// // "$Id: Fl_lock.cxx 8864 2011-07-19 04:49:30Z greg.ercolano $" // // Multi-threading support code for the Fast Light Tool Kit (FLTK). // // Copyright 1998-2010 by Bill Spitzak and others. // // This library is free software. Distribution and use rights are outlined in // the file "COPYING" which should have been included with this file. If this // file is missing or damaged, see the license at: // // http://www.fltk.org/COPYING.php // // Please report all bugs and problems on the following page: // // http://www.fltk.org/str.php // #include #include #include /* From Bill: I would prefer that FLTK contain the minimal amount of extra stuff for doing threads. There are other portable thread wrapper libraries out there and FLTK should not be providing another. This file is an attempt to make minimal additions and make them self-contained in this source file. From Mike: Starting with 1.1.8, we now have a callback so that you can process awake() messages as they come in. The API: Fl::lock() - recursive lock. You must call this before the first call to Fl::wait()/run() to initialize the thread system. The lock is locked all the time except when Fl::wait() is waiting for events. Fl::unlock() - release the recursive lock. Fl::awake(void*) - Causes Fl::wait() to return (with the lock locked) even if there are no events ready. Fl::awake(void (*cb)(void *), void*) - Call a function in the main thread from within another thread of execution. Fl::thread_message() - returns an argument sent to an Fl::awake() call, or returns NULL if none. WARNING: the current implementation only has a one-entry queue and only returns the most recent value! */ #ifndef FL_DOXYGEN Fl_Awake_Handler *Fl::awake_ring_; void **Fl::awake_data_; int Fl::awake_ring_size_; int Fl::awake_ring_head_; int Fl::awake_ring_tail_; #endif static const int AWAKE_RING_SIZE = 1024; static void lock_ring(); static void unlock_ring(); /** Adds an awake handler for use in awake(). */ int Fl::add_awake_handler_(Fl_Awake_Handler func, void *data) { int ret = 0; lock_ring(); if (!awake_ring_) { awake_ring_size_ = AWAKE_RING_SIZE; awake_ring_ = (Fl_Awake_Handler*)malloc(awake_ring_size_*sizeof(Fl_Awake_Handler)); awake_data_ = (void**)malloc(awake_ring_size_*sizeof(void*)); } if (awake_ring_head_==awake_ring_tail_-1 || awake_ring_head_+1==awake_ring_tail_) { // ring is full. Return -1 as an error indicator. ret = -1; } else { awake_ring_[awake_ring_head_] = func; awake_data_[awake_ring_head_] = data; ++awake_ring_head_; if (awake_ring_head_ == awake_ring_size_) awake_ring_head_ = 0; } unlock_ring(); return ret; } /** Gets the last stored awake handler for use in awake(). */ int Fl::get_awake_handler_(Fl_Awake_Handler &func, void *&data) { int ret = 0; lock_ring(); if (!awake_ring_ || awake_ring_head_ == awake_ring_tail_) { ret = -1; } else { func = awake_ring_[awake_ring_tail_]; data = awake_data_[awake_ring_tail_]; ++awake_ring_tail_; if (awake_ring_tail_ == awake_ring_size_) awake_ring_tail_ = 0; } unlock_ring(); return ret; } /** Let the main thread know an update is pending and have it call a specific function. Registers a function that will be called by the main thread during the next message handling cycle. Returns 0 if the callback function was registered, and -1 if registration failed. Over a thousand awake callbacks can be registered simultaneously. \see Fl::awake(void* message=0) */ int Fl::awake(Fl_Awake_Handler func, void *data) { int ret = add_awake_handler_(func, data); Fl::awake(); return ret; } //////////////////////////////////////////////////////////////// // Windows threading... /** \fn int Fl::lock() The lock() method blocks the current thread until it can safely access FLTK widgets and data. Child threads should call this method prior to updating any widgets or accessing data. The main thread must call lock() to initialize the threading support in FLTK. lock() will return non-zero if threading is not available on the platform. Child threads must call unlock() when they are done accessing FLTK. When the wait() method is waiting for input or timeouts, child threads are given access to FLTK. Similarly, when the main thread needs to do processing, it will wait until all child threads have called unlock() before processing additional data. \return 0 if threading is available on the platform; non-zero otherwise. See also: \ref advanced_multithreading */ /** \fn void Fl::unlock() The unlock() method releases the lock that was set using the lock() method. Child threads should call this method as soon as they are finished accessing FLTK. See also: \ref advanced_multithreading */ /** \fn void Fl::awake(void* msg) Sends a message pointer to the main thread, causing any pending Fl::wait() call to terminate so that the main thread can retrieve the message and any pending redraws can be processed. Multiple calls to Fl::awake() will queue multiple pointers for the main thread to process, up to a system-defined (typically several thousand) depth. The default message handler saves the last message which can be accessed using the Fl::thread_message() function. In the context of a threaded application, a call to Fl::awake() with no argument will trigger event loop handling in the main thread. Since it is not possible to call Fl::flush() from a subsidiary thread, Fl::awake() is the best (and only, really) substitute. See also: \ref advanced_multithreading */ #ifdef WIN32 # include # include # include // These pointers are in Fl_win32.cxx: extern void (*fl_lock_function)(); extern void (*fl_unlock_function)(); // The main thread's ID static DWORD main_thread; // Microsoft's version of a MUTEX... CRITICAL_SECTION cs; CRITICAL_SECTION *cs_ring; void unlock_ring() { LeaveCriticalSection(cs_ring); } void lock_ring() { if (!cs_ring) { cs_ring = (CRITICAL_SECTION*)malloc(sizeof(CRITICAL_SECTION)); InitializeCriticalSection(cs_ring); } EnterCriticalSection(cs_ring); } // // 'unlock_function()' - Release the lock. // static void unlock_function() { LeaveCriticalSection(&cs); } // // 'lock_function()' - Get the lock. // static void lock_function() { EnterCriticalSection(&cs); } int Fl::lock() { if (!main_thread) InitializeCriticalSection(&cs); lock_function(); if (!main_thread) { fl_lock_function = lock_function; fl_unlock_function = unlock_function; main_thread = GetCurrentThreadId(); } return 0; } void Fl::unlock() { unlock_function(); } void Fl::awake(void* msg) { PostThreadMessage( main_thread, fl_wake_msg, (WPARAM)msg, 0); } //////////////////////////////////////////////////////////////// // POSIX threading... #elif HAVE_PTHREAD # include # include # include // Pipe for thread messaging via Fl::awake()... static int thread_filedes[2]; // Mutex and state information for Fl::lock() and Fl::unlock()... static pthread_mutex_t fltk_mutex; static pthread_t owner; static int counter; static void lock_function_init_std() { pthread_mutex_init(&fltk_mutex, NULL); } static void lock_function_std() { if (!counter || owner != pthread_self()) { pthread_mutex_lock(&fltk_mutex); owner = pthread_self(); } counter++; } static void unlock_function_std() { if (!--counter) pthread_mutex_unlock(&fltk_mutex); } # ifdef PTHREAD_MUTEX_RECURSIVE static bool lock_function_init_rec() { pthread_mutexattr_t attrib; pthread_mutexattr_init(&attrib); if (pthread_mutexattr_settype(&attrib, PTHREAD_MUTEX_RECURSIVE)) { pthread_mutexattr_destroy(&attrib); return true; } pthread_mutex_init(&fltk_mutex, &attrib); return false; } static void lock_function_rec() { pthread_mutex_lock(&fltk_mutex); } static void unlock_function_rec() { pthread_mutex_unlock(&fltk_mutex); } # endif // PTHREAD_MUTEX_RECURSIVE void Fl::awake(void* msg) { if (write(thread_filedes[1], &msg, sizeof(void*))==0) { /* ignore */ } } static void* thread_message_; void* Fl::thread_message() { void* r = thread_message_; thread_message_ = 0; return r; } static void thread_awake_cb(int fd, void*) { if (read(fd, &thread_message_, sizeof(void*))==0) { /* This should never happen */ } Fl_Awake_Handler func; void *data; while (Fl::get_awake_handler_(func, data)==0) { (*func)(data); } } // These pointers are in Fl_x.cxx: extern void (*fl_lock_function)(); extern void (*fl_unlock_function)(); int Fl::lock() { if (!thread_filedes[1]) { // Initialize thread communication pipe to let threads awake FLTK // from Fl::wait() if (pipe(thread_filedes)==-1) { /* this should not happen */ } // Make the write side of the pipe non-blocking to avoid deadlock // conditions (STR #1537) fcntl(thread_filedes[1], F_SETFL, fcntl(thread_filedes[1], F_GETFL) | O_NONBLOCK); // Monitor the read side of the pipe so that messages sent via // Fl::awake() from a thread will "wake up" the main thread in // Fl::wait(). Fl::add_fd(thread_filedes[0], FL_READ, thread_awake_cb); // Set lock/unlock functions for this system, using a system-supplied // recursive mutex if supported... # ifdef PTHREAD_MUTEX_RECURSIVE if (!lock_function_init_rec()) { fl_lock_function = lock_function_rec; fl_unlock_function = unlock_function_rec; } else { # endif // PTHREAD_MUTEX_RECURSIVE lock_function_init_std(); fl_lock_function = lock_function_std; fl_unlock_function = unlock_function_std; # ifdef PTHREAD_MUTEX_RECURSIVE } # endif // PTHREAD_MUTEX_RECURSIVE } fl_lock_function(); return 0; } void Fl::unlock() { fl_unlock_function(); } // Mutex code for the awake ring buffer static pthread_mutex_t *ring_mutex; void unlock_ring() { pthread_mutex_unlock(ring_mutex); } void lock_ring() { if (!ring_mutex) { ring_mutex = (pthread_mutex_t*)malloc(sizeof(pthread_mutex_t)); pthread_mutex_init(ring_mutex, NULL); } pthread_mutex_lock(ring_mutex); } #else void unlock_ring() { } void lock_ring() { } void Fl::awake(void*) { } int Fl::lock() { return 1; } void Fl::unlock() { } void* Fl::thread_message() { return NULL; } #endif // WIN32 // // End of "$Id: Fl_lock.cxx 8864 2011-07-19 04:49:30Z greg.ercolano $". //