summaryrefslogtreecommitdiff
path: root/third_party/spiro/curves/pcorn.py
blob: 723a82f203182ddfd6101ac0a804a7ffc05b0a1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Utilities for piecewise cornu representation of curves

from math import *

import clothoid
import cornu

class Segment:
    def __init__(self, z0, z1, th0, th1):
        self.z0 = z0
        self.z1 = z1
        self.th0 = th0
        self.th1 = th1
        self.compute()
    def __repr__(self):
        return '[' + `self.z0` + `self.z1` + ' ' + `self.th0` + ' ' + `self.th1` + ']'
    def compute(self):
        dx = self.z1[0] - self.z0[0]
        dy = self.z1[1] - self.z0[1]
        chord = hypot(dy, dx)
        chth = atan2(dy, dx)
        k0, k1 = clothoid.solve_clothoid(self.th0, self.th1)
        charc = clothoid.compute_chord(k0, k1)

        self.chord = chord
        self.chth = chth
        self.k0, self.k1 = k0, k1
        self.charc = charc
        self.arclen = chord / charc
        self.thmid = self.chth - self.th0 + 0.5 * self.k0 - 0.125 * self.k1

        self.setup_xy_fresnel()

    def setup_xy_fresnel(self):
        k0, k1 = self.k0, self.k1
        if k1 == 0: k1 = 1e-6 # hack
        if k1 != 0:
            sqrk1 = sqrt(2 * abs(k1))
            t0 = (k0 - .5 * k1) / sqrk1
            t1 = (k0 + .5 * k1) / sqrk1
            (y0, x0) = cornu.eval_cornu(t0)
            (y1, x1) = cornu.eval_cornu(t1)
            chord_th = atan2(y1 - y0, x1 - x0)
            chord = hypot(y1 - y0, x1 - x0)
            scale = self.chord / chord
            if k1 >= 0:
                th = self.chth - chord_th
                self.mxx = scale * cos(th)
                self.myx = scale * sin(th)
                self.mxy = -self.myx
                self.myy = self.mxx
            else:
                th = self.chth + chord_th
                self.mxx = scale * cos(th)
                self.myx = scale * sin(th)
                self.mxy = self.myx
                self.myy = -self.mxx
                # rotate -chord_th, flip top/bottom, rotate self.chth
            self.x0 = self.z0[0] - (self.mxx * x0 + self.mxy * y0)
            self.y0 = self.z0[1] - (self.myx * x0 + self.myy * y0)

    def th(self, s):
        u = s / self.arclen - 0.5
        return self.thmid + (0.5 * self.k1 * u + self.k0) * u

    def xy(self, s):
        # using fresnel integrals; polynomial approx might be better
        u = s / self.arclen - 0.5
        k0, k1 = self.k0, self.k1
        if k1 == 0: k1 = 1e-6 # hack
        if k1 != 0:
            sqrk1 = sqrt(2 * abs(k1))
            t = (k0 + u * k1) / sqrk1
            (y, x) = cornu.eval_cornu(t)
            return [self.x0 + self.mxx * x + self.mxy * y,
                    self.y0 + self.myx * x + self.myy * y]

    def find_extrema(self):
        # find solutions of th(s) = 0 mod pi/2
        # todo: find extra solutions when there's an inflection
        th0 = self.thmid + 0.125 * self.k1 - 0.5 * self.k0
        th1 = self.thmid + 0.125 * self.k1 + 0.5 * self.k0
        twooverpi = 2 / pi
        n0 = int(floor(th0 * twooverpi))
        n1 = int(floor(th1 * twooverpi))
        if th1 > th0: signum = 1
        else: signum = -1
        result = []
        for i in range(n0, n1, signum):
            th = pi/2 * (i + 0.5 * (signum + 1))
            a = .5 * self.k1
            b = self.k0
            c = self.thmid - th
            if a == 0:
                u1 = -c/b
                u2 = 1000
            else:
                sqrtdiscrim = sqrt(b * b - 4 * a * c)
                u1 = (-b - sqrtdiscrim) / (2 * a)
                u2 = (-b + sqrtdiscrim) / (2 * a)
            if u1 >= -0.5 and u1 < 0.5:
                result.append(self.arclen * (u1 + 0.5))
            if u2 >= -0.5 and u2 < 0.5:
                result.append(self.arclen * (u2 + 0.5))
        return result

class Curve:
    def __init__(self, segs):
        self.segs = segs
        self.compute()
    def compute(self):
        arclen = 0
        sstarts = []
        for seg in self.segs:
            sstarts.append(arclen)
            arclen += seg.arclen

        self.arclen = arclen
        self.sstarts = sstarts
    def th(self, s, deltas = False):
        u = s / self.arclen
        s = self.arclen * (u - floor(u))
        if s == 0 and not deltas: s = self.arclen
        i = 0
        while i < len(self.segs) - 1:
            # binary search would make a lot of sense here
            snext = self.sstarts[i + 1] 
            if s < snext or (not deltas and s == snext):
                break
            i += 1
        return self.segs[i].th(s - self.sstarts[i])
    def xy(self, s):
        u = s / self.arclen
        s = self.arclen * (u - floor(u))
        i = 0
        while i < len(self.segs) - 1:
            # binary search would make a lot of sense here
            if s <= self.sstarts[i + 1]:
                break
            i += 1
        return self.segs[i].xy(s - self.sstarts[i])
    def find_extrema(self):
        result = []
        for i in range(len(self.segs)):
            seg = self.segs[i]
            for s in seg.find_extrema():
                result.append(s + self.sstarts[i])
        return result
    def find_breaks(self):
        result = []
        for i in range(len(self.segs)):
            pseg = self.segs[(i + len(self.segs) - 1) % len(self.segs)]
            seg = self.segs[i]
            th = clothoid.mod_2pi(pseg.chth + pseg.th1 - (seg.chth - seg.th0))
            print '% pseg', pseg.chth + pseg.th1, 'seg', seg.chth - seg.th0
            pisline = pseg.k0 == 0 and pseg.k1 == 0
            sisline = seg.k0 == 0 and seg.k1 == 0
            if fabs(th) > 1e-3 or (pisline and not sisline) or (sisline and not pisline):
                result.append(self.sstarts[i])
        return result