summaryrefslogtreecommitdiff
path: root/third_party/spiro/curves/tocubic.py
blob: d70b9a22e2adcfa5790193d8779d192041782ae0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# Some code to convert arbitrary curves to high quality cubics.

# Some conventions: points are (x, y) pairs. Cubic Bezier segments are
# lists of four points.

import sys

from math import *

import pcorn

def pt_wsum(points, wts):
    x, y = 0, 0
    for i in range(len(points)):
        x += points[i][0] * wts[i]
        y += points[i][1] * wts[i]
    return x, y

# Very basic spline primitives
def bz_eval(bz, t):
    degree = len(bz) - 1 
    mt = 1 - t
    if degree == 3:
        return pt_wsum(bz, [mt * mt * mt, 3 * mt * mt * t, 3 * mt * t * t, t * t * t])
    elif degree == 2:
        return pt_wsum(bz, [mt * mt, 2 * mt * t, t * t])
    elif degree == 1:
        return pt_wsum(bz, [mt, t])

def bz_deriv(bz):
    degree = len(bz) - 1
    return [(degree * (bz[i + 1][0] - bz[i][0]), degree * (bz[i + 1][1] - bz[i][1])) for i in range(degree)]

def bz_arclength(bz, n = 10):
    # We're just going to integrate |z'| over the parameter [0..1].
    # The integration algorithm here is eqn 4.1.14 from NRC2, and is
    # chosen for simplicity. Likely adaptive and/or higher-order
    # algorithms would be better, but this should be good enough.
    # Convergence should be quartic in n.
    wtarr = (3./8, 7./6, 23./24)
    dt = 1./n
    s = 0
    dbz = bz_deriv(bz)
    for i in range(0, n + 1):
        if i < 3:
            wt = wtarr[i]
        elif i > n - 3:
            wt = wtarr[n - i]
        else:
            wt = 1.
        dx, dy = bz_eval(dbz, i * dt)
        ds = hypot(dx, dy)
        s += wt * ds
    return s * dt

# One step of 4th-order Runge-Kutta numerical integration - update y in place
def rk4(y, dydx, x, h, derivs):
    hh = h * .5
    h6 = h * (1./6)
    xh = x + hh
    yt = []
    for i in range(len(y)):
	yt.append(y[i] + hh * dydx[i])
    dyt = derivs(xh, yt)
    for i in range(len(y)):
	yt[i] = y[i] + hh * dyt[i]
    dym = derivs(xh, yt)
    for i in range(len(y)):
	yt[i] = y[i] + h * dym[i]
	dym[i] += dyt[i]
    dyt = derivs(x + h, yt)
    for i in range(len(y)):
	y[i] += h6 * (dydx[i] + dyt[i] + 2 * dym[i])

def bz_arclength_rk4(bz, n = 10):
    dbz = bz_deriv(bz)
    def arclength_deriv(x, ys):
        dx, dy = bz_eval(dbz, x)
        return [hypot(dx, dy)]
    dt = 1./n
    t = 0
    ys = [0]
    for i in range(n):
        dydx = arclength_deriv(t, ys)
        rk4(ys, dydx, t, dt, arclength_deriv)
        t += dt
    return ys[0]

# z0 and z1 are start and end points, resp.
# th0 and th1 are the initial and final tangents, measured in the
# direction of the curve.
# aab is a/(a + b), where a and b are the lengths of the bezier "arms"
def fit_cubic_arclen(z0, z1, arclen, th0, th1, aab):
    chord = hypot(z1[0] - z0[0], z1[1] - z0[1])
    cth0, sth0 = cos(th0), sin(th0)
    cth1, sth1 = -cos(th1), -sin(th1)
    armlen = .66667 * chord
    darmlen = 1e-6 * armlen
    for i in range(10):
        a = armlen * aab
        b = armlen - a
        bz = [z0, (z0[0] + cth0 * a, z0[1] + sth0 * a),
              (z1[0] + cth1 * b, z1[1] + sth1 * b), z1]
        actual_s = bz_arclength_rk4(bz)
        if (abs(arclen - actual_s) < 1e-12):
            break
        a = (armlen + darmlen) * aab
        b = (armlen + darmlen) - a
        bz = [z0, (z0[0] + cth0 * a, z0[1] + sth0 * a),
              (z1[0] + cth1 * b, z1[1] + sth1 * b), z1]
        actual_s2 = bz_arclength_rk4(bz)
        ds = (actual_s2 - actual_s) / darmlen
        #print '% armlen = ', armlen
        if ds == 0:
            break
        armlen += (arclen - actual_s) / ds
    a = armlen * aab
    b = armlen - a
    bz = [z0, (z0[0] + cth0 * a, z0[1] + sth0 * a),
          (z1[0] + cth1 * b, z1[1] + sth1 * b), z1]
    return bz

def mod_2pi(th):
    u = th / (2 * pi)
    return 2 * pi * (u - floor(u + 0.5))

def measure_bz(bz, arclen, th_fn, n = 1000):
    dt = 1./n
    dbz = bz_deriv(bz)
    s = 0
    score = 0
    for i in range(n):
        dx, dy = bz_eval(dbz, (i + .5) * dt)
        ds = dt * hypot(dx, dy)
        s += ds
        score += ds * (mod_2pi(atan2(dy, dx) - th_fn(s)) ** 2)
    return score

def measure_bz_rk4(bz, arclen, th_fn, n = 10):
    dbz = bz_deriv(bz)
    def measure_derivs(x, ys):
        dx, dy = bz_eval(dbz, x)
        ds = hypot(dx, dy)
        s = ys[0]
        dscore = ds * (mod_2pi(atan2(dy, dx) - th_fn(s)) ** 2)
        return [ds, dscore]
    dt = 1./n
    t = 0
    ys = [0, 0]
    for i in range(n):
        dydx = measure_derivs(t, ys)
        rk4(ys, dydx, t, dt, measure_derivs)
        t += dt
    return ys[1]

# th_fn() is a function that takes an arclength from the start point, and
# returns an angle - thus th_fn(0) and th_fn(arclen) are the initial and
# final tangents.
# z0, z1, and arclen are as fit_cubic_arclen
def fit_cubic(z0, z1, arclen, th_fn, fast = 1):
    chord = hypot(z1[0] - z0[0], z1[1] - z0[1])
    if (arclen < 1.000001 * chord):
        return [z0, z1], 0
    th0 = th_fn(0)
    th1 = th_fn(arclen)
    imax = 4
    jmax = 10
    aabmin = 0
    aabmax = 1.
    if fast:
        imax = 1
        jmax = 0
    for i in range(imax):
        for j in range(jmax + 1):
            if jmax == 0:
                aab = 0.5 * (aabmin + aabmax)
            else:
                aab = aabmin + (aabmax - aabmin) * j / jmax
            bz = fit_cubic_arclen(z0, z1, arclen, th0, th1, aab)
            score = measure_bz_rk4(bz, arclen, th_fn)
            print '% aab =', aab, 'score =', score
            sys.stdout.flush()
            if j == 0 or score < best_score:
                best_score = score
                best_aab = aab
                best_bz = bz
        daab = .06 * (aabmax - aabmin)
        aabmin = max(0, best_aab - daab)
        aabmax = min(1, best_aab + daab)
        print '%--- best_aab =', best_aab
    return best_bz, best_score

def plot_prolog():
    print '%!PS'
    print '/m { moveto } bind def'
    print '/l { lineto } bind def'
    print '/c { curveto } bind def'
    print '/z { closepath } bind def'

def plot_bz(bz, z0, scale, do_moveto = True):
    x0, y0 = z0
    if do_moveto:
        print bz[0][0] * scale + x0, bz[0][1] * scale + y0, 'm'
    if len(bz) == 4:
        x1, y1 = bz[1][0] * scale + x0, bz[1][1] * scale + y0
        x2, y2 = bz[2][0] * scale + x0, bz[2][1] * scale + y0
        x3, y3 = bz[3][0] * scale + x0, bz[3][1] * scale + y0
        print x1, y1, x2, y2, x3, y3, 'c'
    elif len(bz) == 2:
        print bz[1][0] * scale + x0, bz[1][1] * scale + y0, 'l'

def test_bz_arclength():
    bz = [(0, 0), (.5, 0), (1, 0.5), (1, 1)]
    ans = bz_arclength_rk4(bz, 2048)
    last = 1
    lastrk = 1
    for i in range(3, 11):
        n = 1 << i
        err = bz_arclength(bz, n) - ans
        err_rk = bz_arclength_rk4(bz, n) - ans
        print n, err, last / err, err_rk, lastrk / err_rk
        last = err
        lastrk = err_rk

def test_fit_cubic_arclen():
    th = pi / 4
    arclen = th / sin(th)
    bz = fit_cubic_arclen((0, 0), (1, 0), arclen, th, th, .5)
    print '%', bz
    plot_bz(bz, (100, 400), 500)
    print 'stroke'
    print 'showpage'

# -- cornu fitting

import cornu

def cornu_to_cubic(t0, t1):
    def th_fn(s):
        return (s + t0) ** 2
    y0, x0 = cornu.eval_cornu(t0)
    y1, x1 = cornu.eval_cornu(t1)
    bz, score = fit_cubic((x0, y0), (x1, y1), t1 - t0, th_fn, 0)
    return bz, score

def test_draw_cornu():
    plot_prolog()
    thresh = 1e-6
    print '/ss 1.5 def'
    print '/circle { ss 0 moveto currentpoint exch ss sub exch ss 0 360 arc } bind def'
    s0 = 0
    imax = 200
    x0, y0, scale = 36, 100, 500
    bzs = []
    for i in range(1, imax):
        s = sqrt(i * .1)
        bz, score = cornu_to_cubic(s0, s)
        if score > (s - s0) * thresh or i == imax - 1:
            plot_bz(bz, (x0, y0), scale, s0 == 0)
            bzs.append(bz)
            s0 = s
    print 'stroke'
    for i in range(len(bzs)):
        bz = bzs[i]
        bx0, by0 = x0 + bz[0][0] * scale, y0 + bz[0][1] * scale
        bx1, by1 = x0 + bz[1][0] * scale, y0 + bz[1][1] * scale
        bx2, by2 = x0 + bz[2][0] * scale, y0 + bz[2][1] * scale
        bx3, by3 = x0 + bz[3][0] * scale, y0 + bz[3][1] * scale
        print 'gsave 0 0 1 setrgbcolor .5 setlinewidth'
        print bx0, by0, 'moveto', bx1, by1, 'lineto stroke'
        print bx2, by2, 'moveto', bx3, by3, 'lineto stroke'
        print 'grestore'
        print 'gsave', bx0, by0, 'translate circle fill grestore'
        print 'gsave', bx1, by1, 'translate .5 dup scale circle fill grestore'
        print 'gsave', bx2, by2, 'translate .5 dup scale circle fill grestore'
        print 'gsave', bx3, by3, 'translate circle fill grestore'

# -- fitting of piecewise cornu curves

def pcorn_segment_to_bzs_optim_inner(curve, s0, s1, thresh, nmax = None):
    result = []
    if s0 == s1: return [], 0
    while s0 < s1:
        def th_fn_inner(s):
            if s > s1: s = s1
            return curve.th(s0 + s, s == 0)
        z0 = curve.xy(s0)
        z1 = curve.xy(s1)
        bz, score = fit_cubic(z0, z1, s1 - s0, th_fn_inner, 0)
        if score < thresh or nmax != None and len(result) == nmax - 1:
            result.append(bz)
            break
        r = s1
        l = s0 + .001 * (s1 - s0)
        for i in range(10):
            smid = 0.5 * (l + r)
            zmid = curve.xy(smid)
            bz, score = fit_cubic(z0, zmid, smid - s0, th_fn_inner, 0)
            if score > thresh:
                r = smid
            else:
                l = smid
        print '% s0=', s0, 'smid=', smid, 'actual score =', score
        result.append(bz)
        s0 = smid
    print '% last actual score=', score
    return result, score

def pcorn_segment_to_bzs_optim(curve, s0, s1, thresh, optim):
    result, score = pcorn_segment_to_bzs_optim_inner(curve, s0, s1, thresh)
    bresult, bscore = result, score
    if len(result) > 1 and optim > 2:
        nmax = len(result)
        gamma = 1./6
        l = score
        r = thresh
        for i in range(5):
            tmid = (0.5 * (l ** gamma + r ** gamma)) ** (1/gamma)
            result, score = pcorn_segment_to_bzs_optim_inner(curve, s0, s1, tmid, nmax)
            if score < tmid:
                l = max(l, score)
                r = tmid
            else:
                l = tmid
                r = min(r, score)
            if max(score, tmid) < bscore:
                bresult, bscore = result, max(score, tmid)
    return result

def pcorn_segment_to_bzs(curve, s0, s1, optim = 0, thresh = 1e-3):
    if optim >= 2:
        return pcorn_segment_to_bzs_optim(curve, s0, s1, thresh, optim)
    z0 = curve.xy(s0)
    z1 = curve.xy(s1)
    fast = (optim == 0)
    def th_fn(s):
        return curve.th(s0 + s, s == 0)
    bz, score = fit_cubic(z0, z1, s1 - s0, th_fn, fast)
    if score < thresh:
        return [bz]
    else:
        smid = 0.5 * (s0 + s1)
        result = pcorn_segment_to_bzs(curve, s0, smid, optim, thresh)
        result.extend(pcorn_segment_to_bzs(curve, smid, s1, optim, thresh))
        return result

def pcorn_curve_to_bzs(curve, optim = 3, thresh = 1e-3):
    result = []
    extrema = curve.find_extrema()
    extrema.extend(curve.find_breaks())
    extrema.sort()
    print '%', extrema
    for i in range(len(extrema)):
        s0 = extrema[i]
        if i == len(extrema) - 1:
            s1 = extrema[0] + curve.arclen
        else:
            s1 = extrema[i + 1]
        result.extend(pcorn_segment_to_bzs(curve, s0, s1, optim, thresh))
    return result

import struct

def fit_cubic_arclen_forplot(z0, z1, arclen, th0, th1, aab):
    chord = hypot(z1[0] - z0[0], z1[1] - z0[1])
    cth0, sth0 = cos(th0), sin(th0)
    cth1, sth1 = -cos(th1), -sin(th1)
    armlen = .66667 * chord
    darmlen = 1e-6 * armlen
    for i in range(10):
        a = armlen * aab
        b = armlen - a
        bz = [z0, (z0[0] + cth0 * a, z0[1] + sth0 * a),
              (z1[0] + cth1 * b, z1[1] + sth1 * b), z1]
        actual_s = bz_arclength_rk4(bz)
        if (abs(arclen - actual_s) < 1e-12):
            break
        a = (armlen + darmlen) * aab
        b = (armlen + darmlen) - a
        bz = [z0, (z0[0] + cth0 * a, z0[1] + sth0 * a),
              (z1[0] + cth1 * b, z1[1] + sth1 * b), z1]
        actual_s2 = bz_arclength_rk4(bz)
        ds = (actual_s2 - actual_s) / darmlen
        #print '% armlen = ', armlen
        armlen += (arclen - actual_s) / ds
    a = armlen * aab
    b = armlen - a
    bz = [z0, (z0[0] + cth0 * a, z0[1] + sth0 * a),
          (z1[0] + cth1 * b, z1[1] + sth1 * b), z1]
    return bz, a, b

def plot_errors_2d(t0, t1, as_ppm):
    xs = 1024
    ys = 1024
    if as_ppm:
        print 'P6'
        print xs, ys
        print 255
    def th_fn(s):
        return (s + t0) ** 2
    y0, x0 = cornu.eval_cornu(t0)
    y1, x1 = cornu.eval_cornu(t1)
    z0 = (x0, y0)
    z1 = (x1, y1)
    chord = hypot(y1 - y0, x1 - x0)
    arclen = t1 - t0
    th0 = th_fn(0)
    th1 = th_fn(arclen)
    cth0, sth0 = cos(th0), sin(th0)
    cth1, sth1 = -cos(th1), -sin(th1)

    for y in range(ys):
        b = .8 * chord * (ys - y - 1) / ys
        for x in range(xs):
            a = .8 * chord * x / xs
            bz = [z0, (z0[0] + cth0 * a, z0[1] + sth0 * a),
              (z1[0] + cth1 * b, z1[1] + sth1 * b), z1]
            s_bz = bz_arclength(bz, 10)
            def th_fn_scaled(s):
                return (s * arclen / s_bz + t0) ** 2
            score = measure_bz_rk4(bz, arclen, th_fn_scaled, 10)
            if as_ppm:
                ls = -log(score)
                color_th = ls
                darkstep = 0
                if s_bz > arclen:
                    g0 = 128 - darkstep
                else:
                    g0 = 128 + darkstep
                sc = 127 - darkstep
                rr = g0 + sc * cos(color_th)
                gg = g0 + sc * cos(color_th + 2 * pi / 3)
                bb = g0 + sc * cos(color_th - 2 * pi / 3)
                sys.stdout.write(struct.pack('3B', rr, gg, bb))
            else:
                print a, b, score
        if not as_ppm:
            print

def plot_arclen(t0, t1):
    def th_fn(s):
        return (s + t0) ** 2
    y0, x0 = cornu.eval_cornu(t0)
    y1, x1 = cornu.eval_cornu(t1)
    z0 = (x0, y0)
    z1 = (x1, y1)
    chord = hypot(y1 - y0, x1 - x0)
    arclen = t1 - t0
    th0 = th_fn(0)
    th1 = th_fn(arclen)
    for i in range(101):
        aab = i * .01
        bz, a, b = fit_cubic_arclen_forplot(z0, z1, arclen, th0, th1, aab)
        print a, b

if __name__ == '__main__':
    #test_bz_arclength()
    test_draw_cornu()
    #run_one_cornu_seg()
    #plot_errors_2d(.5, 1.0, False)
    #plot_arclen(.5, 1.0)