summaryrefslogtreecommitdiff
path: root/third_party/spiro/curves/poly3.py
blob: daf6f87fe1a52187d1b74c068c8e6f57d88ce610 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Numerical techniques for solving 3rd order polynomial spline systems

# The standard representation is the vector of derivatives at s=0,
# with -.5 <= s <= 5.
#
# Thus, \kappa(s) = k0 + k1 s + 1/2 k2 s^2 + 1/6 k3 s^3

from math import *

def eval_cubic(a, b, c, d, x):
    return ((d * x + c) * x + b) * x + a

# integrate over s = [0, 1]
def int_3spiro_poly(ks, n):
    x, y = 0, 0
    th = 0
    ds = 1.0 / n
    th1, th2, th3, th4 = ks[0], .5 * ks[1], (1./6) * ks[2], (1./24) * ks[3]
    k0, k1, k2, k3 = ks[0] * ds, ks[1] * ds, ks[2] * ds, ks[3] * ds
    s = 0
    result = [(x, y)]
    for i in range(n):
        sm = s + 0.5 * ds
        th = sm * eval_cubic(th1, th2, th3, th4, sm)
        cth = cos(th)
        sth = sin(th)

        km0 = ((1./6 * k3 * sm + .5 * k2) * sm + k1) * sm + k0
        km1 = ((.5 * k3 * sm + k2) * sm + k1) * ds
        km2 = (k3 * sm + k2) * ds * ds
        km3 = k3 * ds * ds * ds
        #print km0, km1, km2, km3
        u = 1 - km0 * km0 / 24
        v = km1 / 24

        u = 1 - km0 * km0 / 24 + (km0 ** 4 - 4 * km0 * km2 - 3 * km1 * km1) / 1920
        v = km1 / 24 + (km3 - 6 * km0 * km0 * km1) / 1920

        x += cth * u - sth * v
        y += cth * v + sth * u
        result.append((ds * x, ds * y))

        s += ds

    return result

def integ_chord(k, n = 64):
    ks = (k[0] * .5, k[1] * .25, k[2] * .125, k[3] * .0625)
    xp, yp = int_3spiro_poly(ks, n)[-1]
    ks = (k[0] * -.5, k[1] * .25, k[2] * -.125, k[3] * .0625)
    xm, ym = int_3spiro_poly(ks, n)[-1]
    dx, dy = .5 * (xp + xm), .5 * (yp + ym)
    return hypot(dx, dy), atan2(dy, dx)

# Return th0, th1, k0, k1 for given params
def calc_thk(ks):
    chord, ch_th = integ_chord(ks)
    th0 = ch_th - (-.5 * ks[0] + .125 * ks[1] - 1./48 * ks[2] + 1./384 * ks[3])
    th1 = (.5 * ks[0] + .125 * ks[1] + 1./48 * ks[2] + 1./384 * ks[3]) - ch_th
    k0 = chord * (ks[0] - .5 * ks[1] + .125 * ks[2] - 1./48 * ks[3])
    k1 = chord * (ks[0] + .5 * ks[1] + .125 * ks[2] + 1./48 * ks[3])
    #print '%', (-.5 * ks[0] + .125 * ks[1] - 1./48 * ks[2] + 1./384 * ks[3]), (.5 * ks[0] + .125 * ks[1] + 1./48 * ks[2] + 1./384 * ks[3]), ch_th
    return th0, th1, k0, k1

def calc_k1k2(ks):
    chord, ch_th = integ_chord(ks)
    k1l = chord * chord * (ks[1] - .5 * ks[2] + .125 * ks[3])
    k1r = chord * chord * (ks[1] + .5 * ks[2] + .125 * ks[3])
    k2l = chord * chord * chord * (ks[2] - .5 * ks[3])
    k2r = chord * chord * chord * (ks[2] + .5 * ks[3])
    return k1l, k1r, k2l, k2r
    
def plot(ks):
    ksp = (ks[0] * .5, ks[1] * .25, ks[2] * .125, ks[3] * .0625)
    pside = int_3spiro_poly(ksp, 64)
    ksm = (ks[0] * -.5, ks[1] * .25, ks[2] * -.125, ks[3] * .0625)
    mside = int_3spiro_poly(ksm, 64)
    mside.reverse()
    for i in range(len(mside)):
        mside[i] = (-mside[i][0], -mside[i][1])
    pts = mside + pside[1:]
    cmd = "moveto"
    for j in range(len(pts)):
        x, y = pts[j]
        print 306 + 300 * x, 400 + 300 * y, cmd
        cmd = "lineto"
    print "stroke"
    x, y = pts[0]
    print 306 + 300 * x, 400 + 300 * y, "moveto"
    x, y = pts[-1]
    print 306 + 300 * x, 400 + 300 * y, "lineto .5 setlinewidth stroke"
    print "showpage"

def solve_3spiro(th0, th1, k0, k1):
    ks = [0, 0, 0, 0]
    for i in range(5):
        th0_a, th1_a, k0_a, k1_a = calc_thk(ks)
        dth0 = th0 - th0_a
        dth1 = th1 - th1_a
        dk0 = k0 - k0_a
        dk1 = k1 - k1_a
        ks[0] += (dth0 + dth1) * 1.5 + (dk0 + dk1) * -.25
        ks[1] += (dth1 - dth0) * 15 + (dk0 - dk1) * 1.5
        ks[2] += (dth0 + dth1) * -12 + (dk0 + dk1) * 6
        ks[3] += (dth0 - dth1) * 360 + (dk1 - dk0) * 60
        #print '% ks =', ks
    return ks

def iter_spline(pts, ths, ks):
    pass

def solve_vee():
    kss = []
    for i in range(10):
        kss.append([0, 0, 0, 0])
    thl = [0] * len(kss)
    thr = [0] * len(kss)
    k0l = [0] * len(kss)
    k0r = [0] * len(kss)
    k1l = [0] * len(kss)
    k1r = [0] * len(kss)
    k2l = [0] * len(kss)
    k2r = [0] * len(kss)
    for i in range(10):
        for j in range(len(kss)):
            thl[j], thr[j], k0l[j], k0r[j] = calc_thk(kss[j])
            k0l[j], k1r[j], k2l[j], k2r[j] = calc_k1k2(kss[j])
        for j in range(len(kss) - 1):
            dth = thl[j + 1] + thr[j]
            if j == 5: dth += .1
            dk0 = k0l[j + 1] - k0r[j]
            dk1 = k1l[j + 1] - k1r[j]
            dk2 = k2l[j + 1] - k2r[j]


if __name__ == '__main__':
    k0 = pi * 3
    ks = [0, k0, -2 * k0, 0]
    ks = [0, 0, 0, 0.01]
    #plot(ks)
    thk = calc_thk(ks)
    print '%', thk
    
    ks = solve_3spiro(0, 0, 0, 0.001)
    print '% thk =', calc_thk(ks)
    #plot(ks)
    print '%', ks
    print calc_k1k2(ks)