summaryrefslogtreecommitdiff
path: root/src/shared/qsort_r_missing.c
diff options
context:
space:
mode:
authorSven Eden <sven.eden@prydeworx.com>2018-10-25 19:58:51 +0200
committerSven Eden <sven.eden@prydeworx.com>2018-11-08 08:02:57 +0100
commitcde7d9c8b5adaa8f7a05c4e32b60668da4499525 (patch)
tree1f82290a28540e4025085eb6f74127ed29655f1d /src/shared/qsort_r_missing.c
parent3bc7e320b47d360d54e77cda02a0f6aeae7bce19 (diff)
Prep v240: Add check for qsort_r() and the function if not provided.
As elogind supports musl-libc, we have to remedy the situation that upstream decided to make use of qsort_r(). This function is not provided by musl-libc, so we have to provide an own variant. The variant is an adaption of the qsort_r() algorithm found in glibc-2.28, the disclaimer from their source files have been added. Bug: #83 Signed-off-by: Sven Eden <sven.eden@prydeworx.com>
Diffstat (limited to 'src/shared/qsort_r_missing.c')
-rw-r--r--src/shared/qsort_r_missing.c499
1 files changed, 499 insertions, 0 deletions
diff --git a/src/shared/qsort_r_missing.c b/src/shared/qsort_r_missing.c
new file mode 100644
index 000000000..ae2e63225
--- /dev/null
+++ b/src/shared/qsort_r_missing.c
@@ -0,0 +1,499 @@
+/***
+ This file is part of elogind.
+
+ Copyright 2017-2018 Sven Eden
+
+ elogind is free software; you can redistribute it and/or modify it
+ under the terms of the GNU Lesser General Public License as published by
+ the Free Software Foundation; either version 2.1 of the License, or
+ (at your option) any later version.
+
+ elogind is distributed in the hope that it will be useful, but
+ WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public License
+ along with elogind; If not, see <http://www.gnu.org/licenses/>.
+***/
+
+#include <stdlib.h>
+
+#include "qsort_r_missing.h"
+
+#if HAVE_QSORT_R == 0
+
+#include <alloca.h>
+#include <errno.h>
+#include <limits.h>
+#include <stdint.h>
+#include <string.h>
+#include <unistd.h>
+
+/***
+ Original disclaimer of glibc-2.28 msort.c concerning qsort_r() follows:
+***/
+
+/* An alternative to qsort, with an identical interface.
+ This file is part of the GNU C Library.
+ Copyright (C) 1992-2018 Free Software Foundation, Inc.
+ Written by Mike Haertel, September 1988.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+
+/* qsort_r() calls internal _quicksort() function from qsort.c. Disclaimer is as above. */
+static void quicksort ( void* const pbase, size_t total_elems, size_t size, compare_fn_t cmp, void* arg );
+
+struct msort_param {
+ size_t s;
+ size_t var;
+ compare_fn_t cmp;
+ void* arg;
+ char* t;
+};
+
+static void msort_with_tmp ( const struct msort_param* p, void* b, size_t n ) {
+ char* b1, *b2;
+ size_t n1, n2;
+
+ if ( n <= 1 )
+ return;
+
+ n1 = n / 2;
+ n2 = n - n1;
+ b1 = b;
+ b2 = ( char* ) b + ( n1 * p->s );
+
+ msort_with_tmp ( p, b1, n1 );
+ msort_with_tmp ( p, b2, n2 );
+
+ char* tmp = p->t;
+ const size_t s = p->s;
+ __compar_d_fn_t cmp = p->cmp;
+ void* arg = p->arg;
+ switch ( p->var ) {
+ case 0:
+ while ( n1 > 0 && n2 > 0 ) {
+ if ( ( *cmp ) ( b1, b2, arg ) <= 0 ) {
+ *( uint32_t* ) tmp = *( uint32_t* ) b1;
+ b1 += sizeof ( uint32_t );
+ --n1;
+ } else {
+ *( uint32_t* ) tmp = *( uint32_t* ) b2;
+ b2 += sizeof ( uint32_t );
+ --n2;
+ }
+ tmp += sizeof ( uint32_t );
+ }
+ break;
+ case 1:
+ while ( n1 > 0 && n2 > 0 ) {
+ if ( ( *cmp ) ( b1, b2, arg ) <= 0 ) {
+ *( uint64_t* ) tmp = *( uint64_t* ) b1;
+ b1 += sizeof ( uint64_t );
+ --n1;
+ } else {
+ *( uint64_t* ) tmp = *( uint64_t* ) b2;
+ b2 += sizeof ( uint64_t );
+ --n2;
+ }
+ tmp += sizeof ( uint64_t );
+ }
+ break;
+ case 2:
+ while ( n1 > 0 && n2 > 0 ) {
+ unsigned long* tmpl = ( unsigned long* ) tmp;
+ unsigned long* bl;
+
+ tmp += s;
+ if ( ( *cmp ) ( b1, b2, arg ) <= 0 ) {
+ bl = ( unsigned long* ) b1;
+ b1 += s;
+ --n1;
+ } else {
+ bl = ( unsigned long* ) b2;
+ b2 += s;
+ --n2;
+ }
+ while ( tmpl < ( unsigned long* ) tmp )
+ *tmpl++ = *bl++;
+ }
+ break;
+ case 3:
+ while ( n1 > 0 && n2 > 0 ) {
+ if ( ( *cmp ) ( *( const void** ) b1, *( const void** ) b2, arg ) <= 0 ) {
+ *( void** ) tmp = *( void** ) b1;
+ b1 += sizeof ( void* );
+ --n1;
+ } else {
+ *( void** ) tmp = *( void** ) b2;
+ b2 += sizeof ( void* );
+ --n2;
+ }
+ tmp += sizeof ( void* );
+ }
+ break;
+ default:
+ while ( n1 > 0 && n2 > 0 ) {
+ if ( ( *cmp ) ( b1, b2, arg ) <= 0 ) {
+ tmp = ( char* ) memcpy ( tmp, b1, s );
+ b1 += s;
+ --n1;
+ } else {
+ tmp = ( char* ) memcpy ( tmp, b2, s );
+ b2 += s;
+ --n2;
+ }
+ }
+ break;
+ }
+
+ if ( n1 > 0 )
+ memcpy ( tmp, b1, n1 * s );
+ memcpy ( b, p->t, ( n - n2 ) * s );
+}
+
+void qsort_r ( void* b, size_t n, size_t s, compare_fn_t cmp, void* arg ) {
+ size_t size = n * s;
+ char* tmp = NULL;
+ struct msort_param p;
+
+ /* For large object sizes use indirect sorting. */
+ if ( s > 32 )
+ size = 2 * n * sizeof ( void* ) + s;
+
+ if ( size < 1024 )
+ /* The temporary array is small, so put it on the stack. */
+ p.t = alloca ( size );
+ else {
+ /* We should avoid allocating too much memory since this might
+ have to be backed up by swap space. */
+ static long int phys_pages;
+ static int pagesize;
+
+ if ( pagesize == 0 ) {
+ phys_pages = sysconf ( _SC_PHYS_PAGES );
+
+ if ( phys_pages == -1 )
+ /* Error while determining the memory size. So let's
+ assume there is enough memory. Otherwise the
+ implementer should provide a complete implementation of
+ the `sysconf' function. */
+ phys_pages = ( long int ) ( ~0ul >> 1 );
+
+ /* The following determines that we will never use more than
+ a quarter of the physical memory. */
+ phys_pages /= 4;
+
+ /* Make sure phys_pages is written to memory. */
+ __asm ( "" ::: "memory" ); /*atomic_write_barrier () */
+
+ pagesize = sysconf ( _SC_PAGESIZE );
+ }
+
+ /* Just a comment here. We cannot compute
+ phys_pages * pagesize
+ and compare the needed amount of memory against this value.
+ The problem is that some systems might have more physical
+ memory then can be represented with a `size_t' value (when
+ measured in bytes. */
+
+ /* If the memory requirements are too high don't allocate memory. */
+ if ( size / pagesize > ( size_t ) phys_pages ) {
+ quicksort ( b, n, s, cmp, arg );
+ return;
+ }
+
+ /* It's somewhat large, so malloc it. */
+ int save = errno;
+ tmp = malloc ( size );
+ errno = ( save );
+ if ( tmp == NULL ) {
+ /* Couldn't get space, so use the slower algorithm
+ that doesn't need a temporary array. */
+ quicksort ( b, n, s, cmp, arg );
+ return;
+ }
+ p.t = tmp;
+ }
+
+ p.s = s;
+ p.var = 4;
+ p.cmp = cmp;
+ p.arg = arg;
+
+ if ( s > 32 ) {
+ /* Indirect sorting. */
+ char* ip = ( char* ) b;
+ void** tp = ( void** ) ( p.t + n * sizeof ( void* ) );
+ void** t = tp;
+ void* tmp_storage = ( void* ) ( tp + n );
+
+ while ( ( void* ) t < tmp_storage ) {
+ *t++ = ip;
+ ip += s;
+ }
+ p.s = sizeof ( void* );
+ p.var = 3;
+ msort_with_tmp ( &p, p.t + n * sizeof ( void* ), n );
+
+ /* tp[0] .. tp[n - 1] is now sorted, copy around entries of
+ the original array. Knuth vol. 3 (2nd ed.) exercise 5.2-10. */
+ char* kp;
+ size_t i;
+ for ( i = 0, ip = ( char* ) b; i < n; i++, ip += s )
+ if ( ( kp = tp[i] ) != ip ) {
+ size_t j = i;
+ char* jp = ip;
+ memcpy ( tmp_storage, ip, s );
+
+ do {
+ size_t k = ( kp - ( char* ) b ) / s;
+ tp[j] = jp;
+ memcpy ( jp, kp, s );
+ j = k;
+ jp = kp;
+ kp = tp[k];
+ } while ( kp != ip );
+
+ tp[j] = jp;
+ memcpy ( jp, tmp_storage, s );
+ }
+ } else {
+ if ( ( s & ( sizeof ( uint32_t ) - 1 ) ) == 0
+ && ( ( char* ) b - ( char* ) 0 ) % __alignof__ ( uint32_t ) == 0 ) {
+ if ( s == sizeof ( uint32_t ) )
+ p.var = 0;
+ else if ( s == sizeof ( uint64_t )
+ && ( ( char* ) b - ( char* ) 0 ) % __alignof__ ( uint64_t ) == 0 )
+ p.var = 1;
+ else if ( ( s & ( sizeof ( unsigned long ) - 1 ) ) == 0
+ && ( ( char* ) b - ( char* ) 0 )
+ % __alignof__ ( unsigned long ) == 0 )
+ p.var = 2;
+ }
+ msort_with_tmp ( &p, b, n );
+ }
+ free ( tmp );
+}
+
+/**** quicksort from qsort.c follows ****/
+
+/* Byte-wise swap two items of size SIZE. */
+#define SWAP(a, b, size) \
+ do \
+ { \
+ size_t __size = (size); \
+ char *__a = (a), *__b = (b); \
+ do \
+ { \
+ char __tmp = *__a; \
+ *__a++ = *__b; \
+ *__b++ = __tmp; \
+ } while (--__size > 0); \
+ } while (0)
+
+/* Discontinue quicksort algorithm when partition gets below this size.
+ This particular magic number was chosen to work best on a Sun 4/260. */
+#define MAX_THRESH 4
+
+/* Stack node declarations used to store unfulfilled partition obligations. */
+typedef struct {
+ char* lo;
+ char* hi;
+} stack_node;
+
+/* The next 4 #defines implement a very fast in-line stack abstraction. */
+/* The stack needs log (total_elements) entries (we could even subtract
+ log(MAX_THRESH)). Since total_elements has type size_t, we get as
+ upper bound for log (total_elements):
+ bits per byte (CHAR_BIT) * sizeof(size_t). */
+#define STACK_SIZE (CHAR_BIT * sizeof(size_t))
+#define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
+#define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
+#define STACK_NOT_EMPTY (stack < top)
+
+/* Order size using quicksort. This implementation incorporates
+ four optimizations discussed in Sedgewick:
+
+ 1. Non-recursive, using an explicit stack of pointer that store the
+ next array partition to sort. To save time, this maximum amount
+ of space required to store an array of SIZE_MAX is allocated on the
+ stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
+ only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
+ Pretty cheap, actually.
+
+ 2. Chose the pivot element using a median-of-three decision tree.
+ This reduces the probability of selecting a bad pivot value and
+ eliminates certain extraneous comparisons.
+
+ 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
+ insertion sort to order the MAX_THRESH items within each partition.
+ This is a big win, since insertion sort is faster for small, mostly
+ sorted array segments.
+
+ 4. The larger of the two sub-partitions is always pushed onto the
+ stack first, with the algorithm then concentrating on the
+ smaller partition. This *guarantees* no more than log (total_elems)
+ stack size is needed (actually O(1) in this case)! */
+
+static void quicksort ( void* const pbase, size_t total_elems, size_t size, compare_fn_t cmp, void* arg ) {
+ char* base_ptr = ( char* ) pbase;
+
+ const size_t max_thresh = MAX_THRESH * size;
+
+ if ( total_elems == 0 )
+ /* Avoid lossage with unsigned arithmetic below. */
+ return;
+
+ if ( total_elems > MAX_THRESH ) {
+ char* lo = base_ptr;
+ char* hi = &lo[size * ( total_elems - 1 )];
+ stack_node stack[STACK_SIZE];
+ stack_node* top = stack;
+
+ PUSH ( NULL, NULL );
+
+ while ( STACK_NOT_EMPTY ) {
+ char* left_ptr;
+ char* right_ptr;
+
+ /* Select median value from among LO, MID, and HI. Rearrange
+ LO and HI so the three values are sorted. This lowers the
+ probability of picking a pathological pivot value and
+ skips a comparison for both the LEFT_PTR and RIGHT_PTR in
+ the while loops. */
+
+ char* mid = lo + size * ( ( hi - lo ) / size >> 1 );
+
+ if ( ( *cmp ) ( ( void* ) mid, ( void* ) lo, arg ) < 0 )
+ SWAP ( mid, lo, size );
+ if ( ( *cmp ) ( ( void* ) hi, ( void* ) mid, arg ) < 0 )
+ SWAP ( mid, hi, size );
+ else
+ goto jump_over;
+ if ( ( *cmp ) ( ( void* ) mid, ( void* ) lo, arg ) < 0 )
+ SWAP ( mid, lo, size );
+ jump_over:
+ ;
+
+ left_ptr = lo + size;
+ right_ptr = hi - size;
+
+ /* Here's the famous ``collapse the walls'' section of quicksort.
+ Gotta like those tight inner loops! They are the main reason
+ that this algorithm runs much faster than others. */
+ do {
+ while ( ( *cmp ) ( ( void* ) left_ptr, ( void* ) mid, arg ) < 0 )
+ left_ptr += size;
+
+ while ( ( *cmp ) ( ( void* ) mid, ( void* ) right_ptr, arg ) < 0 )
+ right_ptr -= size;
+
+ if ( left_ptr < right_ptr ) {
+ SWAP ( left_ptr, right_ptr, size );
+ if ( mid == left_ptr )
+ mid = right_ptr;
+ else if ( mid == right_ptr )
+ mid = left_ptr;
+ left_ptr += size;
+ right_ptr -= size;
+ } else if ( left_ptr == right_ptr ) {
+ left_ptr += size;
+ right_ptr -= size;
+ break;
+ }
+ } while ( left_ptr <= right_ptr );
+
+ /* Set up pointers for next iteration. First determine whether
+ left and right partitions are below the threshold size. If so,
+ ignore one or both. Otherwise, push the larger partition's
+ bounds on the stack and continue sorting the smaller one. */
+
+ if ( ( size_t ) ( right_ptr - lo ) <= max_thresh ) {
+ if ( ( size_t ) ( hi - left_ptr ) <= max_thresh )
+ /* Ignore both small partitions. */
+ POP ( lo, hi );
+ else
+ /* Ignore small left partition. */
+ lo = left_ptr;
+ } else if ( ( size_t ) ( hi - left_ptr ) <= max_thresh )
+ /* Ignore small right partition. */
+ hi = right_ptr;
+ else if ( ( right_ptr - lo ) > ( hi - left_ptr ) ) {
+ /* Push larger left partition indices. */
+ PUSH ( lo, right_ptr );
+ lo = left_ptr;
+ } else {
+ /* Push larger right partition indices. */
+ PUSH ( left_ptr, hi );
+ hi = right_ptr;
+ }
+ }
+ }
+
+ /* Once the BASE_PTR array is partially sorted by quicksort the rest
+ is completely sorted using insertion sort, since this is efficient
+ for partitions below MAX_THRESH size. BASE_PTR points to the beginning
+ of the array to sort, and END_PTR points at the very last element in
+ the array (*not* one beyond it!). */
+
+#define min(x, y) ((x) < (y) ? (x) : (y))
+
+ {
+ char* const end_ptr = &base_ptr[size * ( total_elems - 1 )];
+ char* tmp_ptr = base_ptr;
+ char* thresh = min( end_ptr, base_ptr + max_thresh );
+ char* run_ptr;
+
+ /* Find smallest element in first threshold and place it at the
+ array's beginning. This is the smallest array element,
+ and the operation speeds up insertion sort's inner loop. */
+
+ for ( run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size )
+ if ( ( *cmp ) ( ( void* ) run_ptr, ( void* ) tmp_ptr, arg ) < 0 )
+ tmp_ptr = run_ptr;
+
+ if ( tmp_ptr != base_ptr )
+ SWAP ( tmp_ptr, base_ptr, size );
+
+ /* Insertion sort, running from left-hand-side up to right-hand-side. */
+
+ run_ptr = base_ptr + size;
+ while ( ( run_ptr += size ) <= end_ptr ) {
+ tmp_ptr = run_ptr - size;
+ while ( ( *cmp ) ( ( void* ) run_ptr, ( void* ) tmp_ptr, arg ) < 0 )
+ tmp_ptr -= size;
+
+ tmp_ptr += size;
+ if ( tmp_ptr != run_ptr ) {
+ char* trav;
+
+ trav = run_ptr + size;
+ while ( --trav >= run_ptr ) {
+ char c = *trav;
+ char* hi, *lo;
+
+ for ( hi = lo = trav; ( lo -= size ) >= tmp_ptr; hi = lo )
+ * hi = *lo;
+ *hi = c;
+ }
+ }
+ }
+ }
+}
+
+#endif // HAVE_QSORT_R