/* misc - miscellaneous flex routines */ /* Copyright (c) 1990 The Regents of the University of California. */ /* All rights reserved. */ /* This code is derived from software contributed to Berkeley by */ /* Vern Paxson. */ /* The United States Government has rights in this work pursuant */ /* to contract no. DE-AC03-76SF00098 between the United States */ /* Department of Energy and the University of California. */ /* This file is part of flex. */ /* Redistribution and use in source and binary forms, with or without */ /* modification, are permitted provided that the following conditions */ /* are met: */ /* 1. Redistributions of source code must retain the above copyright */ /* notice, this list of conditions and the following disclaimer. */ /* 2. Redistributions in binary form must reproduce the above copyright */ /* notice, this list of conditions and the following disclaimer in the */ /* documentation and/or other materials provided with the distribution. */ /* Neither the name of the University nor the names of its contributors */ /* may be used to endorse or promote products derived from this software */ /* without specific prior written permission. */ /* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */ /* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */ /* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */ /* PURPOSE. */ #include "flexdef.h" #include "tables.h" #define CMD_IF_TABLES_SER "%if-tables-serialization" #define CMD_TABLES_YYDMAP "%tables-yydmap" #define CMD_DEFINE_YYTABLES "%define-yytables" #define CMD_IF_CPP_ONLY "%if-c++-only" #define CMD_IF_C_ONLY "%if-c-only" #define CMD_IF_C_OR_CPP "%if-c-or-c++" #define CMD_NOT_FOR_HEADER "%not-for-header" #define CMD_OK_FOR_HEADER "%ok-for-header" #define CMD_PUSH "%push" #define CMD_POP "%pop" #define CMD_IF_REENTRANT "%if-reentrant" #define CMD_IF_NOT_REENTRANT "%if-not-reentrant" #define CMD_IF_BISON_BRIDGE "%if-bison-bridge" #define CMD_IF_NOT_BISON_BRIDGE "%if-not-bison-bridge" #define CMD_ENDIF "%endif" /* we allow the skeleton to push and pop. */ struct sko_state { bool dc; /**< do_copy */ }; static struct sko_state *sko_stack=0; static int sko_len=0,sko_sz=0; static void sko_push(bool dc) { if(!sko_stack){ sko_sz = 1; sko_stack = malloc(sizeof(struct sko_state) * (size_t) sko_sz); if (!sko_stack) flexfatal(_("allocation of sko_stack failed")); sko_len = 0; } if(sko_len >= sko_sz){ sko_sz *= 2; sko_stack = realloc(sko_stack, sizeof(struct sko_state) * (size_t) sko_sz); } /* initialize to zero and push */ sko_stack[sko_len].dc = dc; sko_len++; } static void sko_peek(bool *dc) { if(sko_len <= 0) flex_die("peek attempt when sko stack is empty"); if(dc) *dc = sko_stack[sko_len-1].dc; } static void sko_pop(bool* dc) { sko_peek(dc); sko_len--; if(sko_len < 0) flex_die("popped too many times in skeleton."); } /* Append "#define defname value\n" to the running buffer. */ void action_define (const char *defname, int value) { char buf[MAXLINE]; char *cpy; if ((int) strlen (defname) > MAXLINE / 2) { format_pinpoint_message (_ ("name \"%s\" ridiculously long"), defname); return; } snprintf (buf, sizeof(buf), "#define %s %d\n", defname, value); add_action (buf); /* track #defines so we can undef them when we're done. */ cpy = xstrdup(defname); buf_append (&defs_buf, &cpy, 1); } /* Append "new_text" to the running buffer. */ void add_action (const char *new_text) { int len = (int) strlen (new_text); while (len + action_index >= action_size - 10 /* slop */ ) { int new_size = action_size * 2; if (new_size <= 0) /* Increase just a little, to try to avoid overflow * on 16-bit machines. */ action_size += action_size / 8; else action_size = new_size; action_array = reallocate_character_array (action_array, action_size); } strcpy (&action_array[action_index], new_text); action_index += len; } /* allocate_array - allocate memory for an integer array of the given size */ void *allocate_array (int size, size_t element_size) { void *new_array; #if HAVE_REALLOCARR new_array = NULL; if (reallocarr(&new_array, (size_t) size, element_size)) flexfatal (_("memory allocation failed in allocate_array()")); #else # if HAVE_REALLOCARRAY new_array = reallocarray(NULL, (size_t) size, element_size); # else /* Do manual overflow detection */ size_t num_bytes = (size_t) size * element_size; new_array = (size && SIZE_MAX / (size_t) size < element_size) ? NULL : malloc(num_bytes); # endif if (!new_array) flexfatal (_("memory allocation failed in allocate_array()")); #endif return new_array; } /* all_lower - true if a string is all lower-case */ int all_lower (char *str) { while (*str) { if (!isascii ((unsigned char) * str) || !islower ((unsigned char) * str)) return 0; ++str; } return 1; } /* all_upper - true if a string is all upper-case */ int all_upper (char *str) { while (*str) { if (!isascii ((unsigned char) * str) || !isupper ((unsigned char) * str)) return 0; ++str; } return 1; } /* intcmp - compares two integers for use by qsort. */ int intcmp (const void *a, const void *b) { return *(const int *) a - *(const int *) b; } /* check_char - checks a character to make sure it's within the range * we're expecting. If not, generates fatal error message * and exits. */ void check_char (int c) { if (c >= CSIZE) lerr (_("bad character '%s' detected in check_char()"), readable_form (c)); if (c >= csize) lerr (_ ("scanner requires -8 flag to use the character %s"), readable_form (c)); } /* clower - replace upper-case letter to lower-case */ unsigned char clower (int c) { return (unsigned char) ((isascii (c) && isupper (c)) ? tolower (c) : c); } char *xstrdup(const char *s) { char *s2; if ((s2 = strdup(s)) == NULL) flexfatal (_("memory allocation failure in xstrdup()")); return s2; } /* cclcmp - compares two characters for use by qsort with '\0' sorting last. */ int cclcmp (const void *a, const void *b) { if (!*(const unsigned char *) a) return 1; else if (!*(const unsigned char *) b) return - 1; else return *(const unsigned char *) a - *(const unsigned char *) b; } /* dataend - finish up a block of data declarations */ void dataend (void) { /* short circuit any output */ if (gentables) { if (datapos > 0) dataflush (); /* add terminator for initialization; { for vi */ outn (" } ;\n"); } dataline = 0; datapos = 0; } /* dataflush - flush generated data statements */ void dataflush (void) { /* short circuit any output */ if (!gentables) return; outc ('\n'); if (++dataline >= NUMDATALINES) { /* Put out a blank line so that the table is grouped into * large blocks that enable the user to find elements easily. */ outc ('\n'); dataline = 0; } /* Reset the number of characters written on the current line. */ datapos = 0; } /* flexerror - report an error message and terminate */ void flexerror (const char *msg) { fprintf (stderr, "%s: %s\n", program_name, msg); flexend (1); } /* flexfatal - report a fatal error message and terminate */ void flexfatal (const char *msg) { fprintf (stderr, _("%s: fatal internal error, %s\n"), program_name, msg); FLEX_EXIT (1); } /* lerr - report an error message */ void lerr (const char *msg, ...) { char errmsg[MAXLINE]; va_list args; va_start(args, msg); vsnprintf (errmsg, sizeof(errmsg), msg, args); va_end(args); flexerror (errmsg); } /* lerr_fatal - as lerr, but call flexfatal */ void lerr_fatal (const char *msg, ...) { char errmsg[MAXLINE]; va_list args; va_start(args, msg); vsnprintf (errmsg, sizeof(errmsg), msg, args); va_end(args); flexfatal (errmsg); } /* line_directive_out - spit out a "#line" statement */ void line_directive_out (FILE *output_file, int do_infile) { char directive[MAXLINE], filename[MAXLINE]; char *s1, *s2, *s3; static const char line_fmt[] = "#line %d \"%s\"\n"; if (!gen_line_dirs) return; s1 = do_infile ? infilename : "M4_YY_OUTFILE_NAME"; if (do_infile && !s1) s1 = ""; s2 = filename; s3 = &filename[sizeof (filename) - 2]; while (s2 < s3 && *s1) { if (*s1 == '\\' || *s1 == '"') /* Escape the '\' or '"' */ *s2++ = '\\'; *s2++ = *s1++; } *s2 = '\0'; if (do_infile) snprintf (directive, sizeof(directive), line_fmt, linenum, filename); else { snprintf (directive, sizeof(directive), line_fmt, 0, filename); } /* If output_file is nil then we should put the directive in * the accumulated actions. */ if (output_file) { fputs (directive, output_file); } else add_action (directive); } /* mark_defs1 - mark the current position in the action array as * representing where the user's section 1 definitions end * and the prolog begins */ void mark_defs1 (void) { defs1_offset = 0; action_array[action_index++] = '\0'; action_offset = prolog_offset = action_index; action_array[action_index] = '\0'; } /* mark_prolog - mark the current position in the action array as * representing the end of the action prolog */ void mark_prolog (void) { action_array[action_index++] = '\0'; action_offset = action_index; action_array[action_index] = '\0'; } /* mk2data - generate a data statement for a two-dimensional array * * Generates a data statement initializing the current 2-D array to "value". */ void mk2data (int value) { /* short circuit any output */ if (!gentables) return; if (datapos >= NUMDATAITEMS) { outc (','); dataflush (); } if (datapos == 0) /* Indent. */ out (" "); else outc (','); ++datapos; out_dec ("%5d", value); } /* mkdata - generate a data statement * * Generates a data statement initializing the current array element to * "value". */ void mkdata (int value) { /* short circuit any output */ if (!gentables) return; if (datapos >= NUMDATAITEMS) { outc (','); dataflush (); } if (datapos == 0) /* Indent. */ out (" "); else outc (','); ++datapos; out_dec ("%5d", value); } /* myctoi - return the integer represented by a string of digits */ int myctoi (const char *array) { int val = 0; (void) sscanf (array, "%d", &val); return val; } /* myesc - return character corresponding to escape sequence */ unsigned char myesc (unsigned char array[]) { unsigned char c, esc_char; switch (array[1]) { case 'b': return '\b'; case 'f': return '\f'; case 'n': return '\n'; case 'r': return '\r'; case 't': return '\t'; case 'a': return '\a'; case 'v': return '\v'; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': { /* \ */ int sptr = 1; while (sptr <= 3 && array[sptr] >= '0' && array[sptr] <= '7') { ++sptr; } c = array[sptr]; array[sptr] = '\0'; esc_char = (unsigned char) strtoul (array + 1, NULL, 8); array[sptr] = c; return esc_char; } case 'x': { /* \x */ int sptr = 2; while (sptr <= 3 && isxdigit (array[sptr])) { /* Don't increment inside loop control * because if isxdigit() is a macro it might * expand into multiple increments ... */ ++sptr; } c = array[sptr]; array[sptr] = '\0'; esc_char = (unsigned char) strtoul (array + 2, NULL, 16); array[sptr] = c; return esc_char; } default: return array[1]; } } /* out - various flavors of outputing a (possibly formatted) string for the * generated scanner, keeping track of the line count. */ void out (const char *str) { fputs (str, stdout); } void out_dec (const char *fmt, int n) { fprintf (stdout, fmt, n); } void out_dec2 (const char *fmt, int n1, int n2) { fprintf (stdout, fmt, n1, n2); } void out_hex (const char *fmt, unsigned int x) { fprintf (stdout, fmt, x); } void out_str (const char *fmt, const char str[]) { fprintf (stdout,fmt, str); } void out_str3 (const char *fmt, const char s1[], const char s2[], const char s3[]) { fprintf (stdout,fmt, s1, s2, s3); } void out_str_dec (const char *fmt, const char str[], int n) { fprintf (stdout,fmt, str, n); } void outc (int c) { fputc (c, stdout); } void outn (const char *str) { fputs (str,stdout); fputc('\n',stdout); } /** Print "m4_define( [[def]], [[val]])m4_dnl\n". * @param def The m4 symbol to define. * @param val The definition; may be NULL. */ void out_m4_define (const char* def, const char* val) { const char * fmt = "m4_define( [[%s]], [[%s]])m4_dnl\n"; fprintf(stdout, fmt, def, val?val:""); } /* readable_form - return the the human-readable form of a character * * The returned string is in static storage. */ char *readable_form (int c) { static char rform[20]; if ((c >= 0 && c < 32) || c >= 127) { switch (c) { case '\b': return "\\b"; case '\f': return "\\f"; case '\n': return "\\n"; case '\r': return "\\r"; case '\t': return "\\t"; case '\a': return "\\a"; case '\v': return "\\v"; default: if(trace_hex) snprintf (rform, sizeof(rform), "\\x%.2x", (unsigned int) c); else snprintf (rform, sizeof(rform), "\\%.3o", (unsigned int) c); return rform; } } else if (c == ' ') return "' '"; else { rform[0] = (char) c; rform[1] = '\0'; return rform; } } /* reallocate_array - increase the size of a dynamic array */ void *reallocate_array (void *array, int size, size_t element_size) { void *new_array; #if HAVE_REALLOCARR new_array = array; if (reallocarr(&new_array, (size_t) size, element_size)) flexfatal (_("attempt to increase array size failed")); #else # if HAVE_REALLOCARRAY new_array = reallocarray(array, (size_t) size, element_size); # else /* Do manual overflow detection */ size_t num_bytes = (size_t) size * element_size; new_array = (size && SIZE_MAX / (size_t) size < element_size) ? NULL : realloc(array, num_bytes); # endif if (!new_array) flexfatal (_("attempt to increase array size failed")); #endif return new_array; } /* skelout - write out one section of the skeleton file * * Description * Copies skelfile or skel array to stdout until a line beginning with * "%%" or EOF is found. */ void skelout (void) { char buf_storage[MAXLINE]; char *buf = buf_storage; bool do_copy = true; /* "reset" the state by clearing the buffer and pushing a '1' */ if(sko_len > 0) sko_peek(&do_copy); sko_len = 0; sko_push(do_copy=true); /* Loop pulling lines either from the skelfile, if we're using * one, or from the skel[] array. */ while (skelfile ? (fgets (buf, MAXLINE, skelfile) != NULL) : ((buf = (char *) skel[skel_ind++]) != 0)) { if (skelfile) chomp (buf); /* copy from skel array */ if (buf[0] == '%') { /* control line */ /* print the control line as a comment. */ if (ddebug && buf[1] != '#') { if (buf[strlen (buf) - 1] == '\\') out_str ("/* %s */\\\n", buf); else out_str ("/* %s */\n", buf); } /* We've been accused of using cryptic markers in the skel. * So we'll use emacs-style-hyphenated-commands. * We might consider a hash if this if-else-if-else * chain gets too large. */ #define cmd_match(s) (strncmp(buf,(s),strlen(s))==0) if (buf[1] == '#') { /* %# indicates comment line to be ignored */ } else if (buf[1] == '%') { /* %% is a break point for skelout() */ return; } else if (cmd_match (CMD_PUSH)){ sko_push(do_copy); if(ddebug){ out_str("/*(state = (%s) */",do_copy?"true":"false"); } out_str("%s\n", buf[strlen (buf) - 1] =='\\' ? "\\" : ""); } else if (cmd_match (CMD_POP)){ sko_pop(&do_copy); if(ddebug){ out_str("/*(state = (%s) */",do_copy?"true":"false"); } out_str("%s\n", buf[strlen (buf) - 1] =='\\' ? "\\" : ""); } else if (cmd_match (CMD_IF_REENTRANT)){ sko_push(do_copy); do_copy = reentrant && do_copy; } else if (cmd_match (CMD_IF_NOT_REENTRANT)){ sko_push(do_copy); do_copy = !reentrant && do_copy; } else if (cmd_match(CMD_IF_BISON_BRIDGE)){ sko_push(do_copy); do_copy = bison_bridge_lval && do_copy; } else if (cmd_match(CMD_IF_NOT_BISON_BRIDGE)){ sko_push(do_copy); do_copy = !bison_bridge_lval && do_copy; } else if (cmd_match (CMD_ENDIF)){ sko_pop(&do_copy); } else if (cmd_match (CMD_IF_TABLES_SER)) { do_copy = do_copy && tablesext; } else if (cmd_match (CMD_TABLES_YYDMAP)) { if (tablesext && yydmap_buf.elts) outn ((char *) (yydmap_buf.elts)); } else if (cmd_match (CMD_DEFINE_YYTABLES)) { out_str("#define YYTABLES_NAME \"%s\"\n", tablesname?tablesname:"yytables"); } else if (cmd_match (CMD_IF_CPP_ONLY)) { /* only for C++ */ sko_push(do_copy); do_copy = C_plus_plus; } else if (cmd_match (CMD_IF_C_ONLY)) { /* %- only for C */ sko_push(do_copy); do_copy = !C_plus_plus; } else if (cmd_match (CMD_IF_C_OR_CPP)) { /* %* for C and C++ */ sko_push(do_copy); do_copy = true; } else if (cmd_match (CMD_NOT_FOR_HEADER)) { /* %c begin linkage-only (non-header) code. */ OUT_BEGIN_CODE (); } else if (cmd_match (CMD_OK_FOR_HEADER)) { /* %e end linkage-only code. */ OUT_END_CODE (); } else { flexfatal (_("bad line in skeleton file")); } } else if (do_copy) outn (buf); } /* end while */ } /* transition_struct_out - output a yy_trans_info structure * * outputs the yy_trans_info structure with the two elements, element_v and * element_n. Formats the output with spaces and carriage returns. */ void transition_struct_out (int element_v, int element_n) { /* short circuit any output */ if (!gentables) return; out_dec2 (" {%4d,%4d },", element_v, element_n); datapos += TRANS_STRUCT_PRINT_LENGTH; if (datapos >= 79 - TRANS_STRUCT_PRINT_LENGTH) { outc ('\n'); if (++dataline % 10 == 0) outc ('\n'); datapos = 0; } } /* The following is only needed when building flex's parser using certain * broken versions of bison. * * XXX: this is should go soon */ void *yy_flex_xmalloc (int size) { void *result; result = malloc((size_t) size); if (!result) flexfatal (_ ("memory allocation failed in yy_flex_xmalloc()")); return result; } /* Remove all '\n' and '\r' characters, if any, from the end of str. * str can be any null-terminated string, or NULL. * returns str. */ char *chomp (char *str) { char *p = str; if (!str || !*str) /* s is null or empty string */ return str; /* find end of string minus one */ while (*p) ++p; --p; /* eat newlines */ while (p >= str && (*p == '\r' || *p == '\n')) *p-- = 0; return str; }