From 7051939fa74b5f8f453be605f5dc3b4c23e1d1d9 Mon Sep 17 00:00:00 2001 From: Christian Robertson Date: Mon, 19 May 2014 16:09:20 -0700 Subject: Importing Roboto 2.0 --- scripts/lib/fontbuild/italics.py | 267 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 267 insertions(+) create mode 100644 scripts/lib/fontbuild/italics.py (limited to 'scripts/lib/fontbuild/italics.py') diff --git a/scripts/lib/fontbuild/italics.py b/scripts/lib/fontbuild/italics.py new file mode 100644 index 0000000..72178b4 --- /dev/null +++ b/scripts/lib/fontbuild/italics.py @@ -0,0 +1,267 @@ +from fontTools.misc.transform import Transform +from robofab.world import CurrentFont +from robofab.world import RFont +from time import clock +import numpy as np +import math +from alignpoints import alignCorners + +def italicizeGlyph(g, angle=10, stemWidth=185): + f = CurrentFont() + glyph = f[g.name] + slope = np.tanh([math.pi * angle / 180]) + + # determine how far on the x axis the glyph should slide + # to compensate for the slant. -600 is a magic number + # that assumes a 2048 unit em square + MEAN_YCENTER = -600 + m = Transform(1, 0, slope, 1, 0, 0) + xoffset, junk = m.transformPoint((0, MEAN_YCENTER)) + m = Transform(.97, 0, slope, 1, xoffset, 0) + + if len(glyph) > 0: + g2 = italicize(f[g.name], angle, xoffset=xoffset, stemWidth=stemWidth) + f.insertGlyph(g2, g.name) + + transformFLGlyphMembers(f[g.name], m) + + +def italicize(glyph, angle=12, stemWidth=180, xoffset=-50): + CURVE_CORRECTION_WEIGHT = .03 + CORNER_WEIGHT = 10 + ga,subsegments = segmentGlyph(glyph,25) + va, e = glyphToMesh(ga) + n = len(va) + grad = mapEdges(lambda a,(p,n): normalize(p-a), va, e) + cornerWeights = mapEdges(lambda a,(p,n): normalize(p-a).dot(normalize(a-n)), grad, e)[:,0].reshape((-1,1)) + smooth = np.ones((n,1)) * CURVE_CORRECTION_WEIGHT + + controlPoints = findControlPointsInMesh(glyph, va, subsegments) + smooth[controlPoints > 0] = 1 + smooth[cornerWeights < .6] = CORNER_WEIGHT + # smooth[cornerWeights >= .9999] = 1 + + out = va.copy() + hascurves = False + for c in glyph.contours: + for s in c.segments: + if s.type == "curve": + hascurves = True + break + if hascurves: + break + if stemWidth > 100: + outCorrected = skewMesh(recompose(skewMesh(out, angle * 1.6), grad, e, smooth=smooth), -angle * 1.6) + # out = copyMeshDetails(va, out, e, 6) + else: + outCorrected = out + normals = edgeNormals(out, e) + center = va + normals * stemWidth * .4 + if stemWidth > 130: + center[:, 0] = va[:, 0] * .7 + center[:,0] * .3 + centerSkew = skewMesh(center.dot(np.array([[.97,0],[0,1]])), angle * .9) + out = outCorrected + (centerSkew - center) + out[:,1] = outCorrected[:,1] + + smooth = np.ones((n,1)) * .1 + out = alignCorners(glyph, out, subsegments) + out = copyMeshDetails(skewMesh(va, angle), out, e, 7, smooth=smooth) + # grad = mapEdges(lambda a,(p,n): normalize(p-a), skewMesh(outCorrected, angle*.9), e) + # out = recompose(out, grad, e, smooth=smooth) + + out = skewMesh(out, angle * .1) + out[:,0] += xoffset + # out[:,1] = outCorrected[:,1] + out[va[:,1] == 0, 1] = 0 + gOut = meshToGlyph(out, ga) + # gOut.width *= .97 + # gOut.width += 10 + # return gOut + return fitGlyph(glyph, gOut, subsegments) + +def condenseGlyph(glyph, scale=.8, stemWidth=185): + ga, subsegments = segmentGlyph(glyph, 25) + va, e = glyphToMesh(ga) + n = len(va) + + normals = edgeNormals(va,e) + cn = va.dot(np.array([[scale, 0],[0,1]])) + grad = mapEdges(lambda a,(p,n): normalize(p-a), cn, e) + # ograd = mapEdges(lambda a,(p,n): normalize(p-a), va, e) + + cn[:,0] -= normals[:,0] * stemWidth * .5 * (1 - scale) + out = recompose(cn, grad, e, smooth=.5) + # out = recompose(out, grad, e, smooth=.1) + out = recompose(out, grad, e, smooth=.01) + + # cornerWeights = mapEdges(lambda a,(p,n): normalize(p-a).dot(normalize(a-n)), grad, e)[:,0].reshape((-1,1)) + # smooth = np.ones((n,1)) * .1 + # smooth[cornerWeights < .6] = 10 + # + # grad2 = quantizeGradient(grad).astype(float) + # grad2 = copyGradDetails(grad, grad2, e, scale=10) + # grad2 = mapEdges(lambda a,e: normalize(a), grad2, e) + # out = recompose(out, grad2, e, smooth=smooth) + out[:,0] += 15 + out[:,1] = va[:,1] + # out = recompose(out, grad, e, smooth=.5) + gOut = meshToGlyph(out, ga) + gOut = fitGlyph(glyph, gOut, subsegments) + for i,seg in enumerate(gOut): + gOut[i].points[0].y = glyph[i].points[0].y + return gOut + + +def transformFLGlyphMembers(g, m, transformAnchors = True): + # g.transform(m) + g.width = g.width * m[0] + p = m.transformPoint((0,0)) + for c in g.components: + d = m.transformPoint(c.offset) + c.offset = (d[0] - p[0], d[1] - p[1]) + if transformAnchors: + for a in g.anchors: + aa = m.transformPoint((a.x,a.y)) + a.x = aa[0] + # a.x,a.y = (aa[0] - p[0], aa[1] - p[1]) + # a.x = a.x - m[4] + + +from curveFitPen import fitGlyph,segmentGlyph +from numpy.linalg import norm +from scipy.sparse.linalg import cg +from scipy.ndimage.filters import gaussian_filter1d as gaussian +from scipy.cluster.vq import vq, kmeans2, whiten + +def glyphToMesh(g): + points = [] + edges = {} + offset = 0 + for c in g.contours: + if len(c) < 2: + continue + for i,prev,next in rangePrevNext(len(c)): + points.append((c[i].points[0].x, c[i].points[0].y)) + edges[i + offset] = np.array([prev + offset, next + offset], dtype=int) + offset += len(c) + return np.array(points), edges + +def meshToGlyph(points, g): + g1 = g.copy() + j = 0 + for c in g1.contours: + if len(c) < 2: + continue + for i in range(len(c)): + c[i].points[0].x = points[j][0] + c[i].points[0].y = points[j][1] + j += 1 + return g1 + +def quantizeGradient(grad, book=None): + if book == None: + book = np.array([(1,0),(0,1),(0,-1),(-1,0)]) + indexArray = vq(whiten(grad), book)[0] + out = book[indexArray] + for i,v in enumerate(out): + out[i] = normalize(v) + return out + +def findControlPointsInMesh(glyph, va, subsegments): + controlPointIndices = np.zeros((len(va),1)) + index = 0 + for i,c in enumerate(subsegments): + segmentCount = len(glyph.contours[i].segments) - 1 + for j,s in enumerate(c): + if j < segmentCount: + if glyph.contours[i].segments[j].type == "line": + controlPointIndices[index] = 1 + index += s[1] + return controlPointIndices + + + +def recompose(v, grad, e, smooth=1, P=None, distance=None): + n = len(v) + if distance == None: + distance = mapEdges(lambda a,(p,n): norm(p - a), v, e) + if (P == None): + P = mP(v,e) + P += np.identity(n) * smooth + f = v.copy() + for i,(prev,next) in e.iteritems(): + f[i] = (grad[next] * distance[next] - grad[i] * distance[i]) + out = v.copy() + f += v * smooth + for i in range(len(out[0,:])): + out[:,i] = cg(P, f[:,i])[0] + return out + +def mP(v,e): + n = len(v) + M = np.zeros((n,n)) + for i, edges in e.iteritems(): + w = -2 / float(len(edges)) + for index in edges: + M[i,index] = w + M[i,i] = 2 + return M + +def normalize(v): + n = np.linalg.norm(v) + if n == 0: + return v + return v/n + +def mapEdges(func,v,e,*args): + b = v.copy() + for i, edges in e.iteritems(): + b[i] = func(v[i], [v[j] for j in edges], *args) + return b + +def getNormal(a,b,c): + "Assumes TT winding direction" + p = np.roll(normalize(b - a), 1) + n = -np.roll(normalize(c - a), 1) + p[1] *= -1 + n[1] *= -1 + # print p, n, normalize((p + n) * .5) + return normalize((p + n) * .5) + +def edgeNormals(v,e): + "Assumes a mesh where each vertex has exactly least two edges" + return mapEdges(lambda a,(p,n) : getNormal(a,p,n),v,e) + +def rangePrevNext(count): + c = np.arange(count,dtype=int) + r = np.vstack((c, np.roll(c, 1), np.roll(c, -1))) + return r.T + +def skewMesh(v,angle): + slope = np.tanh([math.pi * angle / 180]) + return v.dot(np.array([[1,0],[slope,1]])) + +def labelConnected(e): + label = 0 + labels = np.zeros((len(e),1)) + for i,(prev,next) in e.iteritems(): + labels[i] = label + if next <= i: + label += 1 + return labels + +def copyGradDetails(a,b,e,scale=15): + n = len(a) + labels = labelConnected(e) + out = a.astype(float).copy() + for i in range(labels[-1]+1): + mask = (labels==i).flatten() + out[mask,:] = gaussian(b[mask,:], scale, mode="wrap", axis=0) + a[mask,:] - gaussian(a[mask,:], scale, mode="wrap", axis=0) + return out + +def copyMeshDetails(va,vb,e,scale=5,smooth=.01): + gradA = mapEdges(lambda a,(p,n): normalize(p-a), va, e) + gradB = mapEdges(lambda a,(p,n): normalize(p-a), vb, e) + grad = copyGradDetails(gradA, gradB, e, scale) + grad = mapEdges(lambda a,(p,n): normalize(a), grad, e) + return recompose(vb, grad, e, smooth=smooth) \ No newline at end of file -- cgit v1.2.3