inst->pps_rate < 1)
      inst->pps_rate = 1;
  } else {
    inst->pps_rate = 0;
  }

  if (params->ref_id)
    inst->ref_id = params->ref_id;
  else {
    unsigned char ref[5] = { 0, 0, 0, 0, 0 };
    unsigned int index = ARR_GetSize(refclocks) - 1;

    snprintf((char *)ref, sizeof (ref), "%3.3s", params->driver_name);
    ref[3] = index % 10 + '0';
    if (index >= 10)
      ref[2] = (index / 10) % 10 + '0';

    inst->ref_id = ref[0] << 24 | ref[1] << 16 | ref[2] << 8 | ref[3];
  }

  if (inst->driver->poll) {
    int max_samples;

    if (inst->driver_poll > inst->poll)
      inst->driver_poll = inst->poll;

    max_samples = 1 << (inst->poll - inst->driver_poll);
    if (max_samples < params->filter_length) {
      if (max_samples < 4) {
        LOG(LOGS_WARN, LOGF_Refclock, "Setting filter length for %s to %d",
            UTI_RefidToString(inst->ref_id), max_samples);
      }
      params->filter_length = max_samples;
    }
  }

  if (inst->driver->init)
    if (!inst->driver->init(inst)) {
      LOG_FATAL(LOGF_Refclock, "refclock %s initialisation failed", params->driver_name);
      return 0;
    }

  filter_init(&inst->filter, params->filter_length, params->max_dispersion);

  inst->source = SRC_CreateNewInstance(inst->ref_id, SRC_REFCLOCK, params->sel_option, NULL,
                                       params->min_samples, params->max_samples);

  DEBUG_LOG(LOGF_Refclock, "refclock %s refid=%s poll=%d dpoll=%d filter=%d",
      params->driver_name, UTI_RefidToString(inst->ref_id),
      inst->poll, inst->driver_poll, params->filter_length);

  Free(params->driver_name);

  return 1;
}

void
RCL_StartRefclocks(void)
{
  unsigned int i, j, n;

  n = ARR_GetSize(refclocks);

  for (i = 0; i < n; i++) {
    RCL_Instance inst = get_refclock(i);

    SRC_SetActive(inst->source);
    inst->timeout_id = SCH_AddTimeoutByDelay(0.0, poll_timeout, (void *)inst);

    if (inst->lock_ref) {
      /* Replace lock refid with index to refclocks */
      for (j = 0; j < n && get_refclock(j)->ref_id != inst->lock_ref; j++)
        ;
      inst->lock_ref = j < n ? j : -1;
    } else
      inst->lock_ref = -1;
  }
}

void
RCL_ReportSource(RPT_SourceReport *report, struct timeval *now)
{
  unsigned int i;
  uint32_t ref_id;

  assert(report->ip_addr.family == IPADDR_INET4);
  ref_id = report->ip_addr.addr.in4;

  for (i = 0; i < ARR_GetSize(refclocks); i++) {
    RCL_Instance inst = get_refclock(i);
    if (inst->ref_id == ref_id) {
      report->poll = inst->poll;
      report->mode = RPT_LOCAL_REFERENCE;
      break;
    }
  }
}

void
RCL_SetDriverData(RCL_Instance instance, void *data)
{
  instance->data = data;
}

void *
RCL_GetDriverData(RCL_Instance instance)
{
  return instance->data;
}

char *
RCL_GetDriverParameter(RCL_Instance instance)
{
  return instance->driver_parameter;
}

char *
RCL_GetDriverOption(RCL_Instance instance, char *name)
{
  char *s, *e;
  int n;

  s = instance->driver_parameter;
  e = s + instance->driver_parameter_length;
  n = strlen(name);

  while (1) {
    s += strlen(s) + 1;
    if (s >= e)
      break;
    if (!strncmp(name, s, n)) {
      if (s[n] == '=')
        return s + n + 1;
      if (s[n] == '\0')
        return s + n;
    }
  }

  return NULL;
}

int
RCL_AddSample(RCL_Instance instance, struct timeval *sample_time, double offset, int leap)
{
  double correction, dispersion;
  struct timeval cooked_time;

  LCL_GetOffsetCorrection(sample_time, &correction, &dispersion);
  UTI_AddDoubleToTimeval(sample_time, correction, &cooked_time);
  dispersion += instance->precision;

  /* Make sure the timestamp and offset provided by the driver are sane */
  if (!UTI_IsTimeOffsetSane(sample_time, offset) ||
      !valid_sample_time(instance, sample_time))
    return 0;

  filter_add_sample(&instance->filter, &cooked_time, offset - correction + instance->offset, dispersion);

  switch (leap) {
    case LEAP_Normal:
    case LEAP_InsertSecond:
    case LEAP_DeleteSecond:
      instance->leap_status = leap;
      break;
    default:
      instance->leap_status = LEAP_Unsynchronised;
      break;
  }

  instance->pps_active = 0;

  log_sample(instance, &cooked_time, 0, 0, offset, offset - correction + instance->offset, dispersion);

  /* for logging purposes */
  if (!instance->driver->poll)
    instance->driver_polled++;

  return 1;
}

int
RCL_AddPulse(RCL_Instance instance, struct timeval *pulse_time, double second)
{
  double correction, dispersion, offset;
  struct timeval cooked_time;
  int rate;
  NTP_Leap leap;

  leap = LEAP_Normal;
  LCL_GetOffsetCorrection(pulse_time, &correction, &dispersion);
  UTI_AddDoubleToTimeval(pulse_time, correction, &cooked_time);
  dispersion += instance->precision;

  if (!UTI_IsTimeOffsetSane(pulse_time, 0.0) ||
      !valid_sample_time(instance, pulse_time))
    return 0;

  rate = instance->pps_rate;
  assert(rate > 0);

  offset = -second - correction + instance->offset;

  /* Adjust the offset to [-0.5/rate, 0.5/rate) interval */
  offset -= (long)(offset * rate) / (double)rate;
  if (offset < -0.5 / rate)
    offset += 1.0 / rate;
  else if (offset >= 0.5 / rate)
    offset -= 1.0 / rate;

  if (instance->lock_ref != -1) {
    RCL_Instance lock_refclock;
    struct timeval ref_sample_time;
    double sample_diff, ref_offset, ref_dispersion, shift;

    lock_refclock = get_refclock(instance->lock_ref);

    if (!filter_get_last_sample(&lock_refclock->filter,
          &ref_sample_time, &ref_offset, &ref_dispersion)) {
      DEBUG_LOG(LOGF_Refclock, "refclock pulse ignored no ref sample");
      return 0;
    }

    ref_dispersion += filter_get_avg_sample_dispersion(&lock_refclock->filter);

    UTI_DiffTimevalsToDouble(&sample_diff, &cooked_time, &ref_sample_time);
    if (fabs(sample_diff) >= 2.0 / rate) {
      DEBUG_LOG(LOGF_Refclock, "refclock pulse ignored samplediff=%.9f",
          sample_diff);
      return 0;
    }

    /* Align the offset to the reference sample */
    if ((ref_offset - offset) >= 0.0)
      shift = (long)((ref_offset - offset) * rate + 0.5) / (double)rate;
    else
      shift = (long)((ref_offset - offset) * rate - 0.5) / (double)rate;

    offset += shift;

    if (fabs(ref_offset - offset) + ref_dispersion + dispersion >= 0.2 / rate) {
      DEBUG_LOG(LOGF_Refclock, "refclock pulse ignored offdiff=%.9f refdisp=%.9f disp=%.9f",
          ref_offset - offset, ref_dispersion, dispersion);
      return 0;
    }

    leap = lock_refclock->leap_status;

    DEBUG_LOG(LOGF_Refclock, "refclock pulse second=%.9f offset=%.9f offdiff=%.9f samplediff=%.9f",
        second, offset, ref_offset - offset, sample_diff);
  } else {
    struct timeval ref_time;
    int is_synchronised, stratum;
    double root_delay, root_dispersion, distance;
    uint32_t ref_id;

    /* Ignore the pulse if we are not well synchronized */

    REF_GetReferenceParams(&cooked_time, &is_synchronised, &leap, &stratum,
        &ref_id, &ref_time, &root_delay, &root_dispersion);
    distance = fabs(root_delay) / 2 + root_dispersion;

    if (!is_synchronised || distance >= 0.5 / rate) {
      DEBUG_LOG(LOGF_Refclock, "refclock pulse ignored second=%.9f sync=%d dist=%.9f",
          second, is_synchronised, distance);
      /* Drop also all stored samples */
      filter_reset(&instance->filter);
      return 0;
    }
  }

  filter_add_sample(&instance->filter, &cooked_time, offset, dispersion);
  instance->leap_status = leap;
  instance->pps_active = 1;

  log_sample(instance, &cooked_time, 0, 1, offset + correction - instance->offset, offset, dispersion);

  /* for logging purposes */
  if (!instance->driver->poll)
    instance->driver_polled++;

  return 1;
}

static int
valid_sample_time(RCL_Instance instance, struct timeval *tv)
{
  struct timeval raw_time;
  double diff;

  LCL_ReadRawTime(&raw_time);
  UTI_DiffTimevalsToDouble(&diff, &raw_time, tv);
  if (diff < 0.0 || diff > UTI_Log2ToDouble(instance->poll + 1)) {
    DEBUG_LOG(LOGF_Refclock, "%s refclock sample not valid age=%.6f tv=%s",
        UTI_RefidToString(instance->ref_id), diff, UTI_TimevalToString(tv));
    return 0;
  }
  return 1;
}

static int
pps_stratum(RCL_Instance instance, struct timeval *tv)
{
  struct timeval ref_time;
  int is_synchronised, stratum;
  unsigned int i;
  double root_delay, root_dispersion;
  NTP_Leap leap;
  uint32_t ref_id;
  RCL_Instance refclock;

  REF_GetReferenceParams(tv, &is_synchronised, &leap, &stratum,
      &ref_id, &ref_time, &root_delay, &root_dispersion);

  /* Don't change our stratum if local stratum is active
     or this is the current source */
  if (ref_id == instance->ref_id || REF_IsLocalActive())
    return stratum - 1;

  /* Or the current source is another PPS refclock */ 
  for (i = 0; i < ARR_GetSize(refclocks); i++) {
    refclock = get_refclock(i);
    if (refclock->ref_id == ref_id &&
        refclock->pps_active && refclock->lock_ref == -1)
      return stratum - 1;
  }

  return 0;
}

static void
poll_timeout(void *arg)
{
  int poll;

  RCL_Instance inst = (RCL_Instance)arg;

  poll = inst->poll;

  if (inst->driver->poll) {
    poll = inst->driver_poll;
    inst->driver->poll(inst);
    inst->driver_polled++;
  }
  
  if (!(inst->driver->poll && inst->driver_polled < (1 << (inst->poll - inst->driver_poll)))) {
    double offset, dispersion;
    struct timeval sample_time;
    int sample_ok, stratum;

    sample_ok = filter_get_sample(&inst->filter, &sample_time, &offset, &dispersion);
    inst->driver_polled = 0;

    if (sample_ok) {
      if (inst->pps_active && inst->lock_ref == -1)
        /* Handle special case when PPS is used with local stratum */
        stratum = pps_stratum(inst, &sample_time);
      else
        stratum = 0;

      SRC_UpdateReachability(inst->source, 1);
      SRC_AccumulateSample(inst->source, &sample_time, offset,
          inst->delay, dispersion, inst->delay, dispersion, stratum, inst->leap_status);
      SRC_SelectSource(inst->source);

      log_sample(inst, &sample_time, 1, 0, 0.0, offset, dispersion);
    } else {
      SRC_UpdateReachability(inst->source, 0);
    }
  }

  inst->timeout_id = SCH_AddTimeoutByDelay(UTI_Log2ToDouble(poll), poll_timeout, arg);
}

static void
slew_samples(struct timeval *raw, struct timeval *cooked, double dfreq,
             double doffset, LCL_ChangeType change_type, void *anything)
{
  unsigned int i;

  for (i = 0; i < ARR_GetSize(refclocks); i++) {
    if (change_type == LCL_ChangeUnknownStep)
      filter_reset(&get_refclock(i)->filter);
    else
      filter_slew_samples(&get_refclock(i)->filter, cooked, dfreq, doffset);
  }
}

static void
add_dispersion(double dispersion, void *anything)
{
  unsigned int i;

  for (i = 0; i < ARR_GetSize(refclocks); i++)
    filter_add_dispersion(&get_refclock(i)->filter, dispersion);
}

static void
log_sample(RCL_Instance instance, struct timeval *sample_time, int filtered, int pulse, double raw_offset, double cooked_offset, double dispersion)
{
  char sync_stats[4] = {'N', '+', '-', '?'};

  if (logfileid == -1)
    return;

  if (!filtered) {
    LOG_FileWrite(logfileid, "%s.%06d %-5s %3d %1c %1d %13.6e %13.6e %10.3e",
      UTI_TimeToLogForm(sample_time->tv_sec),
      (int)sample_time->tv_usec,
      UTI_RefidToString(instance->ref_id),
      instance->driver_polled,
      sync_stats[instance->leap_status],
      pulse,
      raw_offset,
      cooked_offset,
      dispersion);
  } else {
    LOG_FileWrite(logfileid, "%s.%06d %-5s   - %1c -       -       %13.6e %10.3e",
      UTI_TimeToLogForm(sample_time->tv_sec),
      (int)sample_time->tv_usec,
      UTI_RefidToString(instance->ref_id),
      sync_stats[instance->leap_status],
      cooked_offset,
      dispersion);
  }
}

static void
filter_init(struct MedianFilter *filter, int length, double max_dispersion)
{
  if (length < 1)
    length = 1;

  filter->length = length;
  filter->index = -1;
  filter->used = 0;
  filter->last = -1;
  /* set first estimate to system precision */
  filter->avg_var_n = 0;
  filter->avg_var = LCL_GetSysPrecisionAsQuantum() * LCL_GetSysPrecisionAsQuantum();
  filter->max_var = max_dispersion * max_dispersion;
  filter->samples = MallocArray(struct FilterSample, filter->length);
  filter->selected = MallocArray(int, filter->length);
  filter->x_data = MallocArray(double, filter->length);
  filter->y_data = MallocArray(double, filter->length);
  filter->w_data = MallocArray(double, filter->length);
}

static void
filter_fini(struct MedianFilter *filter)
{
  Free(filter->samples);
  Free(filter->selected);
  Free(filter->x_data);
  Free(filter->y_data);
  Free(filter->w_data);
}

static void
filter_reset(struct MedianFilter *filter)
{
  filter->index = -1;
  filter->used = 0;
}

static double
filter_get_avg_sample_dispersion(struct MedianFilter *filter)
{
  return sqrt(filter->avg_var);
}

static void
filter_add_sample(struct MedianFilter *filter, struct timeval *sample_time, double offset, double dispersion)
{
  filter->index++;
  filter->index %= filter->length;
  filter->last = filter->index;
  if (filter->used < filter->length)
    filter->used++;

  filter->samples[filter->index].sample_time = *sample_time;
  filter->samples[filter->index].offset = offset;
  filter->samples[filter->index].dispersion = dispersion;

  DEBUG_LOG(LOGF_Refclock, "filter sample %d t=%s offset=%.9f dispersion=%.9f",
      filter->index, UTI_TimevalToString(sample_time), offset, dispersion);
}

static int
filter_get_last_sample(struct MedianFilter *filter, struct timeval *sample_time, double *offset, double *dispersion)
{
  if (filter->last < 0)
    return 0;

  *sample_time = filter->samples[filter->last].sample_time;
  *offset = filter->samples[filter->last].offset;
  *dispersion = filter->samples[filter->last].dispersion;
  return 1;
}

static const struct FilterSample *tmp_sorted_array;

static int
sample_compare(const void *a, const void *b)
{
  const struct FilterSample *s1, *s2;

  s1 = &tmp_sorted_array[*(int *)a];
  s2 = &tmp_sorted_array[*(int *)b];

  if (s1->offset < s2->offset)
    return -1;
  else if (s1->offset > s2->offset)
    return 1;
  return 0;
}

int
filter_select_samples(struct MedianFilter *filter)
{
  int i, j, k, o, from, to, *selected;
  double min_dispersion;

  if (filter->used < 1)
    return 0;

  /* for lengths below 4 require full filter,
     for 4 and above require at least 4 samples */
  if ((filter->length < 4 && filter->used != filter->length) ||
      (filter->length >= 4 && filter->used < 4))
    return 0;

  selected = filter->selected;

  if (filter->used > 4) {
    /* select samples with dispersion better than 1.5 * minimum */

    for (i = 1, min_dispersion = filter->samples[0].dispersion; i < filter->used; i++) {
      if (min_dispersion > filter->samples[i].dispersion)
        min_dispersion = filter->samples[i].dispersion;
    }

    for (i = j = 0; i < filter->used; i++) {
      if (filter->samples[i].dispersion <= 1.5 * min_dispersion)
        selected[j++] = i;
    }
  } else {
    j = 0;
  }

  if (j < 4) {
    /* select all samples */

    for (j = 0; j < filter->used; j++)
      selected[j] = j;
  }

  /* and sort their indices by offset */
  tmp_sorted_array = filter->samples;
  qsort(selected, j, sizeof (int), sample_compare);

  /* select 60 percent of the samples closest to the median */ 
  if (j > 2) {
    from = j / 5;
    if (from < 1)
      from = 1;
    to = j - from;
  } else {
    from = 0;
    to = j;
  }

  /* mark unused samples and sort the rest from oldest to newest */

  o = filter->used - filter->index - 1;

  for (i = 0; i < from; i++)
    selected[i] = -1;
  for (; i < to; i++)
    selected[i] = (selected[i] + o) % filter->used;
  for (; i < filter->used; i++)
    selected[i] = -1;

  for (i = from; i < to; i++) {
    j = selected[i];
    selected[i] = -1;
    while (j != -1 && selected[j] != j) {
      k = selected[j];
      selected[j] = j;
      j = k;
    }
  }

  for (i = j = 0, k = -1; i < filter->used; i++) {
    if (selected[i] != -1)
      selected[j++] = (selected[i] + filter->used - o) % filter->used;
  }

  return j;
}

static int
filter_get_sample(struct MedianFilter *filter, struct timeval *sample_time, double *offset, double *dispersion)
{
  struct FilterSample *s, *ls;
  int i, n, dof;
  double x, y, d, e, var, prev_avg_var;

  n = filter_select_samples(filter);

  if (n < 1)
    return 0;

  ls = &filter->samples[filter->selected[n - 1]];

  /* prepare data */
  for (i = 0; i < n; i++) {
    s = &filter->samples[filter->selected[i]];

    UTI_DiffTimevalsToDouble(&filter->x_data[i], &s->sample_time, &ls->sample_time);
    filter->y_data[i] = s->offset;
    filter->w_data[i] = s->dispersion;
  }

  /* mean offset, sample time and sample dispersion */ 
  for (i = 0, x = y = e = 0.0; i < n; i++) {
    x += filter->x_data[i];
    y += filter->y_data[i];
    e += filter->w_data[i];
  }
  x /= n;
  y /= n;
  e /= n;

  if (n >= 4) {
    double b0, b1, s2, sb0, sb1;

    /* set y axis to the mean sample time */
    for (i = 0; i < n; i++)
      filter->x_data[i] -= x;

    /* make a linear fit and use the estimated standard deviation of intercept
       as dispersion */
    RGR_WeightedRegression(filter->x_data, filter->y_data, filter->w_data, n,
        &b0, &b1, &s2, &sb0, &sb1);
    var = s2;
    d = sb0;
    dof = n - 2;
  } else if (n >= 2) {
    for (i = 0, d = 0.0; i < n; i++)
      d += (filter->y_data[i] - y) * (filter->y_data[i] - y);
    var = d / (n - 1);
    d = sqrt(var);
    dof = n - 1;
  } else {
    var = filter->avg_var;
    d = sqrt(var);
    dof = 1;
  }

  /* avoid having zero dispersion */
  if (var < 1e-20) {
    var = 1e-20;
    d = sqrt(var);
  }

  /* drop the sample if variance is larger than allowed maximum */
  if (filter->max_var > 0.0 && var > filter->max_var) {
    DEBUG_LOG(LOGF_Refclock, "filter dispersion too large disp=%.9f max=%.9f",
        sqrt(var), sqrt(filter->max_var));
    return 0;
  }

  prev_avg_var = filter->avg_var;

  /* update exponential moving average of the variance */
  if (filter->avg_var_n > 50) {
    filter->avg_var += dof / (dof + 50.0) * (var - filter->avg_var);
  } else {
    filter->avg_var = (filter->avg_var * filter->avg_var_n + var * dof) /
      (dof + filter->avg_var_n);
    if (filter->avg_var_n == 0)
      prev_avg_var = filter->avg_var;
    filter->avg_var_n += dof;
  }

  /* reduce noise in sourcestats weights by using the long-term average
     instead of the estimated variance if it's not significantly lower */
  if (var * dof / RGR_GetChi2Coef(dof) < prev_avg_var)
    d = sqrt(filter->avg_var) * d / sqrt(var);

  if (d < e)
    d = e;

  UTI_AddDoubleToTimeval(&ls->sample_time, x, sample_time);
  *offset = y;
  *dispersion = d;

  filter_reset(filter);

  return 1;
}

static void
filter_slew_samples(struct MedianFilter *filter, struct timeval *when, double dfreq, double doffset)
{
  int i;
  double delta_time;
  struct timeval *sample;

  for (i = 0; i < filter->used; i++) {
    sample = &filter->samples[i].sample_time;
    UTI_AdjustTimeval(sample, when, sample, &delta_time, dfreq, doffset);
    filter->samples[i].offset -= delta_time;
  }
}

static void
filter_add_dispersion(struct MedianFilter *filter, double dispersion)
{
  int i;

  for (i = 0; i < filter->used; i++) {
    filter->samples[i].dispersion += dispersion;
  }
}