/* SPDX-License-Identifier: LGPL-2.1+ */ /*** This file is part of systemd. Copyright 2010 Lennart Poettering ***/ #include //#include //#include #include //#include //#include //#include #include //#include //#include #include #include #include //#include //#include #include "alloc-util.h" //#include "btrfs-util.h" #include "build.h" #include "cgroup-util.h" //#include "def.h" //#include "device-nodes.h" #include "dirent-util.h" #include "fd-util.h" #include "fileio.h" //#include "format-util.h" #include "hashmap.h" #include "hostname-util.h" //#include "log.h" #include "macro.h" //#include "missing.h" #include "parse-util.h" //#include "path-util.h" #include "process-util.h" #include "procfs-util.h" #include "set.h" #include "signal-util.h" #include "stat-util.h" #include "string-util.h" #include "strv.h" #include "time-util.h" #include "umask-util.h" #include "user-util.h" #include "util.h" //#include "virt.h" int saved_argc = 0; char **saved_argv = NULL; static int saved_in_initrd = -1; size_t page_size(void) { static thread_local size_t pgsz = 0; long r; if (_likely_(pgsz > 0)) return pgsz; r = sysconf(_SC_PAGESIZE); assert(r > 0); pgsz = (size_t) r; return pgsz; } #if 0 /// UNNEEDED by elogind bool plymouth_running(void) { return access("/run/plymouth/pid", F_OK) >= 0; } #endif // 0 bool display_is_local(const char *display) { assert(display); return display[0] == ':' && display[1] >= '0' && display[1] <= '9'; } int socket_from_display(const char *display, char **path) { size_t k; char *f, *c; assert(display); assert(path); if (!display_is_local(display)) return -EINVAL; k = strspn(display+1, "0123456789"); f = new(char, STRLEN("/tmp/.X11-unix/X") + k + 1); if (!f) return -ENOMEM; c = stpcpy(f, "/tmp/.X11-unix/X"); memcpy(c, display+1, k); c[k] = 0; *path = f; return 0; } #if 0 /// UNNEEDED by elogind bool kexec_loaded(void) { _cleanup_free_ char *s = NULL; if (read_one_line_file("/sys/kernel/kexec_loaded", &s) < 0) return false; return s[0] == '1'; } int prot_from_flags(int flags) { switch (flags & O_ACCMODE) { case O_RDONLY: return PROT_READ; case O_WRONLY: return PROT_WRITE; case O_RDWR: return PROT_READ|PROT_WRITE; default: return -EINVAL; } } #endif // 0 bool in_initrd(void) { struct statfs s; if (saved_in_initrd >= 0) return saved_in_initrd; /* We make two checks here: * * 1. the flag file /etc/initrd-release must exist * 2. the root file system must be a memory file system * * The second check is extra paranoia, since misdetecting an * initrd can have bad consequences due the initrd * emptying when transititioning to the main systemd. */ saved_in_initrd = access("/etc/initrd-release", F_OK) >= 0 && statfs("/", &s) >= 0 && is_temporary_fs(&s); return saved_in_initrd; } #if 0 /// UNNEEDED by elogind void in_initrd_force(bool value) { saved_in_initrd = value; } /* hey glibc, APIs with callbacks without a user pointer are so useless */ void *xbsearch_r(const void *key, const void *base, size_t nmemb, size_t size, int (*compar) (const void *, const void *, void *), void *arg) { size_t l, u, idx; const void *p; int comparison; assert(!size_multiply_overflow(nmemb, size)); l = 0; u = nmemb; while (l < u) { idx = (l + u) / 2; p = (const uint8_t*) base + idx * size; comparison = compar(key, p, arg); if (comparison < 0) u = idx; else if (comparison > 0) l = idx + 1; else return (void *)p; } return NULL; } #endif // 0 int on_ac_power(void) { bool found_offline = false, found_online = false; _cleanup_closedir_ DIR *d = NULL; struct dirent *de; d = opendir("/sys/class/power_supply"); if (!d) return errno == ENOENT ? true : -errno; FOREACH_DIRENT(de, d, return -errno) { _cleanup_close_ int fd = -1, device = -1; char contents[6]; ssize_t n; device = openat(dirfd(d), de->d_name, O_DIRECTORY|O_RDONLY|O_CLOEXEC|O_NOCTTY); if (device < 0) { if (IN_SET(errno, ENOENT, ENOTDIR)) continue; return -errno; } fd = openat(device, "type", O_RDONLY|O_CLOEXEC|O_NOCTTY); if (fd < 0) { if (errno == ENOENT) continue; return -errno; } n = read(fd, contents, sizeof(contents)); if (n < 0) return -errno; if (n != 6 || memcmp(contents, "Mains\n", 6)) continue; safe_close(fd); fd = openat(device, "online", O_RDONLY|O_CLOEXEC|O_NOCTTY); if (fd < 0) { if (errno == ENOENT) continue; return -errno; } n = read(fd, contents, sizeof(contents)); if (n < 0) return -errno; if (n != 2 || contents[1] != '\n') return -EIO; if (contents[0] == '1') { found_online = true; break; } else if (contents[0] == '0') found_offline = true; else return -EIO; } return found_online || !found_offline; } int container_get_leader(const char *machine, pid_t *pid) { _cleanup_free_ char *s = NULL, *class = NULL; const char *p; pid_t leader; int r; assert(machine); assert(pid); if (!machine_name_is_valid(machine)) return -EINVAL; p = strjoina("/run/systemd/machines/", machine); r = parse_env_file(NULL, p, NEWLINE, "LEADER", &s, "CLASS", &class, NULL); if (r == -ENOENT) return -EHOSTDOWN; if (r < 0) return r; if (!s) return -EIO; if (!streq_ptr(class, "container")) return -EIO; r = parse_pid(s, &leader); if (r < 0) return r; if (leader <= 1) return -EIO; *pid = leader; return 0; } int namespace_open(pid_t pid, int *pidns_fd, int *mntns_fd, int *netns_fd, int *userns_fd, int *root_fd) { _cleanup_close_ int pidnsfd = -1, mntnsfd = -1, netnsfd = -1, usernsfd = -1; int rfd = -1; assert(pid >= 0); if (mntns_fd) { const char *mntns; mntns = procfs_file_alloca(pid, "ns/mnt"); mntnsfd = open(mntns, O_RDONLY|O_NOCTTY|O_CLOEXEC); if (mntnsfd < 0) return -errno; } if (pidns_fd) { const char *pidns; pidns = procfs_file_alloca(pid, "ns/pid"); pidnsfd = open(pidns, O_RDONLY|O_NOCTTY|O_CLOEXEC); if (pidnsfd < 0) return -errno; } if (netns_fd) { const char *netns; netns = procfs_file_alloca(pid, "ns/net"); netnsfd = open(netns, O_RDONLY|O_NOCTTY|O_CLOEXEC); if (netnsfd < 0) return -errno; } if (userns_fd) { const char *userns; userns = procfs_file_alloca(pid, "ns/user"); usernsfd = open(userns, O_RDONLY|O_NOCTTY|O_CLOEXEC); if (usernsfd < 0 && errno != ENOENT) return -errno; } if (root_fd) { const char *root; root = procfs_file_alloca(pid, "root"); rfd = open(root, O_RDONLY|O_NOCTTY|O_CLOEXEC|O_DIRECTORY); if (rfd < 0) return -errno; } if (pidns_fd) *pidns_fd = pidnsfd; if (mntns_fd) *mntns_fd = mntnsfd; if (netns_fd) *netns_fd = netnsfd; if (userns_fd) *userns_fd = usernsfd; if (root_fd) *root_fd = rfd; pidnsfd = mntnsfd = netnsfd = usernsfd = -1; return 0; } int namespace_enter(int pidns_fd, int mntns_fd, int netns_fd, int userns_fd, int root_fd) { if (userns_fd >= 0) { /* Can't setns to your own userns, since then you could * escalate from non-root to root in your own namespace, so * check if namespaces equal before attempting to enter. */ _cleanup_free_ char *userns_fd_path = NULL; int r; if (asprintf(&userns_fd_path, "/proc/self/fd/%d", userns_fd) < 0) return -ENOMEM; r = files_same(userns_fd_path, "/proc/self/ns/user", 0); if (r < 0) return r; if (r) userns_fd = -1; } if (pidns_fd >= 0) if (setns(pidns_fd, CLONE_NEWPID) < 0) return -errno; if (mntns_fd >= 0) if (setns(mntns_fd, CLONE_NEWNS) < 0) return -errno; if (netns_fd >= 0) if (setns(netns_fd, CLONE_NEWNET) < 0) return -errno; if (userns_fd >= 0) if (setns(userns_fd, CLONE_NEWUSER) < 0) return -errno; if (root_fd >= 0) { if (fchdir(root_fd) < 0) return -errno; if (chroot(".") < 0) return -errno; } return reset_uid_gid(); } uint64_t physical_memory(void) { _cleanup_free_ char *root = NULL, *value = NULL; uint64_t mem, lim; size_t ps; long sc; int r; /* We return this as uint64_t in case we are running as 32bit process on a 64bit kernel with huge amounts of * memory. * * In order to support containers nicely that have a configured memory limit we'll take the minimum of the * physically reported amount of memory and the limit configured for the root cgroup, if there is any. */ sc = sysconf(_SC_PHYS_PAGES); assert(sc > 0); ps = page_size(); mem = (uint64_t) sc * (uint64_t) ps; r = cg_get_root_path(&root); if (r < 0) { log_debug_errno(r, "Failed to determine root cgroup, ignoring cgroup memory limit: %m"); return mem; } r = cg_all_unified(); if (r < 0) { log_debug_errno(r, "Failed to determine root unified mode, ignoring cgroup memory limit: %m"); return mem; } if (r > 0) { r = cg_get_attribute("memory", root, "memory.max", &value); if (r < 0) { log_debug_errno(r, "Failed to read memory.max cgroup attribute, ignoring cgroup memory limit: %m"); return mem; } if (streq(value, "max")) return mem; } else { r = cg_get_attribute("memory", root, "memory.limit_in_bytes", &value); if (r < 0) { log_debug_errno(r, "Failed to read memory.limit_in_bytes cgroup attribute, ignoring cgroup memory limit: %m"); return mem; } } r = safe_atou64(value, &lim); if (r < 0) { log_debug_errno(r, "Failed to parse cgroup memory limit '%s', ignoring: %m", value); return mem; } if (lim == UINT64_MAX) return mem; /* Make sure the limit is a multiple of our own page size */ lim /= ps; lim *= ps; return MIN(mem, lim); } uint64_t physical_memory_scale(uint64_t v, uint64_t max) { uint64_t p, m, ps, r; assert(max > 0); /* Returns the physical memory size, multiplied by v divided by max. Returns UINT64_MAX on overflow. On success * the result is a multiple of the page size (rounds down). */ ps = page_size(); assert(ps > 0); p = physical_memory() / ps; assert(p > 0); m = p * v; if (m / p != v) return UINT64_MAX; m /= max; r = m * ps; if (r / ps != m) return UINT64_MAX; return r; } uint64_t system_tasks_max(void) { uint64_t a = TASKS_MAX, b = TASKS_MAX; _cleanup_free_ char *root = NULL; int r; /* Determine the maximum number of tasks that may run on this system. We check three sources to determine this * limit: * * a) the maximum tasks value the kernel allows on this architecture * b) the cgroups pids_max attribute for the system * c) the kernel's configured maximum PID value * * And then pick the smallest of the three */ r = procfs_tasks_get_limit(&a); if (r < 0) log_debug_errno(r, "Failed to read maximum number of tasks from /proc, ignoring: %m"); r = cg_get_root_path(&root); if (r < 0) log_debug_errno(r, "Failed to determine cgroup root path, ignoring: %m"); else { _cleanup_free_ char *value = NULL; r = cg_get_attribute("pids", root, "pids.max", &value); if (r < 0) log_debug_errno(r, "Failed to read pids.max attribute of cgroup root, ignoring: %m"); else if (!streq(value, "max")) { r = safe_atou64(value, &b); if (r < 0) log_debug_errno(r, "Failed to parse pids.max attribute of cgroup root, ignoring: %m"); } } return MIN3(TASKS_MAX, a <= 0 ? TASKS_MAX : a, b <= 0 ? TASKS_MAX : b); } uint64_t system_tasks_max_scale(uint64_t v, uint64_t max) { uint64_t t, m; assert(max > 0); /* Multiply the system's task value by the fraction v/max. Hence, if max==100 this calculates percentages * relative to the system's maximum number of tasks. Returns UINT64_MAX on overflow. */ t = system_tasks_max(); assert(t > 0); m = t * v; if (m / t != v) /* overflow? */ return UINT64_MAX; return m / max; } int version(void) { puts(PACKAGE_STRING "\n" SYSTEMD_FEATURES); return 0; } #if 0 /// UNNEEDED by elogind /* This is a direct translation of str_verscmp from boot.c */ static bool is_digit(int c) { return c >= '0' && c <= '9'; } static int c_order(int c) { if (c == 0 || is_digit(c)) return 0; if ((c >= 'a') && (c <= 'z')) return c; return c + 0x10000; } int str_verscmp(const char *s1, const char *s2) { const char *os1, *os2; assert(s1); assert(s2); os1 = s1; os2 = s2; while (*s1 || *s2) { int first; while ((*s1 && !is_digit(*s1)) || (*s2 && !is_digit(*s2))) { int order; order = c_order(*s1) - c_order(*s2); if (order != 0) return order; s1++; s2++; } while (*s1 == '0') s1++; while (*s2 == '0') s2++; first = 0; while (is_digit(*s1) && is_digit(*s2)) { if (first == 0) first = *s1 - *s2; s1++; s2++; } if (is_digit(*s1)) return 1; if (is_digit(*s2)) return -1; if (first != 0) return first; } return strcmp(os1, os2); } /* Turn off core dumps but only if we're running outside of a container. */ void disable_coredumps(void) { int r; if (detect_container() > 0) return; r = write_string_file("/proc/sys/kernel/core_pattern", "|/bin/false", 0); if (r < 0) log_debug_errno(r, "Failed to turn off coredumps, ignoring: %m"); } #endif // 0