summaryrefslogtreecommitdiff
path: root/nfa.c
diff options
context:
space:
mode:
authorVern Paxson <vern@ee.lbl.gov>1987-11-08 22:24:44 +0000
committerVern Paxson <vern@ee.lbl.gov>1987-11-08 22:24:44 +0000
commit2cc578462372baa1b85936749946608d7f36415f (patch)
treeb103972512328042bbc4e7541616e88369619b2c /nfa.c
Initial revision
Diffstat (limited to 'nfa.c')
-rw-r--r--nfa.c542
1 files changed, 542 insertions, 0 deletions
diff --git a/nfa.c b/nfa.c
new file mode 100644
index 0000000..d514ce1
--- /dev/null
+++ b/nfa.c
@@ -0,0 +1,542 @@
+/* lexnfa - NFA construction routines */
+
+/*
+ * Copyright (c) University of California, 1987
+ */
+
+#include "flexdef.h"
+
+/* add_accept - add an accepting state to a machine
+ *
+ * synopsis
+ *
+ * add_accept( mach, headcnt, trailcnt );
+ *
+ * the global ACCNUM is incremented and the new value becomes mach's
+ * accepting number. if headcnt or trailcnt is non-zero then the machine
+ * recognizes a pattern with trailing context. headcnt is the number of
+ * characters in the matched part of the pattern, or zero if the matched
+ * part has variable length. trailcnt is the number of trailing context
+ * characters in the pattern, or zero if the trailing context has variable
+ * length.
+ */
+add_accept( mach, headcnt, trailcnt )
+int mach, headcnt, trailcnt;
+
+ {
+ int astate;
+
+ printf( "case %d:\n", ++accnum );
+
+ if ( headcnt > 0 || trailcnt > 0 )
+ { /* do trailing context magic to not match the trailing characters */
+ printf( "YYDOBEFORESCAN; /* undo effects of setting up yytext */\n" );
+
+ if ( headcnt > 0 )
+ {
+ if ( ! genftl || headcnt > 1 )
+ printf( "yycbufp = yybbufp + %d;\n",
+ genftl ? headcnt - 1 : headcnt );
+ else
+ printf( "yycbufp = yybbufp;\n" );
+ }
+
+ else
+ printf( "yycbufp -= %d;\n", trailcnt );
+
+ printf( "YYDOBEFOREACTION; /* set up yytext again */\n" );
+ }
+
+ line_directive_out();
+
+ /* hang the accepting number off an epsilon state. if it is associated
+ * with a state that has a non-epsilon out-transition, then the state
+ * will accept BEFORE it makes that transition, i.e. one character too soon
+ */
+
+ if ( transchar[finalst[mach]] == SYM_EPSILON )
+ accptnum[finalst[mach]] = accnum;
+
+ else
+ {
+ astate = mkstate( SYM_EPSILON );
+ accptnum[astate] = accnum;
+ mach = link_machines( mach, astate );
+ }
+ }
+
+
+/* copysingl - make a given number of copies of a singleton machine
+ *
+ * synopsis
+ *
+ * newsng = copysingl( singl, num );
+ *
+ * newsng - a new singleton composed of num copies of singl
+ * singl - a singleton machine
+ * num - the number of copies of singl to be present in newsng
+ */
+int copysingl( singl, num )
+int singl, num;
+
+ {
+ int copy, i;
+
+ copy = mkstate( SYM_EPSILON );
+
+ for ( i = 1; i <= num; ++i )
+ copy = link_machines( copy, dupmachine( singl ) );
+
+ return ( copy );
+ }
+
+
+/* dumpnfa - debugging routine to write out an nfa
+ *
+ * synopsis
+ * int state1;
+ * dumpnfa( state1 );
+ */
+dumpnfa( state1 )
+int state1;
+
+ {
+ int sym, tsp1, tsp2, anum, ns;
+
+ fprintf( stderr, "\n\n********** beginning dump of nfa with start state %d\n",
+ state1 );
+
+ /* we probably should loop starting at firstst[state1] and going to
+ * lastst[state1], but they're not maintained properly when we "or"
+ * all of the rules together. So we use our knowledge that the machine
+ * starts at state 1 and ends at lastnfa.
+ */
+
+ /* for ( ns = firstst[state1]; ns <= lastst[state1]; ++ns ) */
+ for ( ns = 1; ns <= lastnfa; ++ns )
+ {
+ fprintf( stderr, "state # %4d\t", ns );
+
+ sym = transchar[ns];
+ tsp1 = trans1[ns];
+ tsp2 = trans2[ns];
+ anum = accptnum[ns];
+
+ fprintf( stderr, "%3d: %4d, %4d", sym, tsp1, tsp2 );
+
+ if ( anum != NIL )
+ fprintf( stderr, " [%d]", anum );
+
+ fprintf( stderr, "\n" );
+ }
+
+ fprintf( stderr, "********** end of dump\n" );
+ }
+
+
+/* dupmachine - make a duplicate of a given machine
+ *
+ * synopsis
+ *
+ * copy = dupmachine( mach );
+ *
+ * copy - holds duplicate of mach
+ * mach - machine to be duplicated
+ *
+ * note that the copy of mach is NOT an exact duplicate; rather, all the
+ * transition states values are adjusted so that the copy is self-contained,
+ * as the original should have been.
+ *
+ * also note that the original MUST be contiguous, with its low and high
+ * states accessible by the arrays firstst and lastst
+ */
+int dupmachine( mach )
+int mach;
+
+ {
+ int i, state, init, last = lastst[mach], state_offset;
+
+ for ( i = firstst[mach]; i <= last; ++i )
+ {
+ state = mkstate( transchar[i] );
+
+ if ( trans1[i] != NO_TRANSITION )
+ {
+ mkxtion( finalst[state], trans1[i] + state - i );
+
+ if ( transchar[i] == SYM_EPSILON && trans2[i] != NO_TRANSITION )
+ mkxtion( finalst[state], trans2[i] + state - i );
+ }
+
+ accptnum[state] = accptnum[i];
+ }
+
+ state_offset = state - i + 1;
+
+ init = mach + state_offset;
+ firstst[init] = firstst[mach] + state_offset;
+ finalst[init] = finalst[mach] + state_offset;
+ lastst[init] = lastst[mach] + state_offset;
+
+ return ( init );
+ }
+
+
+/* link_machines - connect two machines together
+ *
+ * synopsis
+ *
+ * new = link_machines( first, last );
+ *
+ * new - a machine constructed by connecting first to last
+ * first - the machine whose successor is to be last
+ * last - the machine whose predecessor is to be first
+ *
+ * note: this routine concatenates the machine first with the machine
+ * last to produce a machine new which will pattern-match first first
+ * and then last, and will fail if either of the sub-patterns fails.
+ * FIRST is set to new by the operation. last is unmolested.
+ */
+int link_machines( first, last )
+int first, last;
+
+ {
+ if ( first == NIL )
+ return ( last );
+
+ else if ( last == NIL )
+ return ( first );
+
+ else
+ {
+ mkxtion( finalst[first], last );
+ finalst[first] = finalst[last];
+ lastst[first] = max( lastst[first], lastst[last] );
+ firstst[first] = min( firstst[first], firstst[last] );
+
+ return ( first );
+ }
+ }
+
+
+/* mkbranch - make a machine that branches to two machines
+ *
+ * synopsis
+ *
+ * branch = mkbranch( first, second );
+ *
+ * branch - a machine which matches either first's pattern or second's
+ * first, second - machines whose patterns are to be or'ed (the | operator)
+ *
+ * note that first and second are NEITHER destroyed by the operation. Also,
+ * the resulting machine CANNOT be used with any other "mk" operation except
+ * more mkbranch's. Compare with mkor()
+ */
+int mkbranch( first, second )
+int first, second;
+
+ {
+ int eps;
+
+ if ( first == NO_TRANSITION )
+ return ( second );
+
+ else if ( second == NO_TRANSITION )
+ return ( first );
+
+ eps = mkstate( SYM_EPSILON );
+
+ mkxtion( eps, first );
+ mkxtion( eps, second );
+
+ return ( eps );
+ }
+
+
+/* mkclos - convert a machine into a closure
+ *
+ * synopsis
+ * new = mkclos( state );
+ *
+ * new - a new state which matches the closure of "state"
+ */
+int mkclos( state )
+int state;
+
+ {
+ return ( mkopt( mkposcl( state ) ) );
+ }
+
+
+/* mkopt - make a machine optional
+ *
+ * synopsis
+ *
+ * new = mkopt( mach );
+ *
+ * new - a machine which optionally matches whatever mach matched
+ * mach - the machine to make optional
+ *
+ * notes:
+ * 1. mach must be the last machine created
+ * 2. mach is destroyed by the call
+ */
+int mkopt( mach )
+int mach;
+
+ {
+ int eps;
+
+ if ( ! SUPER_FREE_EPSILON(finalst[mach]) )
+ {
+ eps = mkstate( SYM_EPSILON );
+ mach = link_machines( mach, eps );
+ }
+
+ /* can't skimp on the following if FREE_EPSILON(mach) is true because
+ * some state interior to "mach" might point back to the beginning
+ * for a closure
+ */
+ eps = mkstate( SYM_EPSILON );
+ mach = link_machines( eps, mach );
+
+ mkxtion( mach, finalst[mach] );
+
+ return ( mach );
+ }
+
+
+/* mkor - make a machine that matches either one of two machines
+ *
+ * synopsis
+ *
+ * new = mkor( first, second );
+ *
+ * new - a machine which matches either first's pattern or second's
+ * first, second - machines whose patterns are to be or'ed (the | operator)
+ *
+ * note that first and second are both destroyed by the operation
+ * the code is rather convoluted because an attempt is made to minimize
+ * the number of epsilon states needed
+ */
+int mkor( first, second )
+int first, second;
+
+ {
+ int eps, orend;
+
+ if ( first == NIL )
+ return ( second );
+
+ else if ( second == NIL )
+ return ( first );
+
+ else
+ {
+ /* see comment in mkopt() about why we can't use the first state
+ * of "first" or "second" if they satisfy "FREE_EPSILON"
+ */
+ eps = mkstate( SYM_EPSILON );
+
+ first = link_machines( eps, first );
+
+ mkxtion( first, second );
+
+ if ( SUPER_FREE_EPSILON(finalst[first]) &&
+ accptnum[finalst[first]] == NIL )
+ {
+ orend = finalst[first];
+ mkxtion( finalst[second], orend );
+ }
+
+ else if ( SUPER_FREE_EPSILON(finalst[second]) &&
+ accptnum[finalst[second]] == NIL )
+ {
+ orend = finalst[second];
+ mkxtion( finalst[first], orend );
+ }
+
+ else
+ {
+ eps = mkstate( SYM_EPSILON );
+
+ first = link_machines( first, eps );
+ orend = finalst[first];
+
+ mkxtion( finalst[second], orend );
+ }
+ }
+
+ finalst[first] = orend;
+ return ( first );
+ }
+
+
+/* mkposcl - convert a machine into a positive closure
+ *
+ * synopsis
+ * new = mkposcl( state );
+ *
+ * new - a machine matching the positive closure of "state"
+ */
+int mkposcl( state )
+int state;
+
+ {
+ int eps;
+
+ if ( SUPER_FREE_EPSILON(finalst[state]) )
+ {
+ mkxtion( finalst[state], state );
+ return ( state );
+ }
+
+ else
+ {
+ eps = mkstate( SYM_EPSILON );
+ mkxtion( eps, state );
+ return ( link_machines( state, eps ) );
+ }
+ }
+
+
+/* mkrep - make a replicated machine
+ *
+ * synopsis
+ * new = mkrep( mach, lb, ub );
+ *
+ * new - a machine that matches whatever "mach" matched from "lb"
+ * number of times to "ub" number of times
+ *
+ * note
+ * if "ub" is INFINITY then "new" matches "lb" or more occurances of "mach"
+ */
+int mkrep( mach, lb, ub )
+int mach, lb, ub;
+
+ {
+ int base, tail, copy, i;
+
+ base = copysingl( mach, lb - 1 );
+
+ if ( ub == INFINITY )
+ {
+ copy = dupmachine( mach );
+ mach = link_machines( mach, link_machines( base, mkclos( copy ) ) );
+ }
+
+ else
+ {
+ tail = mkstate( SYM_EPSILON );
+
+ for ( i = lb; i < ub; ++i )
+ {
+ copy = dupmachine( mach );
+ tail = mkopt( link_machines( copy, tail ) );
+ }
+
+ mach = link_machines( mach, link_machines( base, tail ) );
+ }
+
+ return ( mach );
+ }
+
+
+/* mkstate - create a state with a transition on a given symbol
+ *
+ * synopsis
+ *
+ * state = mkstate( sym );
+ *
+ * state - a new state matching sym
+ * sym - the symbol the new state is to have an out-transition on
+ *
+ * note that this routine makes new states in ascending order through the
+ * state array (and increments LASTNFA accordingly). The routine DUPMACHINE
+ * relies on machines being made in ascending order and that they are
+ * CONTIGUOUS. Change it and you will have to rewrite DUPMACHINE (kludge
+ * that it admittedly is)
+ */
+int mkstate( sym )
+int sym;
+
+ {
+ if ( ++lastnfa >= current_mns )
+ {
+ if ( (current_mns += MNS_INCREMENT) >= MAXIMUM_MNS )
+ lerrif( "input rules are too complicated (>= %d NFA states)",
+ current_mns );
+
+ ++num_reallocs;
+
+ transchar = reallocate_integer_array( transchar, current_mns );
+ trans1 = reallocate_integer_array( trans1, current_mns );
+ trans2 = reallocate_integer_array( trans2, current_mns );
+ accptnum = reallocate_integer_array( accptnum, current_mns );
+ firstst = reallocate_integer_array( firstst, current_mns );
+ finalst = reallocate_integer_array( finalst, current_mns );
+ lastst = reallocate_integer_array( lastst, current_mns );
+ }
+
+ transchar[lastnfa] = sym;
+ trans1[lastnfa] = NO_TRANSITION;
+ trans2[lastnfa] = NO_TRANSITION;
+ accptnum[lastnfa] = NIL;
+ firstst[lastnfa] = lastnfa;
+ finalst[lastnfa] = lastnfa;
+ lastst[lastnfa] = lastnfa;
+
+ /* fix up equivalence classes base on this transition. Note that any
+ * character which has its own transition gets its own equivalence class.
+ * Thus only characters which are only in character classes have a chance
+ * at being in the same equivalence class. E.g. "a|b" puts 'a' and 'b'
+ * into two different equivalence classes. "[ab]" puts them in the same
+ * equivalence class (barring other differences elsewhere in the input).
+ */
+
+ if ( sym < 0 )
+ {
+ /* we don't have to update the equivalence classes since that was
+ * already done when the ccl was created for the first time
+ */
+ }
+
+ else if ( sym == SYM_EPSILON )
+ ++numeps;
+
+ else
+ {
+ if ( useecs )
+ mkechar( sym, nextecm, ecgroup );
+ }
+
+ return ( lastnfa );
+ }
+
+
+/* mkxtion - make a transition from one state to another
+ *
+ * synopsis
+ *
+ * mkxtion( statefrom, stateto );
+ *
+ * statefrom - the state from which the transition is to be made
+ * stateto - the state to which the transition is to be made
+ */
+mkxtion( statefrom, stateto )
+int statefrom, stateto;
+
+ {
+ if ( trans1[statefrom] == NO_TRANSITION )
+ trans1[statefrom] = stateto;
+
+ else if ( (transchar[statefrom] != SYM_EPSILON) ||
+ (trans2[statefrom] != NO_TRANSITION) )
+ lexfatal( "found too many transitions in mkxtion()" );
+
+ else
+ { /* second out-transition for an epsilon state */
+ ++eps2;
+ trans2[statefrom] = stateto;
+ }
+ }