package de.lmu.ifi.dbs.elki.math.linearalgebra; /* This file is part of ELKI: Environment for Developing KDD-Applications Supported by Index-Structures Copyright (C) 2014 Ludwig-Maximilians-Universität München Lehr- und Forschungseinheit für Datenbanksysteme ELKI Development Team This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see . */ /** * LU Decomposition. *

* For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n unit * lower triangular matrix L, an n-by-n upper triangular matrix U, and a * permutation vector piv of length m so that A(piv,:) = L*U. If m < n, then * L is m-by-m and U is m-by-n. *

* The LU decompostion with pivoting always exists, even if the matrix is * singular, so the constructor will never fail. The primary use of the LU * decomposition is in the solution of square systems of simultaneous linear * equations. This will fail if isNonsingular() returns false. * * @apiviz.uses Matrix - - transforms */ public class LUDecomposition implements java.io.Serializable { /** * Serial version */ private static final long serialVersionUID = 1L; /** * Array for internal storage of decomposition. * * @serial internal array storage. */ private double[][] LU; /** * Row and column dimensions, and pivot sign. * * @serial column dimension. * @serial row dimension. * @serial pivot sign. */ private int m, n, pivsign; /** * Internal storage of pivot vector. * * @serial pivot vector. */ private int[] piv; /* * ------------------------ Constructor ------------------------ */ /** * LU Decomposition * * @param A Rectangular matrix */ public LUDecomposition(Matrix A) { this(A.getArrayCopy(), A.getRowDimensionality(), A.getColumnDimensionality()); } /** * LU Decomposition * * @param LU Rectangular matrix * @param m row dimensionality * @param n column dimensionality */ public LUDecomposition(double[][] LU, int m, int n) { this.LU = LU; this.m = m; this.n = n; // Use a "left-looking", dot-product, Crout/Doolittle algorithm. piv = new int[m]; for (int i = 0; i < m; i++) { piv[i] = i; } pivsign = 1; double[] LUrowi; double[] LUcolj = new double[m]; // Outer loop. for (int j = 0; j < n; j++) { // Make a copy of the j-th column to localize references. for (int i = 0; i < m; i++) { LUcolj[i] = LU[i][j]; } // Apply previous transformations. for (int i = 0; i < m; i++) { LUrowi = LU[i]; // Most of the time is spent in the following dot product. int kmax = Math.min(i, j); double s = 0.0; for (int k = 0; k < kmax; k++) { s += LUrowi[k] * LUcolj[k]; } LUrowi[j] = LUcolj[i] -= s; } // Find pivot and exchange if necessary. int p = j; for (int i = j + 1; i < m; i++) { if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) { p = i; } } if (p != j) { for (int k = 0; k < n; k++) { double t = LU[p][k]; LU[p][k] = LU[j][k]; LU[j][k] = t; } int k = piv[p]; piv[p] = piv[j]; piv[j] = k; pivsign = -pivsign; } // Compute multipliers. if (j < m && LU[j][j] != 0.0) { for (int i = j + 1; i < m; i++) { LU[i][j] /= LU[j][j]; } } } } /* * ------------------------ Public Methods ------------------------ */ /** * Is the matrix nonsingular? * * @return true if U, and hence A, is nonsingular. */ public boolean isNonsingular() { for (int j = 0; j < n; j++) { if (LU[j][j] == 0) { return false; } } return true; } /** * Return lower triangular factor * * @return L */ public Matrix getL() { Matrix X = new Matrix(m, n); double[][] L = X.getArrayRef(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (i > j) { L[i][j] = LU[i][j]; } else if (i == j) { L[i][j] = 1.0; } else { L[i][j] = 0.0; } } } return X; } /** * Return upper triangular factor * * @return U */ public Matrix getU() { Matrix X = new Matrix(n, n); double[][] U = X.getArrayRef(); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i <= j) { U[i][j] = LU[i][j]; } else { U[i][j] = 0.0; } } } return X; } /** * Return pivot permutation vector * * @return piv */ public int[] getPivot() { int[] p = new int[m]; System.arraycopy(piv, 0, p, 0, m); return p; } /** * Return pivot permutation vector as a one-dimensional double array * * @return (double) piv */ public double[] getDoublePivot() { double[] vals = new double[m]; for (int i = 0; i < m; i++) { vals[i] = (double) piv[i]; } return vals; } /** * Determinant * * @return det(A) * @exception IllegalArgumentException Matrix must be square */ public double det() { if (m != n) { throw new IllegalArgumentException("Matrix must be square."); } double d = pivsign; for (int j = 0; j < n; j++) { d *= LU[j][j]; } return d; } /** * Solve A*X = B * * @param B A Matrix with as many rows as A and any number of columns. * @return X so that L*U*X = B(piv,:) * @exception IllegalArgumentException Matrix row dimensions must agree. * @exception RuntimeException Matrix is singular. */ public Matrix solve(Matrix B) { if (B.getRowDimensionality() != m) { throw new IllegalArgumentException("Matrix row dimensions must agree."); } if (!this.isNonsingular()) { throw new RuntimeException("Matrix is singular."); } // Copy right hand side with pivoting int nx = B.getColumnDimensionality(); Matrix Xmat = B.getMatrix(piv, 0, nx - 1); double[][] X = Xmat.getArrayRef(); solveInplace(X, nx); return Xmat; } /** * Solve A*X = B * * @param B A Matrix with as many rows as A and any number of columns. * @return X so that L*U*X = B(piv,:) * @exception IllegalArgumentException Matrix row dimensions must agree. * @exception RuntimeException Matrix is singular. */ public double[][] solve(double[][] B) { int mx = B.length; int nx = B[0].length; if (mx != m) { throw new IllegalArgumentException("Matrix row dimensions must agree."); } if (!this.isNonsingular()) { throw new RuntimeException("Matrix is singular."); } double[][] Xmat = new Matrix(B).getMatrix(piv, 0, nx - 1).getArrayRef(); solveInplace(Xmat, nx); return Xmat; } /** * Solve A*X = B * * @param B A Matrix with as many rows as A and any number of columns. * @param nx Number of columns */ private void solveInplace(double[][] B, int nx) { // Solve L*Y = B(piv,:) for (int k = 0; k < n; k++) { for (int i = k + 1; i < n; i++) { for (int j = 0; j < nx; j++) { B[i][j] -= B[k][j] * LU[i][k]; } } } // Solve U*X = Y; for (int k = n - 1; k >= 0; k--) { for (int j = 0; j < nx; j++) { B[k][j] /= LU[k][k]; } for (int i = 0; i < k; i++) { for (int j = 0; j < nx; j++) { B[i][j] -= B[k][j] * LU[i][k]; } } } } }