/* fuzzylite (R), a fuzzy logic control library in C++. Copyright (C) 2010-2017 FuzzyLite Limited. All rights reserved. Author: Juan Rada-Vilela, Ph.D. This file is part of fuzzylite. fuzzylite is free software: you can redistribute it and/or modify it under the terms of the FuzzyLite License included with the software. You should have received a copy of the FuzzyLite License along with fuzzylite. If not, see . fuzzylite is a registered trademark of FuzzyLite Limited. */ #include "fl/term/GaussianProduct.h" namespace fl { GaussianProduct::GaussianProduct(const std::string& name, scalar meanA, scalar standardDeviationA, scalar meanB, scalar standardDeviationB, scalar height) : Term(name, height), _meanA(meanA), _standardDeviationA(standardDeviationA), _meanB(meanB), _standardDeviationB(standardDeviationB) { } GaussianProduct::~GaussianProduct() { } std::string GaussianProduct::className() const { return "GaussianProduct"; } Complexity GaussianProduct::complexity() const { return Complexity().comparison(1 + 2).arithmetic(9 + 9 + 2).function(2); } scalar GaussianProduct::membership(scalar x) const { if (Op::isNaN(x)) return fl::nan; scalar a = 1.0, b = 1.0; if (Op::isLt(x, _meanA)) { a = std::exp((-(x - _meanA) * (x - _meanA)) / (2.0 * _standardDeviationA * _standardDeviationA)); } if (Op::isGt(x, _meanB)) { b = std::exp((-(x - _meanB) * (x - _meanB)) / (2.0 * _standardDeviationB * _standardDeviationB)); } return Term::_height * a * b; } std::string GaussianProduct::parameters() const { return Op::join(4, " ", _meanA, _standardDeviationA, _meanB, _standardDeviationB) + (not Op::isEq(getHeight(), 1.0) ? " " + Op::str(getHeight()) : ""); } void GaussianProduct::configure(const std::string& parameters) { if (parameters.empty()) return; std::vector values = Op::split(parameters, " "); std::size_t required = 4; if (values.size() < required) { std::ostringstream ex; ex << "[configuration error] term <" << className() << ">" << " requires <" << required << "> parameters"; throw Exception(ex.str(), FL_AT); } setMeanA(Op::toScalar(values.at(0))); setStandardDeviationA(Op::toScalar(values.at(1))); setMeanB(Op::toScalar(values.at(2))); setStandardDeviationB(Op::toScalar(values.at(3))); if (values.size() > required) setHeight(Op::toScalar(values.at(required))); } void GaussianProduct::setMeanA(scalar meanA) { this->_meanA = meanA; } scalar GaussianProduct::getMeanA() const { return this->_meanA; } void GaussianProduct::setStandardDeviationA(scalar sigmaA) { this->_standardDeviationA = sigmaA; } scalar GaussianProduct::getStandardDeviationA() const { return this->_standardDeviationA; } void GaussianProduct::setMeanB(scalar meanB) { this->_meanB = meanB; } scalar GaussianProduct::getMeanB() const { return this->_meanB; } void GaussianProduct::setStandardDeviationB(scalar sigmaB) { this->_standardDeviationB = sigmaB; } scalar GaussianProduct::getStandardDeviationB() const { return this->_standardDeviationB; } GaussianProduct* GaussianProduct::clone() const { return new GaussianProduct(*this); } Term* GaussianProduct::constructor() { return new GaussianProduct; } }