/* SPDX-License-Identifier: LGPL-2.1+ */ #include #include #include //#include #include //#include #include #include #include #if HAVE_SYS_AUXV_H # include #endif #if USE_SYS_RANDOM_H # include #else # include #endif #include "fd-util.h" #include "io-util.h" #include "missing.h" #include "random-util.h" #include "time-util.h" int acquire_random_bytes(void *p, size_t n, bool high_quality_required) { static int have_syscall = -1; _cleanup_close_ int fd = -1; size_t already_done = 0; int r; /* Gathers some randomness from the kernel. This call will never block. If * high_quality_required, it will always return some data from the kernel, * regardless of whether the random pool is fully initialized or not. * Otherwise, it will return success if at least some random bytes were * successfully acquired, and an error if the kernel has no entropy whatsover * for us. */ /* Use the getrandom() syscall unless we know we don't have it. */ if (have_syscall != 0 && !HAS_FEATURE_MEMORY_SANITIZER) { r = getrandom(p, n, GRND_NONBLOCK); if (r > 0) { have_syscall = true; if ((size_t) r == n) return 0; if (!high_quality_required) { /* Fill in the remaining bytes using pseudorandom values */ pseudorandom_bytes((uint8_t*) p + r, n - r); return 0; } already_done = r; } else if (errno == ENOSYS) /* We lack the syscall, continue with reading from /dev/urandom. */ have_syscall = false; else if (errno == EAGAIN) { /* The kernel has no entropy whatsoever. Let's remember to * use the syscall the next time again though. * * If high_quality_required is false, return an error so that * random_bytes() can produce some pseudorandom * bytes. Otherwise, fall back to /dev/urandom, which we know * is empty, but the kernel will produce some bytes for us on * a best-effort basis. */ have_syscall = true; if (!high_quality_required) return -ENODATA; } else return -errno; } fd = open("/dev/urandom", O_RDONLY|O_CLOEXEC|O_NOCTTY); if (fd < 0) return errno == ENOENT ? -ENOSYS : -errno; return loop_read_exact(fd, (uint8_t*) p + already_done, n - already_done, true); } void initialize_srand(void) { static bool srand_called = false; unsigned x; #if HAVE_SYS_AUXV_H void *auxv; #endif if (srand_called) return; #if HAVE_SYS_AUXV_H /* The kernel provides us with 16 bytes of entropy in auxv, so let's * try to make use of that to seed the pseudo-random generator. It's * better than nothing... */ auxv = (void*) getauxval(AT_RANDOM); if (auxv) { assert_cc(sizeof(x) <= 16); memcpy(&x, auxv, sizeof(x)); } else #endif x = 0; x ^= (unsigned) now(CLOCK_REALTIME); x ^= (unsigned) gettid(); srand(x); srand_called = true; } /* INT_MAX gives us only 31 bits, so use 24 out of that. */ #if RAND_MAX >= INT_MAX # define RAND_STEP 3 #else /* SHORT_INT_MAX or lower gives at most 15 bits, we just just 8 out of that. */ # define RAND_STEP 1 #endif void pseudorandom_bytes(void *p, size_t n) { uint8_t *q; initialize_srand(); for (q = p; q < (uint8_t*) p + n; q += RAND_STEP) { unsigned rr; rr = (unsigned) rand(); #if RAND_STEP >= 3 if ((size_t) (q - (uint8_t*) p + 2) < n) q[2] = rr >> 16; #endif #if RAND_STEP >= 2 if ((size_t) (q - (uint8_t*) p + 1) < n) q[1] = rr >> 8; #endif q[0] = rr; } } void random_bytes(void *p, size_t n) { int r; r = acquire_random_bytes(p, n, false); if (r >= 0) return; /* If some idiot made /dev/urandom unavailable to us, or the * kernel has no entropy, use a PRNG instead. */ return pseudorandom_bytes(p, n); }