

AS Sertifitseerimiskeskus (Certification Centre Ltd.)

CDigiDoc Programmer’s Guide

Document Version: 3.10

Library Version: 3.10

Last update: 03.02.2015

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 2 / 65

1. Document versions

Document information

Created on 22.01.2013

Reference CDigiDoc Programmer’s Guide

Receiver Sertifitseerimiskeskus AS

Author Veiko Sinivee, Kersti Üts, Kristi Uukkivi

Version 3.10

Version information

Date Version Changes

27.03.2006 2.2.5 The latest version of “DigiDoc C library” created by Veiko
Sinivee

03.02.2012 Initial draft by KnowIT for the new version based on v2.2.5

22.02.2012 3.6 Updated to 3.6 version

22.05.2012 3.6.1 Revised configuration, certificates’ usage and CDigiDoc
utility program’s description

22.01.2013 3.7 Updated to 3.7 version: updated instructions of PKCS#12
(software token) usage; removed EMBEDDED content type
support, added description of signing and
encryption/decryption operations in memory; added
description of signature verification settings; added API
description of decrypting large files, added description of
using CNG API and minidriver for signature creation.

11.12.2013 3.8 Changed the layout of the document for better readability.
Updated according to changes of v3.8 of the library: added
support for Finnish CA certificates, changed the validation
process of signed files (see chap. 5.2); removed utility
program’s command –list.

03.02.2015 3.10 Updated according to changes of version 3.10 of the library.

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 3 / 65

Table of contents

1. Document versions ... 2

2. Introduction ... 5

 About DigiDoc .. 6

 DigiDoc security model .. 6

 Format of digitally signed file ... 7

3. Overview ... 9

 References and additional resources .. 9

 Terms and acronyms ... 10

 Supported functional properties .. 11

 Component model ... 13

 CDigiDoc architecture .. 13

 Dependencies .. 14

4. Configuring CDigiDoc ... 14

 Loading configuration settings ... 14

 Configuration parameters .. 15

5. Using CDigiDoc API .. 20

 Digital signing .. 20

5.1.1 Initialization ... 20

5.1.2 Creating a DigiDoc document .. 20

5.1.3 Adding data files ... 20

5.1.4 Adding signatures ... 22

5.1.5 Adding an OCSP confirmation ... 23

5.1.6 Reading and writing DigiDoc documents ... 24

 Validating signed documents .. 25

5.2.1 Using the main validation method .. 26

5.2.2 Checking for additional errors/warnings ... 26

5.2.2.1 Checking for test signature ... 26

1.1.1.1 Checking for old file formats ... 26

5.2.3 Determining the validation status ... 27

5.2.3.1 Validation status VALID WITH WARNINGS ... 28

5.2.4 Additional information about validation .. 29

5.2.4.1 Overview of validation activities .. 29

 Encryption and decryption ... 30

5.3.1 Composing encrypted documents .. 31

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 4 / 65

5.3.2 Adding recipient info and metadata .. 31

5.3.3 Encryption and data storage .. 33

5.3.4 Parsing and decrypting... 34

6. CDigiDoc utility program ... 36

 General commands ... 36

 Digital signature commands .. 37

 Encryption commands ... 44

 Commands in CGI mode ... 50

7. National and cross-border support ... 51

 National PKI solutions and support ... 51

7.1.1 Supported Estonian identity tokens .. 51

7.1.2 Trusted Estonian Certificate Authorities ... 51

7.1.2.1 Supported SK live hierarchy chains .. 51

7.1.2.2 Supported SK test certificate hierarchy chains ... 53

 Interoperability testing ... 53

7.2.1 DigiDoc framework cross-usability tests .. 53

7.2.2 CDigiDoc API’s usage in CDigiDoc utility program .. 54

8. CDigiDoc library’s implementation notes .. 58

 General implementation notes .. 58

 DIGIDOC-XML 1.3 specific implementation notes .. 59

Appendix 1: CDigiDoc configuration file .. 60

Appendix 2: Signature types .. 64

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 5 / 65

2. Introduction

This document describes CDigiDoc (also known as LibDigiDoc) – the C library for
OpenXadES/DigiDoc system. It is a basic building tool for creating applications handling digital
signatures and their verification.

The digitally signed files are created in “DigiDoc format“ (with .ddoc file extension), compliant
to XML Advanced Electronic Signatures (XAdES), technical standard published by European
Telecommunication Standards Institute (ETSI). CDigiDoc is also capable of
encrypting/decrypting files (signed or unsigned), according to W3C XML Encryption
Recommendation (XML-ENC).

Development of the library can be monitored in GitHub environment: https://github.com/open-
eid/libdigidoc.

This document covers the following information about CDigiDoc:

 Section 2 introduces the OpenXAdES/DigiDoc framework, its general security model
and formats available for digitally signed files.

 Section 3 gives an overview of the CDigiDoc library by describing the supported
functionality and additional features, the general architecture of components and
describes the dependencies.

 Section 4 explains CDigiDoc configuration possibilities.

 Section 5 provides samples for handling digitally signed files by using the CDigiDoc
API’s classes and methods.

 Section 6 explains using the command line utility program of CDigiDoc, including
sample use cases.

 Section 7 gives overview of supported Estonian and cross-border Certificate
Authorities, and describes the interoperability testing of DigiDoc file formats.

 Section 8 gives an overview of CDigiDoc library’s implementation notes which
provide information about specific features of digitally signed files that are not
defined in standards or specification documents but are implemented in CDigiDoc
library.

 Appendix 1 provides a sample digidoc.ini configuration file.

 Appendix 2 describes different digital signature types that can be created with
CDigiDoc library.

https://github.com/open-eid/libdigidoc
https://github.com/open-eid/libdigidoc

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 6 / 65

 About DigiDoc

CDigiDoc library forms a part of the wider OpenXAdES/DigiDoc system framework which
offers a full-scale architecture for digital signature and documents, consisting of software
libraries (C and Java), web service and end-user applications such as DigiDoc Portal and
DigiDoc Client3 according to the following figure:

1 DigiDoc framework

It is easy to integrate DigiDoc components into existing applications in order to allow for

creation, handling, forwarding and verification of digital signatures and support file

encryption/decryption. All applications share a common digitally signed file format (current

version DIGIDOC-XML 1.3) which is a profile of XAdES.

 DigiDoc security model

The general security model of the DigiDoc and OpenXAdES ideology works by obtaining proof
of validity of the signer’s X.509 digital certificate issued by a certificate authority (CA) at the
time of signature creation.

This proof (also named as “time-mark”) is obtained in the format of Online Certificate Status
Protocol (OCSP, [5]) response. Also, the hash of the created signature is sent within the OCSP
request and received back within the response. This allows interpreting of the positive OCSP
response as “at the time I saw this digitally signed file, corresponding certificate was valid”,
meaning that the OCSP response gives proof for the signer certificate’s validity and also proof
of the time when the signature existed. Thus, the time of issuing the OCSP response is
interpreted as trusted signature creation time.

The OCSP response is stored within the signed document. This allows the signing time and
signer certificate’s validity to be validated later on, even after the signer’s certificate has
become invalid.

OCSP

DigiDoc libraries

(C, Java)

WebService

 MSSP

DigiDoc
Client3

DigiDoc
portal

Application Application

CAPI/CSP

CNG/Minidriver

PKCS#11

PKCS#12

XML

ID card

Mobile phone

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 7 / 65

The OCSP service is acting as a digital e-notary confirming signatures created locally with a
smart card. From infrastructure side, this security model requires a standard OCSP responder.
Hash of the signature is placed on the “nonce” field of the OCSP request structure. In order to
achieve the freshest certificate validity information, it is recommended to run the OCSP
responder in “real-time” mode meaning that:

 certificate validity information is obtained from live database rather than from
CRL (Certificate Revocation List)

 the time value in the OCSP response is actual (as precise as possible)

To achieve long-time validity of digital signatures, a secure log system is employed within the
model. All OCSP responses and changes in certificate validity are securely logged to preserve
digital signature validity even after private key compromise of CA or OCSP responder. It is
important to notice that additional time-stamps are not necessary when employing the security
model described:

 time of signing and time of obtaining validity information is indicated in the OCSP
response

 the secure log provides for long-time validity without need for archival
timestamps

2 DigiDoc security model

 Format of digitally signed file

The format of the digitally signed file is based on ETSI TS 101 903 standard called XML
Advanced Electronic Signatures (XAdES). This standard provides syntax for digital
signatures with various levels of additional validity information. CDigiDoc is implementing a
subset of these standards.

In order to comply with the security model described above, the XAdES profile XAdES-X-L is
used in the DigiDoc system but “time-marks” are used instead of “time-stamps” – signing (and
certificate validation) time comes with OCSP response.

This profile:

OCSP CA
database

Secure log

’I just signed the
document using
this certificate’

’When I saw this
signed document, the
corresponding
certificate was valid’

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 8 / 65

 allows for incorporating following signed properties

o Certificate used for signing

o Claimed signing time (the signer’s computer time)

o Signature production place (optional)

o Signer role or resolution (optional)

 incorporates full certificate validity information within the signature

o OCSP response

o OCSP responder certificate

As a result, it is possible to verify signature validity without any additional external information
– the verifier should trust the issuer of signer’s certificate and the OCSP responder’s certificate.

Original files (which were signed) along with the signature(s), validation confirmation(s) and
certificates are encapsulated within container with “SignedDoc” as a root element.

3 SignedDoc container

The library currently offers DIGIDOC-XML document format to be used.

The DIGIDOC-XML document format (currently supported version 1.3) is fully conforming to
XAdES standard (note however that not every single detail allowed in XAdES standard is
supported).

DigiDoc system uses file extension .ddoc to distinguish digitally signed files according to the
described file format. Syntax of the .ddoc file is described in a separate document in detail
(see [1]).

The DIGIDOC-XML document’s container is a single XML file which contains embedded data
file(s) and signature(s). It is possible to add data files to the container by embedding binary
data in base64 encoding (EMBEDDED_BASE64 mode). Embedding pure text or XML
(EMBEDDED mode) and adding only reference to and external file (DETACHED mode) is no
longer supported.

SHA-1 digest type is supported and set automatically.

SignedDoc container

Data files

Signature
value

Certificate of
signer

Validity

confirmation

Certificate of
responder

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 9 / 65

3. Overview

The current chapter gives an overview of CDigiDoc software library by describing the
supported functionality, the general architecture and CDigiDoc library’s dependencies.

 References and additional resources

[1] DIGIDOC-XML 1.3
DigiDoc format specification, version 1.3.0

http://id.ee/public/DigiDoc_format_1.3.pdf

[2] XML-DSIG IETF RFC 3275: XML-Signature Syntax and Processing

http://www.ietf.org/rfc/rfc3275.txt

[3] XAdES ETSI TS 101 903 V1.4.2 (2010-12) – XML Advanced Electronic

Signatures

http://www.etsi.org/deliver/etsi_ts/101900_101999/101903/01.04.0

2_60/ts_101903v010402p.pdf

[4] XML Schema 2 XML Schema Part 2: Data types. W3C Recommendation 02 May

2001 (http://www.w3.org/TR/xmlschema-2/)

[5] RFC2560

Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C., X.509

Internet Public Key Infrastructure: Online Certificate Status

Protocol - OCSP. June 1999

[6] DSA Estonian Digital Signatures Act

http://www.legaltext.ee/et/andmebaas/tekst.asp?loc=text&dok=X30

081K6&keel=en&pg=1&ptyyp=RT&tyyp=X&query=digitaalallkirja

[7] XML-ENC http://www.w3.org/TR/xmlenc-core/

[8] CDOC 1.0 Encrypted DigiDoc Format Specification

http://id.ee/public/SK-CDOC-1.0-20120625_EN.pdf

[9] DigiDocService

Specification

EN: http://sk.ee/upload/files/DigiDocService_spec_eng.pdf

ET: http://www.sk.ee/upload/files/DigiDocService_spec_est.pdf

[10] X.509 V3

Certificate Profile

ETSI TS 102 280 (V1.1.1) - X.509 V3 Certificate Profile for

Certificates Issued to Natural Persons

http://www.etsi.org/deliver/etsi_ts/102200_102299/102280/01.01.01

_60/ts_102280v010101p.pdf

[11] ESTEID profile Certificates on identity card of Republic of Estonia, version 3.3

https://sk.ee/upload/files/ESTEID_profiil_en-3_3.pdf

[12] Institution

certificate profile

Profile of institution certificates and Certificate Revocation Lists,

version 1.3

https://sk.ee/upload/files/SK_Profile%20of%20institution%20certific

ates%20and%20Revocation%20List.pdf

[13] DigiDoc libraries http://id.ee/index.php?id=30486

http://id.ee/public/DigiDoc_format_1.3.pdf
http://www.ietf.org/rfc/rfc3275.txt
http://www.etsi.org/deliver/etsi_ts/101900_101999/101903/01.04.02_60/ts_101903v010402p.pdf
http://www.etsi.org/deliver/etsi_ts/101900_101999/101903/01.04.02_60/ts_101903v010402p.pdf
http://www.w3.org/TR/xmlschema-2/
http://www.legaltext.ee/et/andmebaas/tekst.asp?loc=text&dok=X30081K6&keel=en&pg=1&ptyyp=RT&tyyp=X&query=digitaalallkirja
http://www.legaltext.ee/et/andmebaas/tekst.asp?loc=text&dok=X30081K6&keel=en&pg=1&ptyyp=RT&tyyp=X&query=digitaalallkirja
http://www.w3.org/TR/xmlenc-core/
http://id.ee/public/SK-CDOC-1.0-20120625_EN.pdf
http://sk.ee/upload/files/DigiDocService_spec_eng.pdf
http://www.sk.ee/upload/files/DigiDocService_spec_est.pdf
http://www.etsi.org/deliver/etsi_ts/102200_102299/102280/01.01.01_60/ts_102280v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/102200_102299/102280/01.01.01_60/ts_102280v010101p.pdf
https://sk.ee/upload/files/ESTEID_profiil_en-3_3.pdf
https://sk.ee/upload/files/SK_Profile%20of%20institution%20certificates%20and%20Revocation%20List.pdf
https://sk.ee/upload/files/SK_Profile%20of%20institution%20certificates%20and%20Revocation%20List.pdf
http://id.ee/index.php?id=30486

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 10 / 65

[14] Release notes CDigiDoc library’s release notes (https://github.com/open-

eid/libdigidoc/blob/master/RELEASE-NOTES.txt)

[15] ID-software

GitHub project

https://github.com/open-eid

[16] CDigiDoc GitHub

repository

https://github.com/open-eid/libdigidoc

 Terms and acronyms

CDOC (.cdoc) The term denotes a format of an encrypted DigiDoc document that is based

on XML-ENC profile. The document format has been defined in [8].

CRL Certificate Revocation List, a list of certificates (or more specifically, a list
of serial numbers for certificates) that have been revoked, and therefore
should not be relied upon.

CAPI Microsoft CryptoAPI, Cryptographic Application Programming Interface.

API for implementing cryptographic operations in Windows operating

systems

CNG Cryptography API: Next Generation. Updated version of Microsoft

CryptoAPI (CAPI).

CSP
Microsoft Crypto Service Provider. Software library that implements

Microsoft CryptoAPI (CAPI)

DIGIDOC-XML

(.ddoc)

The term is used to denote a DigiDoc document format that is based on the

XAdES standard and is a profile of that standard.

The profile does not exactly match any subsets described in XadES

standard – the best format name would be “XadES-C-L” indicating that all

certificates and OCSP confirmations are present but there are no “pure”

timestamps.

A DIGIDOC-XML file is basically a <SignedDoc /> container that contains

original data files and signatures.

The file extension for DIGIDOC-XML file format is “.ddoc”, MIME-type is

“application/ddoc”.

Minidriver A device driver for controlling interaction with an identity token in Windows

operating systems.

OCSP Online Certificate Status Protocol, an Internet protocol used for obtaining

the revocation status of an X.509 digital certificate

OCSP

Responder

OCSP Server, maintains a store of CA-published CRLs and an up-to-date

list of valid and invalid certificates. After the OCSP responder receives a

validation request (typically an HTTP or HTTPS transmission), the OCSP

responder either validates the status of the certificate using its own

authentication database or calls upon the OCSP responder that originally

issued the certificate to validate the request. After formulating a response,

the OCSP responder returns the signed response, and the original

https://github.com/open-eid/libdigidoc/blob/master/RELEASE-NOTES.txt
https://github.com/open-eid/libdigidoc/blob/master/RELEASE-NOTES.txt
https://github.com/open-eid
https://github.com/open-eid/libdigidoc

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 11 / 65

certificate is either approved or rejected, based on whether or not the

OCSP responder validates the certificate.

PKCS#11 RSA Laboratories Cryptographic Token Interface Standard

SK AS Sertifitseerimiskeskus (Certification Centre Ltd.). Certificate Authority in

Estonia

X.509 an ITU-T standard for a public key infrastructure (PKI) and Privilege

Management Infrastructure (PMI) which specifies standard formats for

public key certificates, certificate revocation lists, attribute certificates, and

a certification path validation algorithm

XAdES XML Advanced Electronic Signatures, a set of extensions to XML-DSig

recommendation making it suitable for advanced electronic signature.

Specifies precise profiles of XML-DSig for use with advanced electronic

signature in the meaning of European Union Directive 1999/93/EC.

XML-DSig a general framework for digitally signing documents, defines an XML

syntax for digital signatures and is defined in the W3C recommendation

XML Signature Syntax and Processing

 Supported functional properties

CDigiDoc is a library in C programming language offering the following functionality:

 Creating files in DIGIDOC-XML 1.3 format and adding data files.

 Digitally signing the DigiDoc files using smart cards or other supported
cryptographic tokens.

 Adding time marks and validity confirmations to digital signatures using OCSP
protocol.

 Validating the digital signatures.

 Digital encryption and decryption of the DigiDoc files.

Note: older DigiDoc file formats SK-XML, DIGIDOC-XML 1.1 and DIGIDOC-XML 1.2 are
supported only for backward compatibility in case of digital signature verification and data file
extraction operations (creating new files and adding signatures is no longer supported).

The following table describes functional features that are supported with CDigiDoc.

Feature Supported values

Signed DigiDoc

document format

- DIGIDOC-XML 1.3 – the main document format to be used for signature

creation, described in [1].

Note: older DigiDoc file formats SK-XML, DIGIDOC-XML 1.1 and

DIGIDOC-XML 1.2 are supported only for backward compatibility in case

of digital signature validation and data file extraction operations (creating

new files and modifying existing files is not supported).

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 12 / 65

Signature creation

module

- PKCS#11 – the default module for singing with smart card (e.g.

Estonian ID card or any other smartcard provided that you have the

external native PKCS#11 driver for it).

- PKCS#12 – module for signing with a software token.

- CNG - Microsoft CNG API and minidriver for signing with smart card in

Windows environment. A dialog window is opened for the user to
choose the signing certificate and enter PIN code.

Cryptographic

token type

- Smart card, e.g. Estonian ID card. Supported signature creation module

is PKCS#11 and CNG/minidriver.

- Software token - a PKCS#12 container (.p12 or .pfx) file which includes

a certificate and accompanying public and private keys in a single file.

The private key is protected with a password-based symmetric key. The

token is named “software token” as it is stored in the file system and not

on a smartcard or other physical cryptographic device. Supported

signature creation module is PKCS#12. Note that the signature that is

created with a software token is a technical signature and is expected to

produce verification error messages (see also Appendix 2).

- USB cryptostick - Aladdin eToken device. Note that the usage of this

token with CDigiDoc library is tested only indirectly via DigiDoc3 Client

application.

Public-key

algorithm
- RSA

Encrypted

document format
- XML-ENC 1.0

Further information about specific functional features that are not strictly defined in
specification documents but are implemented in CDigiDoc library can be found from chapter
“8 CDigiDoc library’s implementation notes”.

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 13 / 65

 Component model

The figure below describes the architecture of software and hardware components that are
used when creating signatures with CDigiDoc library when using PKCS#11 module.

4 Sample CDigiDoc implementation using PKCS#11/ smart cards for digital signing

Component Description

OpenSC Set of libraries and utilities to work with smart cards, implementing

PKCS#11

PKCS#11 Widely adopted platform-independent API to cryptographic tokens (HSMs

and smart cards), a standard management module of the smart card and its

certificates

PC/SC Standard communication interface between the computer and the smart

card, a cross-platform API for accessing smart card readers

IFDHandler Interface Device Handler for CCID readers

CCID USB driver for Chip/Smart Card Interface Devices

Reader Device used for communication with a smart card

Note that in case of Windows environment, there can be two instances of the library installed
concurrently. If you download and install the library’s distribution package then it is stored to
“c:\Program Files\Estonian ID Card Development\libdigidoc” directory by default. However, if
you have DigiDoc Client3 program installed then the library is also included in its installation
files (“c:\Program Files\Estonian ID Card” directory by default). Note that conflicts could occur
between the two installations.

 CDigiDoc architecture

The CDigiDoc library consists of three kinds of components:

PC/SC

OpenSC

CDigiDoc

PKCS#11

Reader

CCID

Reader

IFD
Handler

C Application PKCS#11 Module Host operating
system & Hardware

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 14 / 65

 Data structures – declarations of data structures can be found in file DigiDocLib.h.

 Constants – a number of constants are used by the library, including error codes.
Their definitions can be found in files DigiDocLib.h and DigiDocError.h.

 Functions – defined in *.c files of the library. Functions of public interest have been
declared in file DigiDocLib.c.

For additional information about the functions and data structures of CDigiDoc library, see the
full API description that is included in the CDigiDoc library’s installation package, in directory
/documentation/api.

 Dependencies

CDigiDoc depends on the libraries listed below.

Base Component Description

OpenSSL Used for validating certificates and digest values. Source code is

available from: http://www.openssl.org/

libxml2 XML parser. Source code is available from: http://www.xmlsoft.org/

Zlib Compression library. Source code is available from: http://zlib.net/

iconv Used for encoding. Source code is available from:

http://www.gnu.org/software/libiconv/

4. Configuring CDigiDoc

 Loading configuration settings

CDigiDoc uses functions in DigiDocConfig.h/c source files for reading configuration data from
property files. Sample configuration files are included in the library’s installation package.

In Windows environment, the configuration file is named digidoc.ini, in Linux environment the
file is named digidoc.conf.

Configuration settings may be loaded from different configuration files if the respective files
are provided in system. Every subsequent configuration file complements the already present
parameter values (i.e. doesn’t delete the previous entries). CDigiDoc looks for configuration
files in the following sequence:

1) system directory - C:\Windows\digidoc.ini in case of Windows environment or
/etc/digidoc.conf in case of Linux. Specifies global settings that have effect on all the
users of the computer.

2) user’s home directory - c:\Users\<username>\digidoc.ini or
/home/<username>/.digidoc.conf (notice the '.'), according to your environment.

3) current working directory - digidoc.ini or digidoc.conf, according to your environment.

4) in case of utility program, the configuration file that is provided with –config
command.

5) in case of Windows environment, the Windows registry entries.

It is also possible to use a different configuration file location than the default. In that case, the
configuration file’s full filename and path should be passed to initConfigStore() function defined
in DigiDocConfig.h or in case of CDigiDoc utility program, the file’s location should be passed
to the program with “–config” parameter (see section 4 for more information).

http://www.openssl.org/
http://www.xmlsoft.org/
http://zlib.net/
http://www.gnu.org/software/libiconv/

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 15 / 65

Note that if a configuration file is passed directly to initConfigStore() function or CDigiDoc utility
program then this file is used over other files that might be stored in the default location(s).

For a sample configuration file provided with CDigiDoc, see Appendix 1.

 Configuration parameters

Below is an overview of the configuration file’s main sections and entries. The following color
notation is used for specific parameter values:

 bold for default values which do not usually need to be changed by the user

 purple for indicating values which should be checked and modified according to user

 # blue for listing possible alternatives, where applicable

PKCS#11 driver settings

If using the smart card over PKCS#11 module for creating signatures, then you must specify
the following parameters according to your signature device here:

Parameter Comments

DIGIDOC_DEFAULT_DRIVER
Specifies the default PKCS#11 driver library that is
used to communicate with the smart card.
1

DIGIDOC_DRIVERS

Number of PKCS#11 drivers registered in the
configuration file. Only one PKCS#11 driver at a time
should be registered in a configuration file.
1

DIGIDOC_DRIVER_1_NAME

Name of the registered PKCS#11 driver library
OpenSC

DIGIDOC_DRIVER_1_DESC

PKCS#11 driver’s description
OpenSC projects PKCS#11 driver

DIGIDOC_DRIVER_1_FILE

PKCS#11 driver library’s filename
opensc-pkcs11.dll (used in Windows environment)
opensc-pkcs11.so (used in Linux environment)

OCSP responder settings

This DIGIDOC_OCSP_RESPONDER_URL setting applies to your default OCSP responder
address when no other OCSP responder address for the CA is found in the OCSP responder
data registered in your configuration file entries.

The default OCSP responder has been set to http://ocsp.sk.ee which can be used with real-
life Estonian ID cards.

Parameter Description

DIGIDOC_OCSP_URL
OCSP responder address
http://ocsp.sk.ee

Settings for signing OCSP requests or not

Whether you need to sign the OCSP requests sent to your OCSP responder or not depends
on your responder.

Some OCSP servers require that the OCSP request is signed. To sign the OCSP request, you
need to obtain and specify the certificates, which will be used for signing.

For example, accessing the SK’s OCSP Responder service by private persons requires the
requests to be signed (limited access certificates can be obtained through registering for the

http://ocsp.sk.ee/

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 16 / 65

service) whereas in case of companies/services, signing the request is not required if having
a contract with SK and accessing the service from specific IP address(es).

By default, this parameter value is set to “false” – i.e. the OCSP requests will not be signed.

If setting this to “true”, you will also need to provide your access certificate’s file location and
password that have been issued to you for this purpose.

Parameter Description

SIGN_OCSP
Specifies if OCSP requests are signed or not. Possible
values: true – signed; false – not signed.
false

DIGIDOC_PKCS_FILE
Specifies your access certificate’s PKCS#12 container
location and filename, e.g.
C:\temp\369787.p12d

DIGIDOC_PKCS_PASSWD Specifies your access certificate’s PKCS#12 container’s
password, e.g. m15eTGpA

HTTP proxy settings*

 *only necessary if using a proxy to access internet. Please note that configuring the following
proxy settings has only been tested with DigiDoc Client3 program.

Parameter Description

USE_PROXY
Specifies whether proxy is used. Possible values: true –
used; false – not used.
false

DIGIDOC_PROXY_HOST Specifies the proxy hostname, e.g. proxy.example.net

DIGIDOC_PROXY_PORT Specifies the proxy port, e.g. 8080

DIGIDOC_PROXY_USER Specifies proxy server’s username

DIGIDOC_PROXY_PASS Specifies proxy server’s password

CA certificates

The CA certificates are used to check the signer’s certificate’s validity. The certificates have
to be in PEM format.

By default, the Estonian1 CA certificates (both live and test certificates) have been registered
in the CDigiDoc configuration file. The Estonian live CA and OCSP certificate files have been
included in the CDigiDoc distribution.

Estonian test certificates can be installed with a package accessible from
https://installer.id.ee/media/windows/Eesti_ID_kaart_testsertifikaadid.msi.

More information about the supported CA-s and certificates can be found from chapter “7.1
National PKI solutions and support”.

Note: test certificates should not be used in live applications as the CDigiDoc library does not
give notifications to the user in case of test signatures (since the library’s version v3.8, the
utility program displays test signature warning to the user).

Parameter Description

CA_CERT_PATH
Location of CA certificates. Supported Estonian CA
certificates are included in CDigiDoc’s installation

1 Versions 3.8 and v3.9 of the library included configuration entries of Finnish CA certificates. The
entries were removed in v3.10 - it is recommended to use BDOC format and relevant software
instead when creating signatures with Finnish ID-cards.

https://installer.id.ee/media/windows/Eesti_ID_kaart_testsertifikaadid.msi

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 17 / 65

package and will be located in the installation directory,
e.g.
C:\Program Files\Estonian ID Card
Development\libdigidoc\certs

CA_CERTS
Number of CA certificates registered in the configuration
file, e.g. 16

CA_CERT_1
…
CA_CERT_n

Name of a certificate file, e.g.
ESTEID-SK 2007.crt

CA_CERT_1_CN
…
CA_CERT_n_CN

Certificate’s common name, e.g.
ESTEID-SK 2007

OCSP responder certificates

The following details should be provided for each OCSP Responder when OCSP responses
are used in signature creation and verification. The certificates have to be in PEM format.

The DIGIDOC_OCSP_RESPONDER_CERT_n_URL parameter is optional and has to be
specified only in case of OCSP responder certificates which are used for testing purposes. In
case of OCSP responders that correspond to test certificates registered in the CDigiDoc
configuration file, the OpenXAdES OCSP Responder URL has been provided
(http://www.openxades.org/cgi-bin/ocsp.cgi). For more information on using the OpenXAdES
testing environment, please refer to http://www.id.ee/?lang=en&id=35755.

Parameter Description

DIGIDOC_OCSP_RESPONDER_CERTS
Number of OCSP Responder certificates
registered in the configuration file, e.g. 18

DIGIDOC_OCSP_RESPONDER_CERT_1
…
DIGIDOC_OCSP_RESPONDER_CERT_n

OCSP Responder certificate file’s name, e.g.
EID-SK OCSP 2006.crt

DIGIDOC_OCSP_RESPONDER_CERT_1_1
…
DIGIDOC_OCSP_RESPONDER_CERT_n_n

Additional certificate for the OCSP Responder,
can be used if the alternative certificate is about
to expire and new certificate is not yet valid, e.g.
EID-SK OCSP.crt

DIGIDOC_OCSP_RESPONDER_CERT_1_CN
…
DIGIDOC_OCSP_RESPONDER_CERT_n_CN

Name of the specific OCSP responder, e.g.
EID-SK OCSP RESPONDER

DIGIDOC_OCSP_RESPONDER_CERT_1_CA
…
DIGIDOC_OCSP_RESPONDER_CERT_n_CA

Name of the CA for the specific OCSP responder,
e.g. EID-SK

DIGIDOC_OCSP_RESPONDER_CERT_1_URL
…
DIGIDOC_OCSP_RESPONDER_CERT_n_URL

Address for the OCSP responder, has to be
specified in case of OCSP responders for test
certificates, e.g.
http://www.openxades.org/cgi-bin/ocsp.cgi

Encryption settings

Parameter Description

DENC_COMPRESS_MODE

Compression mode of the original data before
encryption. Possible values are 0 – always compress, 1
– never compress, 2 – best effort (compression is used
only if it results in reduced data size).
0
1, # 2
Note that in CDigiDoc utility program, “always
compress” mode is used by default.

http://www.openxades.org/cgi-bin/ocsp.cgi
http://www.id.ee/?lang=en&id=35755

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 18 / 65

Debugging settings

Parameter Description

DEBUG_LEVEL
Specifies the amount of debugging information printed
out during execution. Possible value range: 0 – 9, e.g.
3

DEBUG_FILE

Full filename and path of debugging log file. If the
parameter is set then debugging output is written to the
specified file, e.g.
c:\Temp\debug.log
Note that the directory has to exist before debugging,
otherwise the file is not created.

Signature verification settings

Parameter Description

CHECK_OCSP_NONCE

Specifies if the OCSP response’s nonce field’s ASN.1
structure is checked during signature verification. By
default, the value is set to false in order to support
verification of DigiDoc files created with CDigiDoc
library’s version below v3.7.
false
true

Note: The ASN.1 prefix specifies the digest algorithm that was used to calculate the nonce
field’s value, the prefix is mandatory according to RFC2560 specification (see also [5]). If the
ASN.1 prefix is checked then it must contain the octet string ASN.1 identificator (0x04 0x14 in
case of DDOC 1.3).

Data file content type setting

Parameter Description

EMBEDDED_XML_SUPPORT

Specifies if CDigiDoc allows handling ddoc files that
contain payload data as pure text or XML (data file
content has been added in EMBEDDED mode). Should
be used only to add backward compatibility for reading
and validating EMBEDDED ddoc files. By default,
EMBEDDED content mode is not supported (expected
to produce a respective error message).
Possible values are: false – not supported, true –
supported.

Configuring software token usage

CDigiDoc supports using software tokens (PKCS#12 files) for creating technical signatures
and decrypting files.

 No additional configuration settings have to be applied in case of decrypting with
software token.

 In case of digital signing with software token, apply the following settings in
CDigiDoc configuration file:

DIGIDOC_SIGNATURE_SLOT=0
KEY_USAGE_CHECK=0

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 19 / 65

Note that when verifying signatures that are created with the parameter value
“KEY_USAGE_CHECK=0”, an error message “Error: 39 - Signer’s cert does not have non-
repudiation bit set!” is produced.

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 20 / 65

5. Using CDigiDoc API

 Digital signing

CDigiDoc library offers creating, signing and verification of digitally signed documents,
according to XAdES (ETSI TS101903) and XML-DSIG standards. In the next chapters a short
introduction is given on the main API calls used to accomplish the above mentioned.

5.1.1 Initialization

Firstly, define the required structures:

SignedDoc* pSigDoc;

This structure reflects the file format of DigiDoc. All other relevant structures are part of this
basic structure.

DataFile* pDataFile;

One DataFile structure corresponds to one original data file (file-to-be-signed) in DigiDoc
container. One DigiDoc container can incorporate multiple data files. The data files are
embedded in the DigiDoc container.

Initialize the library with the following function:

initDigiDocLib();

This ensures all OpenSSL library parameters are properly initialized.

5.1.2 Creating a DigiDoc document

DigiDoc structure should first be created in memory:

SignedDoc_new(&pSigDoc,
DIGIDOC_XML_1_1_NAME, // format of the DigiDoc document
DIGIDOC_XML_1_3_VER); // default version number

Values of the constants above are defined as “DIGIDOC-XML” and “1.3” (in DigiDocLib.h
source file).

Note: the functionality of creating new files in older DigiDoc file formats SK-XML, DIGIDOC-
XML 1.1 and DIGIDOC-XML 1.2 is no longer supported.

In the following sections, we add a data file and a signature to the DigiDoc structure before
writing it into an output file.

5.1.3 Adding data files

In order to add a data file to a container, the container has to be unsigned and there shouldn’t
be an existing data file with the same name in the container. Note that only the data file name
without path is saved in the document (‘/’ and ‘\’ characters are not allowed in the data file’s
name).

Data files can be added to a DigiDoc container in two alternative ways:

 by reading the data from a file on the disk and using temporary files to store any
intermediary data;

 by using only internal memory buffers (e.g. data to be added has been generated
dynamically or has been read from a database).

1. Adding a data file by reading the file from disk and storing intermediary data in temporary
files

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 21 / 65

Firstly, call the function Datafile_new(). The function creates a new DataFile element and
saves the original data file in DigiDoc container:

DataFile_new(&pDataFile, // data file to be added
pSigDoc, // DigiDoc structure to which the data file is added
NULL, // data file’s id
infile, // data file name and path

 CONTENT_EMBEDDED_BASE64, // file embedding option
mime, // mime type of the data file
0, NULL, 0, NULL, // optional parameters
CHARSET_UTF_8); // fixed constant for DigiDoc character encoding

Third parameter in the abovementioned function is a unique identification of the data file in
the DigiDoc document. If value NULL is used then the library generates it automatically.

Fourth parameter is the name of the data file. It is recommended to include full path in this
parameter; the path is removed when writing the file to DigiDoc container.

Fifth parameter reflects how data files are embedded in the DigiDoc container. The
supported embedding option is CONTENT_EMBEDDED_BASE64 (defined in DigiDocLib.h) –
contents of the data file are encoded using base64-encoding before merging it into DigiDoc
container.

Sixth parameter is a MIME type of the data file. For example "application/msword” or
“application/pdf”, depending on the type of the data file.

In most cases, the next four parameters should be left to the library to determine. The
parameters determine:

 size of the original file in bytes,

 hash of the original file,

 size of the hash of the original file,

 type of hash algorithm (only SHA-1 is supported).

To calculate the values of these four parameters, call the following function:

calculateDataFileSizeAndDigest(pSigDoc, pDataFile->szId, infile,
DIGEST_SHA1);

This function reads the data file from disk, calculates and adds these four values to section
pDataFile->szId based on file name given in the third parameter. DIGEST_SHA1 is the only
supported hash algorithm.

It is possible to add additional extra XML attributes to the data file, function
addDataFileAttribute() is used for that. For example:

addDataFileAttribute(pDataFile, "ISBN", "000012345235623465");
addDataFileAttribute(pDataFile, "Owner", "CEO");

The first parameter is a pointer to original file structure, followed by the attribute’s name
and value. The data is going to be added in UTF-8 encoding.

2. Adding data by using internal memory buffers (no data is stored on the disk)

Use the DigiDocMemBuf structure to hold the data to be added. Note that the fields of
DigiDocMemBuf structure should be initialised with value 0:

DigiDocMemBuf mbuf; // memory buffer to hold the data
mbuf.pMem = 0; // functions will assign allocated memory address here
mbuf.nLen = 0; // length of data in number of bytes

It is possible to assign data to DigiDocMemBuf as follows:

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 22 / 65

- ddocMemAssignData() – assigns data to DigiDocMemBuf memory buffer and
releases previous data content if necessary; ddocMemAppendData() – appends
data to memory buffer and increases its length accordingly.

The functions are defined in source file DigiDocMem.h and can be used, for
example, to assign data that has been read from database or generated
dynamically.

- function ddocReadFile() defined in DigiDocConfig.h – reads data from an input file
and assigns it to DigiDocMemBuf memory buffer.

Add the data in memory buffer to DigiDoc container with the following function (defined in
DigiDocObj.h):

createDataFileInMemory(&pDataFile, // structure of the data file to be added
*ppSigDoc, // DigiDoc structure to which the data file is added
NULL, // data file’s id
infile, // data file name and path
CONTENT_EMBEDDED_BASE64, // file embedding option
mime, // mime type of the data file
mbuf.pMem, // memory buffer’s data
mbuf.nLen); // memory buffer’s size

The function creates a new DataFile element, adds the data and its hash value (SHA-1 is
supported) to DigiDoc container.

The first six parameters of the function above have the same meaning as in function
DataFile_new() described in the previous point.

The last two input parameters specify the data in memory buffer and the buffer’s size.

After the new DataFile element has been created and added to the DigiDoc container, you
can add additional attributes to it with function addDataFileAttribute() (described in the
previous point).

Memory of the data buffer should be freed after the data has been added:

ddocMemBuf_free(&mbuf);

5.1.4 Adding signatures

You can sign either by:

 using an Estonian ID card or

 any other smartcard provided that you have the external native language PKCS#11
driver for it

 using a software token (PKCS#12 file)

 calculate the signature in some external program (web-application?) and then add
the signature value to digidoc document.

Note: the functionality of adding signatures is no longer supported in case of older DigiDoc file
formats SK-XML, DIGIDOC-XML 1.1 and DIGIDOC-XML 1.2.

SignatureInfo structure is needed to incorporate the necessary information about the signature
before it can be created:

SignatureInfo* pSigInfo;

Signing can be done by using the function:

signDocumentWithSlotAndSigner(SignedDoc* pSigDoc, // SignedDoc structure
 // to which the signature is added
SignatureInfo** ppSigInfo, // SignatureInfo structure

 const char* pin, // pin2 in case of Estonian ID cards

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 23 / 65

const char* manifest, // signer’s role / resolution (optional)
 const char* city, // signature production place (optional)

const char* state, const char* zip, const char* country,
 int nSlot, // specifies the signer’s private key’s slot

int nOcsp, // add OCSP confirmation or not
int nSigner, // signing module: 1->PKCS11, 2->CNG, 3->PKCS12
const char* szPkcs12FileName); // PKCS#12 file name

Optional parameter manifest may be used to define the signer’s role and resolution. The string
can contain only the signer’s role or role along with the signer’s resolution, separated with a
slash character, i.e. “role / resolution”. The value will be written to a single <ClaimedRole>
xml element in the file. When adding the signer’s resolution then role must also be added.
Note that during signature validation, at most two <ClaimedRole elements are allowed due to
historical reasons.

Optional parameters city, state, zip and country may be used to specify the signature
creation location.

Parameter nSlot indicates the sequence number (counting from zero) of the current signing
certificate among all signature certificates on the identity token. In case of Estonian ID cards,
there is one signature certificate and the signature slot value is 0 (which is also the default slot
value). When operating with multiple smartcards on the same system then you may need to
specify a different slot. By default, in this case, the signature slots are numbered as follows:

slot 0 – signature slot of the 1st smartcard

slot 1 – signature slot of the 2nd smartcard

In case of signing with a software token (PKCS#12 file) then firstly the appropriate
configuration settings should be applied (see section 3.4, subsection “Configuring software
token usage”) and slot value 0 should be used.

Parameter nOcsp can be used to specify whether an OCSP confirmation is added to the
signature or not. The default value is 1, meaning that OCSP confirmation is automatically
added to the signature after its creation. Value 0 indicates that the confirmation is not added.

Parameter nSigner specifies the module that is used for accessing the signature token.
Possible values for the parameter are as follows:

 int nSigner = 1 - signing is done via PKCS#11 module which is the default module
for singing with smart card.

 int nSigner = 2 – Microsoft CNG API and minidriver for signing with smart card in
Windows environment. A dialog window is opened for the user to choose the signing
certificate and enter PIN code.

 int nSigner = 3 - signing is done via PKCS#12 module, to be used in case of creating
signatures with software tokens (PKCS#12 files).

Parameter szPkcs12FileName should be specified only when signing with a software token
via PKCS#12 module (i.e. the nSigner parameter has been set to 3).

The function signDocumentWithSlotAndSigner() creates a new SignatureInfo structure and
adds information about the data files to be signed and optional metadata of the signature (role
of the signer and signature production place) to the structure. Then the signature value is
calculated and stored. Finally, an OCSP confirmation is added to the signature if the value of
nOcsp parameter indicates it.

5.1.5 Adding an OCSP confirmation

OCSP protocol is used to get validity confirmation from OCSP Responder to prove that
certificate was valid at the time of signing.

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 24 / 65

It is possible to add an OCSP confirmation to a signature during its creation with function
signDocumentWithSlotAndSigner() - value of parameter nOcsp has to be set to “1” (as
described in the previous section).

Alternatively, you can add the confirmation by calling out the appropriate function yourself:

// Get the SignatureInfo element of the signature to be confirmed
// according to the signature’s identificator

pSignInfo = getSignatureWithId(pSigDoc, szSignId);

// Get the OCSP confirmation

notarizeSignature(pSigDoc, pSignInfo);

Information about the signer’s certificate CA and its respective OCSP responder is retrieved
from CDigiDoc’s configuration file. CA and OCSP Responder data have to be registered in the
configuration file and the respective certificates have to be stored in the file system.

Note: there are also alternative functions for adding an OCSP confirmation to a signature but
it is recommended to use the notarizeSignature() function described above. The function
enables handling cases when the signer’s certificate and OCSP responder’s certificate are
issued by different CAs and if there are several CA certificates with matching CN names.

Note: when verifying a signature that has no OCSP confirmation, an error message “Error:
128 - Signature has no OCSP confirmation!” is produced.

5.1.6 Reading and writing DigiDoc documents

Reading DigiDoc documents

It is possible to read an existing DigiDoc document from a file stored in the file system or from
an internal memory buffer (e.g. buffer that stores DigiDoc document’s data fetched from a
database).

1. Opening and reading a DigiDoc document from disk

Use the function:

int ddocSaxReadSignedDocFromFile(SignedDoc** ppSigDoc,// DigiDoc structure
const char* szFileName, // input file
int checkFileDigest,
long lMaxDFLen);

Parameter checkFileDigest is a flag indicating whether checking hash value(s) of original
file(s) is required at the time of opening. Parameter lMaxDFLen can be used to specify
the maximum size of DataFile content to be cached in memory.

2. Opening and reading DigiDoc document from a memory buffer

Use the DigiDocMemBuf structure to hold the initial data (see also section “3.6.3 Adding
data files”, under the second point for additional information about initialising and using
DigiDocMemBuf):

DigiDocMemBuf mbuf; // memory buffer to hold the data

Define a SignedDoc structure for holding the DigiDoc document’s data that is read from
buffer:

SignedDoc* pSigDoc;

Read the DigiDoc document from DigiDocMemBuf buffer by using the following function:

ddocSaxReadSignedDocFromMemory(&pSigDoc, // structure representing the
 //DigiDoc document
mbuf.pMem, // memory buffer’s data
mbuf.nLen, // memory buffer’s size

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 25 / 65

mbuf.nLen + 1);//max size of DataFile content to be cached in memory

Writing DigiDoc documents

DigiDoc documents can be created in two alternative ways:

 creating the output (new or modified) DigiDoc document and writing it to a file on
disk;

 creating the output (new or modified) DigiDoc document and storing it in internal
memory buffer (no data is written to disk).

1. Writing the output DigiDoc document to a file on disk

For creating a file in DigiDoc format and writing it to a file, the following function should be
used:

createSignedDoc(pSigDoc, // structure representing the DigiDoc document
oldfile, // specifies existing DigiDoc file, if necessary
outfile); // output file’s name

The “oldfile” parameter value can be set to NULL if you are creating a new DigiDoc
document from scratch. If you have read in an existing DigiDoc document to modify it (e.g.
add signature(s) or data file(s)) and now try to write it to an output file then you have to
specify the existing DigiDoc file’s path and filename in the “oldfile” parameter. Otherwise
the data file contents from the existing DigiDoc file might not be copied to the new container.

2. Writing the output DigiDoc document to an internal memory buffer

Use the DigiDocMemBuf structure for storing the output DigiDoc document’s data (see also
section “3.6.3 Adding data files”, under the second point for additional information on
initialising and using DigiDocMemBuf):

DigiDocMemBuf* pMBuf; // output buffer

Write the created or modified DigiDoc container to a memory buffer by using the following
function:

createSignedDocInMemory(SignedDoc* pSigDoc, // structure representing
 // the DigiDoc document

const char* oldfile, // specifies existing DigiDoc file, if necessary
DigiDocMemBuf* pMBuf); // memory buffer for storing the output data

The “oldfile” parameter in the abovementioned function should be used according to the
analogous parameter in createSignedDoc() function (described in the previous point).

Memory should be released after end of working with DigiDoc structure:

SignedDoc_free(pSigDoc);

This also releases memory that is used for keeping the data files.

After finishing work with CDigiDoc, then the last task is to shut down the library:

finalizeDigiDocLib();

 Validating signed documents

Validation of a signed DigiDoc document consists of three main steps:

1. Call out the main validation method of the library.

a. If there are multiple validation errors then get the errors list.

2. Check for additional errors/warnings (separate implementation);

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 26 / 65

3. Determine the validation status of the document (according to the returned error
codes and validation status priorities).

Note: steps 1a, 2 and 3 are additions to the validation process since the library’s version v3.8.

5.2.1 Using the main validation method

Firstly, validate the DigiDoc document and its OCSP confirmation with the function:

int verifySignatureAndNotary(SignedDoc* pSigDoc,
 SignatureInfo* pSigInfo, const char* szFileName);

If the main validation method returns error code 173 (ERR_UNKNOWN_ERROR,
DigiDocError.h) then multiple errors were found by the validation process.

To get the list of all error codes, you can use functions getLastErrorsIdx(), getErrorsInfo() and
getErrorString() (in source file DigiDocError.c). For example, you can print out the error list
with details as follows:

ErrorInfo* pErr;
for(n = getLastErrorsIdx(); n >= 0; n--) {
 pErr = getErrorsInfo(n);
 pErrStr = getErrorString(pErr->code);
 fprintf(stdout, "\nWARNING: %d | %s | %s | %d | %s | %s”,
 pErr->code, pErrStr, pErr->26ilename, pErr->line,

pErr->assertion, errorClass[getErrorClass(pErr->code)]);
}

5.2.2 Checking for additional errors/warnings

There are validation cases that are not checked in the default validation method of the library,
instead, separate methods for checking the specific situations have to be called out by the
library’s user. In CdigiDoc library, checking for a test signature and old file format must be
done separately.

The following subchapters describe how these checks can be implemented. After checking for
additional errors/warnings, collect all of the error codes and continue with determining the
validation status as described in the next chapter.

5.2.2.1 Checking for test signature

Test signature is a signature that has been created by using test certificates (e.g. signer’s
certificate and/or OCSP responder server’s certificate have been issued for testing purposes).

Sample code for checking for test signature can be found from cdigidoc.c source file, method:

cmdVerify(SignedDoc* pSigDoc); //utility program’s command –verify

For identifying if a certificate is a SK issued test certificate, you can use the following method
as a sample code:

checkTestCert(X509* pCert);

The identification is done with comparing certificate policy OID values.

1.1.1.1 Checking for old file formats

You can use the sample code for checking for old formats that is implemented in cdigidoc.c
utility program’s method:

 checkOldFormatVer(SignedDoc* pSigDoc);

Error handling sample code can be found from cdigidoc.c utility program’s method:

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 27 / 65

cmdReadDigiDoc(SignedDoc** ppSigDoc, DencEncryptedData** ppEncData, int nMode);
//utility program’s command –in

5.2.3 Determining the validation status

After validating the signed DigiDoc document, the validation result must be determined by the
library’s user. Final validation result must be one of the possible validation statuses that are
described in the table below, the status must be chosen according to its priority.

The validation status priorities have to be applied in two cases:

1. Returning a validation result of a single signature:

If there are more than one validation errors that occur when validating a single

signature in DigiDoc container then the overall status of the signature should be

chosen according to the status priorities.

2. Returning a validation result of the whole DigiDoc container:

If there are more than one signatures in a DigiDoc container and the signatures have

different validation statuses or validation of the container structure returns a different

status then the overall status of the DigiDoc file should be chosen according to the

status priorities.

NB! User of the library has to determine the validation status according to the error

code that is returned by the library’s validation method.

Priority Status Error code Description

1
INDETERMINA
TE/UNKNOWN

36

ERR_SIGNERS_
CERT_NOT_TRU
STED

Validation process determines that one or more of
the certificates included in the document are
unknown or not trusted, i.e. the certificates have been
issued by an unknown Certificate Authority (the CA
has not been added to trusted list).

Notes:

 The file and signature(s) are not legally valid.

 If the CA will later be added to the trusted
list/trust store then the validation status can
change to any of the other statuses described in
the current table.

Suggested warning message (also displayed in

DigiDoc3 Client): “Signature status is displayed as
unknown if you don’t have all validity confirmation
service certificates and/or certificate authority
certificates installed into your computer”

More info: http://www.id.ee/index.php?id=35941

2 INVALID

All errors except
of the ones that
are regarded as
warnings by the
library’s user.

Validation process returns error(s), the errors have
not been explicitly determined as minor error(s) by
the library’s user.

Note:

 The file and signature(s) are not legally valid.

 No further alterations should be made to the file,
i.e. no signatures should be added or removed.

http://www.id.ee/index.php?id=35941

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 28 / 65

Priority Status Error code Description

3 TEST
172

ERR_TEST_SI
GNATURE

Test certificates have been used in the signed file
(e.g. signer’s certificate and/or OCSP responder
server’s certificate have been issued in testing
purposes).

Notes:

 Test signature is not legally binding even if the
signature is valid.

 This status is used in combination with the other
validation statuses described in the current
table.

Suggested warning message (also displayed in

DigiDoc3 Client): “Test signature”

More info: http://www.id.ee/index.php?id=30494

Sample file: test_signature.ddoc

4
VALID WITH
WARNINGS

See the next
section.

Validation process returns error(s) that have been
previously explicitly categorized (by the library’s
user) as minor technical errors. Note that this status
is used only in exceptional cases, more details of
which are given in the next chapter.

Notes:

 The file and signature(s) are handled as legally
valid.

 The error(s) are regarded as validation
warnings.

 Validation warnings should be displayed to the
user.

 No further alterations should be made to the file,
i.e. no signatures should be added or removed.

 Creator of the file should be informed about the
error situation.

5 VALID N/A
Validation process returns no errors. The signature is
legally valid.

The error codes described in the table above are defined in DigiDocError.h source file.

Sample code of DigiDoc file validation can be found from cdigidoc.c utility program, from the
following method:

cmdVerify(SignedDoc* pSigDoc); //utility program’s command –verify

5.2.3.1 Validation status VALID WITH WARNINGS

In special cases, validation errors can be regarded as minor technical errors and the file’s
validation status can be regarded as VALID WITH WARNINGS instead.

NB! User of the DigiDoc library has to decide on his/her own when to use VALID WITH
WARNINGS status instead of INVALID: there may be different interpretations of the severity
of validation errors in different information systems then the final decision when to use this
status has to be made by the library’s user according to the requirements of the specific
information system.

It is recommended to use the validation status VALID WITH WARNINGS in case of the error
situations that are included in the table below – these error situations are regarded as VALID
WITH WARNINGS in DigiDoc applications and software libraries, including:

 DigiDoc3 Client desktop application,

 JdigiDoc, Libdigidocpp and CdigiDoc software libraries’ utility programs.

http://www.id.ee/index.php?id=30494

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 29 / 65

Table 1. Validation error codes recommended to be handled as VALID WITH WARNINGS

Status Error code
Related
DigiDoc

file format
Description

VALID WITH
WARNINGS

169

ERR_DF_WRONG
_DIG

DDOC
1.0

DDOC
1.1

DDOC
1.2

DDOC
1.3

<DataFile> element’s xmlns attribute is
missing.

Suggested warning message (also displayed

in DigiDoc3 Client): “This DigiDoc documents
has not been created according to
specification, but the digital signatures is
legally valid. You are not allowed to add or
remove signatures to this container.”

More info: http://www.id.ee/?id=36213

Sample file: datafile_xmlns_missing.ddoc

170

ERR_ISSUER_XM
LNS

DDOC
1.1

DDOC
1.2

DDOC
1.3

<IssuerSerial><X509IssuerName> and/or
<IssuerSerial><X509SerialNumber> element’s
xmlns attribute is missing.

Suggested warning message (also displayed

in DigiDoc3 Client): “This DigiDoc documents
has not been created according to
specification, but the digital signatures is
legally valid. You are not allowed to add or
remove signatures to this container.”

More info: http://www.id.ee/?id=36213

Sample file: issuerserial_xmlns_missing.ddoc

171

ERR_OLD_VERSI
ON

DDOC
1.0

DDOC
1.1

DDOC
1.2

DigiDoc file’s version is older than currently
supported. Note that the error situation affects
only the container and not the signatures,
therefore, in DigiDoc libraries, it is returned
and displayed only at container level.

Suggested warning message (also displayed

in DigiDoc3 Client): “The current file is a
DigiDoc container that is not supported
officially any longer. You are not allowed to
add or remove signatures to this container”

More info:

http://www.id.ee/index.php?id=36161

Sample file: old_digidoc_format_1.0.ddoc

Sample code for determining validation warnings can be found from cdigidoc.c utility
program. See command –verify (cmdVerify(SignedDoc* pSigDoc)) and methods hasErrors(),
isError(), isWarning().

5.2.4 Additional information about validation

5.2.4.1 Overview of validation activities

Overview of validation activities is as follows:

1. checking that all the data files and signature’s meta-data (signer’s role, etc.) are
included in the signature by calculating the data objects’ digest values and
comparing them with the <Reference> element values in the signature;

http://www.id.ee/?id=36213
http://www.id.ee/?id=36213
http://www.id.ee/index.php?id=36161

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 30 / 65

2. checking that the claimed signer’s certificate is the actual certificate that was used
for signing; checking that the “Non-repudiaton” value is set in the “Key Usage”
extension of the signer’s certificate;

3. checking that the signature value is correct by decrypting the value with the signer’s
public key and comparing the result with digest calculated from <SignedInfo>
element block;

4. checking that the OCSP response confirms the signer certificate’s validity and
corresponds to the signature value (by comparing the digest value of
<SignatureValue> element’s value and OCSP response’s nonce value);

5. checking that the signer’s and OCSP responder’s certificates are trusted (i.e. the
certificates’ issuers are registered in trust store, i.e. the configuration file).

 Encryption and decryption

In addition to digital signing, CdigiDoc library offers also digital encryption and decryption
according to the XML-ENC standard. This standard describes encrypting and decrypting XML
documents or parts of them and it also allows encrypting any binary data in Base64 encoding.

CdigiDoc additionally enables to compress the data with ZLIB algorithm before encryption. It
encrypts data with a 128 bit AES transport key which is in turn encrypted with the recipient’s
certificate. Encryption scheme is therefore certificate-based – it is possible to encrypt data
using public key component fetched from some certificate. The decryption can be performed
only by using private key corresponding to that certificate.

It is possible to encrypt for multiple certificates at once.

Certificates for encryption are fetched from a file in the file system (PEM encoding is
supported), possible sources for finding them can be:

 Windows Certificate Store (“Other Persons”)

 LDAP directories (for Estonian ID card holders, all valid certificates are available at:
ldap://ldap.sk.ee)

 ID-card in smart-card reader.

Note that in CdigiDoc library, the certificates that can be used for encryption must have the
value “Key Encipherment” included in “Key Usage” attribute field.

CdigiDoc doesn’t support many encrypted data objects or a mix of encrypted and unencrypted
data in one XML document.

One encrypted document:

 contains only one <EncryptedData> element, which is also the documents root
element

 contains one <EncryptedKey> element for every recipient (i.e. possible decrypter) of
the document

 contains a set of <EncryptionProperty> elements to store any meta data.

However, it is possible to incorporate a number of data files in one encrypted document if they
are firstly all added to a DigiDoc container and then encryption is performed for that container
as for a single data object.

In the following chapters we review the most common encryption and decryption operations
with CdigiDoc library.

ldap://ldap.sk.ee/

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 31 / 65

5.3.1 Composing encrypted documents

Note: for compatibility with other DigiDoc software components, it is recommended to place
the data file to be encrypted inside a DigiDoc container before encrypting it. This way it is also
possible to incorporate multiple data files into one encrypted document (i.e. if there is more
than one data file in the DigiDoc container that is encrypted).

In order to compose an encrypted document you have to:

 create the DencEncryptedData structure first

 add all recipient info and other meta-information

 add the unencrypted data

 encrypt it, possibly compressing the data

 store it in a file or another medium.

The encryption method described is most suitable for small or medium sized data objects – all
operations are done in memory.

Note that in order for the encrypted document to be compatible with other DigiDoc software
components then the data file to be encrypted should be placed in a DigiDoc container before
encryption (if the file is not originally a DigiDoc document).

Start composing a new encrypted document by defining the required data structures:

DencEncryptedData** ppEncData;

The DencEncryptedData structure refers to the <EncryptedData> element of an encrypted file
and is the main structure that is used to store information which is needed for performing the
encryption. Other structures that are used should be defined as follows:

DencEncryptedKey* pEncKey; // transport key data for every recipient
DencEncryptionProperty* pEncProperty; // property structure for storing
 // various metadata

Now create the DencEncryptedData structure with the following function:

dencEncryptedData_new(ppEncData,
DENC_XMLNS_XMLENC, // fixed constant for XML namespace uri
DENC_ENC_METHOD_AES128, // fixed constant for encryption method
 // algorithm uri
0, 0, 0); // optional attributes, not needed with the current
 // encrypted document format

5.3.2 Adding recipient info and metadata

Every encrypted document should have at least one or many recipient blocks, otherwise
nobody can decrypt it.

For every recipient the library stores:

 the AES transport key encrypted with the recipients certificate

 the certificate itself

 possibly some other data used to identify the key.

A certificate that is appropriate for data encryption must be used. In case of Estonian ID cards
it is the authentication certificate.

NB! Encryption should be done for the authentication certificates on all the recipient’s valid
identity tokens (e.g. the national ID-card and Digi-ID card used in Estonia), except of the
Mobile-ID certificates.

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 32 / 65

Start adding recipient data by reading in the recipient’s certificate (the certificate has to be in
PEM format):

ReadCertificate(&pCert, certfile);

Function ReadCertificate() (defined in source file DigiDocCert.h) reads the certificate from a
file in file system. Alternatively, you can also use functions ddocDecodeX509Data() (data is in
binary format) and ddocDecodeX509PEMData() (data is in PEM (base64) format) to decode
certificate data that is already in memory.

Encrypt the transport key with the receiver’s certificate and store encrypted key in memory:

dencEncryptedKey_new(*ppEncData, &pEncKey,
pCert, // reveiver’s certificate
DENC_ENC_METHOD_RSA1_5, // fixed constant for encryption method
id, recipient, keyname, carriedkeyname); // optional attributes

Optional attributes “id”, “recipient” and/or sub elements <KeyName> and <CarriedKeyName>
can be added to identify the key object. All of the above mentioned attributes and sub elements
are optional but can be used to search for the right recipient’s key or display its data in an
application.

You can add metadata about the CdigiDoc library that is used for creating the encrypted
document and encrypted document’s format and version:

dencMetaInfo_SetLibVersion(*ppEncData);
dencMetaInfo_SetFormatVersion(*ppEncData);

The name of the data file that is encrypted should be added to the DencEncryptedData
structure by creating a new property:

dencEncryptionProperty_new(*ppEncData, &pEncProperty,
0, 0, // property id and target. Can be omitted

 ENCPROP_FILENAME, // fixed constant, represents the data file’s name
 getSimpleFileName(dataFile)); // data file’s name should be added
 // without path

Note that the data file’s name used in the previous example has to be in UTF-8 encoding. If
necessary, you can convert it with function:

ddocConvertInput(const char* src, char** dest);

If the original file is a .ddoc file then you should specify its mime type and add the value to
DencEncryptedData structure as a new property:

dencEncryptionProperty_new(*ppEncData, &pEncProperty, 0, 0,
 ENCPROP_ORIG_MIME, // name of the property: original mime type
 DENC_ENCDATA_TYPE_DDOC); // value of the property: ddoc document’s
 // mime type

In case of DigiDoc document, mime type has to be specified as shown above so that it would
be possible to decrypt the file later.

Constants that represent mime types have been defined in DigiDocEnc.h source file. In case
of a DigiDoc document, use the constant

 DENC_ENCDATA_TYPE_DDOC

which contains the value:

 “http://www.sk.ee/DigiDoc/v1.3.0/digidoc.xsd”.

The value is assigned to property “MimeType” of the cdoc document. CdigiDoc library uses
the property “MimeType” also to store the fact that the data has been packed with ZLIB
algorithm before encryption. If data compression is used then the library assigns the value

 “http://www.isi.edu/in-noes/iana/assignments/media-types/application/zip”

http://www.sk.ee/DigiDoc/v1.3.0/digidoc.xsd
http://www.isi.edu/in-noes/iana/assignments/media-types/application/zip

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 33 / 65

to “MimeType” attribute which has also been defined as a constant:

 DENC_ENCDATA_MIME_ZLIB

CdigiDoc assigns this value when packing the data and if the “MimeType” attribute was not
empty before then the previous value is stored in <EncryptionProperty

Name=”OriginalMimeType”> sub element instead. If CdigiDoc reads a document with
“MimeType” value defined by DENC_ENCDATA_MIME_ZLIB then at first it decompresses the
decrypted data and then restores the original mime type if one is found.

If the original data file to be encrypted is a ddoc document then after adding the mime type
property, you also need to “register” its contents:

dencOrigContent_registerDigiDoc(*ppEncData,
pSigDoc); // SignedDoc structure representing the ddoc document

The function creates a new EncryptionProperty structure for every data file contained in the
DigiDoc document and stores its name, size, mime type and id values for later use.

Note that you need to have the DigiDoc document kept in memory as a SignedDoc structure
before using the function in the previous example. If you are encrypting an existing DigiDoc
document (not creating it directly before encryption) then read the document in as described
in section “3.6.6 Reading and writing DigiDoc documents”.

5.3.3 Encryption and data storage

Before encrypting, you also need to add the actual data to be encrypted to DencEncryptedData
structure. Use the method:

dencEncryptedData_AppendData(DencEncryptedData* pEncData,
const char* data, // unencrypted data
int len); // length of the data

Finally, encrypt the data with the following function:

dencEncryptedData_encryptData(DencEncryptedData* pEncData,
int nCompressOption); // compression option used before encryption

In the function above, three different constants can be used to specify compression option for
the data to be encrypted:

 DENC_COMPRESS_ALLWAYS – data is compressed before encryption.

 DENC_COMPRESS_BEST_EFFORT – data will be compressed and if it results in reduced
data size then the compressed data is encrypted. Otherwise it will be discarded and
original data is encrypted with no compression.

 DENC_COMPRESS_NEVER – compression is not applied.

You can write the encrypted document to an output file with the function:

dencGenEncryptedData_writeToFile(DencEncryptedData* pEncData, const char*
szFileName);

Note that it isn’t necessary to use files to store encrypted data. It can be written to any output
stream and used as required. In order to write the encrypted data to a memory buffer, do as
follows:

DigiDocMemBuf mbuf; // output buffer
mbuf.pMem = 0; // functions will assign allocated memory address here
mbuf.nLen = 0; // length of data in number of bytes
dencGenEncryptedData_toXML(pEncData, // encrypted data structure

&mbuf); // output buffer for storing the encrypted data

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 34 / 65

5.3.4 Parsing and decrypting

Firstly, define structure for holding the encrypted document’s data that is going to be parsed:

DencEncryptedData* pEncData;

There are two alternative options for decrypting documents, depending on the encrypted
document’s size.

1. Parsing and decrypting small encrypted documents.

Encrypted document can be read in and parsed in two ways: by reading the encrypted file
from disk or by reading the encrypted file’s contents from an internal memory buffer (e.g.
a buffer that holds the encrypted document’s data fetched from a database).

 Reading and parsing the encrypted document from file system:

char* inFile; // input encrypted file
dencSaxReadEncryptedData(&pEncData, // structure for holding the encrypted

 // document’s data
34ilename); // input encrypted file’s name

 Reading and parsing encrypted document from a memory buffer

Use the DigiDocMemBuf structure for holding the encrypted document’s initial data
(see also section “3.6.3 Adding data files”, under the second point for additional
information about initialising and using DigiDocMemBuf):

DigiDocMemBuf mbuf; // data buffer structure

 Parse the encrypted document from the memory buffer with the following function:

dencSaxReadEncryptedDataFromMemory(&pEncData, // structure for holding the
 // encrypted document’s data
&mbuf); // memory buffer with the initial data

After parsing the document, data can be decrypted or displayed on screen. Decryption is a
separate operation and is not automatically done during parsing.

For decrypting, you need to find the correct EncryptedKey structure for the current
recipient who is decrypting the data. If you use PKCS#11 identity token from a smart card
for decryption, then do:

dencEncryptedData_findEncryptedKeyByPKCS11(*ppEncData, &pEncKey);

Now, data can be decrypted as follows:

dencEncryptedData_decrypt(*ppEncData,
pEncKey, // transport key
pin); // pin1 code in case of Estonian ID cards

The abovementioned functions are defined in source file DigiDocEnc.h. Function
dencEncryptedData_decrypt() firstly decrypts the transport key with the recipient’s pin
code and then decrypts the data with the transport key. Data is decompressed, if
necessary.

2. Parsing and decrypting large encrypted documents.

In order to parse and decrypt large files, use the dencSaxReadDecryptFile() function
(defined in DigiDocEncSAXParser.h):

dencSaxReadDecryptFile(const char* szInputFileName, // encrypted file’s name
const char* szOutputFileName, // output (decrypted) file
const char* szPin, // pin1 code in case of Estonian ID cards
const char* szPkcs12File); // set to NULL in case of Estonian ID cards

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 35 / 65

The abovementioned function reads encrypted data from the specified input file, decrypts
and possibly decompresses the data during parsing and writes the decrypted data to
output file. Data is not kept in memory during decryption.

Parameter szPkcs12File indicates the PKCS#12 software token’s file name and path, if
decryption is done with a software token. The value should be set to NULL when using
PKCS#11 driver (e.g. in case of Estonian ID cards).

Note: when decrypting files then it should be taken into account that for compatibility with other
DigiDoc software components, it is recommended that the data file to be encrypted is placed
inside a DigiDoc container before encryption. In this case, it is also necessary to extract the
original data file(s) from DigiDoc container after decryption.

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 36 / 65

6. CDigiDoc utility program

CdigiDoc library includes a command line utility program – cdigidoc.exe – which can be used
to read, digitally sign, encrypt and decrypt files in OpenXadES format. Source code of the
program is in cdigidoc.c file.

The general format is:

> cdigidoc [command(s)]

A list of all the available commands and their format can always be displayed by using the -?
Or –help commands:

> cdigidoc –help

Output from all of the CdigiDoc utility program’s commands is ended with the following
information:

 CdigiDoc|[error code or ‘0’ in case of success]|[elapsed time in seconds]

Note that the error codes’ definitions can be found in the file DigiDocError.h.

 General commands

 -? Or –help – displays help about command syntax.

 -config <configuration-file> - specifies the CdigiDoc configuration file name.

 -check-cert <certificate-file-in-pem-format> - checks the certificate validity status.

Setting the configuration file

-config <configuration-file>

You can dynamically specify the configuration file used before executing each command
line task.

If left unspecified, then the configuration file is looked up from default locations (see
section “3.4 Configuring CdigiDoc” for more information).

Checking the certificate

-check-cert <certificate-file-in-pem-format>

Used for checking the chosen certificate’s validity; returns an OCSP response from the
certificate’s CA’s OCSP responder. Note that the command is currently not being tested.

If the certificate is valid, then the return code’s (RC) value is 0. For example:

Verifying cert: MÄNNIK,MARI-LIIS,47101010033 RC :0

Sample: setting the configuration file when creating a new DigiDoc container
> cdigidoc –config c:\temp\digidoc.i–i -n–w -add c:\temp\test1.txt text/pla–
n -out c:\temp\test1.ddoc

 Input:
 - c:\temp\digidoc.ini – the configuration file to be used
 - c:\temp\test1.txt - a data file to be added to ddoc container

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 37 / 65

 - text/plain - mime type of the data file
 - c:\temp\test1.ddoc - ddoc container to be created

 Digital signature commands

 -in <input-digidoc-file> - reads in a DigiDoc file

 -in-mem <input-digidoc-file> - reads in a DigiDoc file. The operation is conducted
“in memory”, meaning that the data is read into a memory buffer and no intermediary
data is written to temporary files on the disk.

 -new – creates a new DigiDoc container

 -add <input-file> <mime-type> – adds a data file to a DigiDoc container

 -add-mem <input-file> <mime-type> - adds a data file to a DigiDoc container. The
operation is conducted “in memory”, meaning that the data is read into a memory
buffer and no intermediary data is written to temporary files on the disk.

 -sign <pin-code> – signs a DigiDoc file

 -out <output-file> – creates a DigiDoc file at the specified location

 -out-mem <output-file> - creates a DigiDoc file at the specified location. The
operation is conducted “in memory”, meaning that the data is read from and written
to a memory buffer, no intermediary data is written to temporary files on the disk.

 -verify – displays and verifies DigiDoc file’s signature(s). Note that starting from the
library’s 3.8 version, warnings system is used, i.e. minor technical errors are printed
out as warnings. See chapter “5.2.3.1 Validation status VALID WITH WARNINGS”
for detailed information about warning situations.

Parameter –libraryerrors can be added to the command to distinguish errors that are
returned by the library.

 -libraryerrors – for testing purposes, may be used together with –verify command.
Enables to view the validation errors as they are returned by the library (otherwise,
the utility program may transform specific errors to warnings; see also description
und–r -verify command). The errors are printed out with “LIBRARY-ERROR” prefix.

 -extract <data-file-id> <output-file> – extracts DigiDoc file’s content

 -extract-mem <data-file-id> <output-file> – extracts DigiDoc file’s content. The
operation is conducted “in memory”, meaning that the data is read from and written
to a memory buffer, no intermediary data is written to temporary files on the disk.

 -get-confirmation <signature-id> – adds an OCSP confirmation to a DigiDoc file’s
signature.

 -mid-sign <phone-no> <per-code> [[<country>(EE)] [<lang>(EST)]
[<service>(Testing)] [<manifest>] [<city> <state> <zip>]] – signs a DigiDoc file
using Mobile-ID. Note: Mobile-ID functionality in CDigiDoc is experimental.

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 38 / 65

Creating new DigiDoc files

-new [format] [version]

Creates a new digidoc container with the specified format and version. The current
supported digidoc format in CDigiDoc library is DIGIDOC-XML, version is 1.3 (newest).

By using the optional paramet–r - versi–n - with this command, you can specify an
alternative version to be created.

Note: creating new DigiDoc files in older DigiDoc file formats SK-XML, DIGIDOC-XML
1.1 and DIGIDOC-XML 1.2 is no longer supported.

-add <input-file> <mime-type> [<content-type>] [<charset>]

Adds a new data file to a digidoc document. If digidoc do’sn't exist then creates one in
the default format. In order to add a data file to a container, the container has to be
unsigned and there shouldn’t be an existing data file with the same name in the
container. Note that only the data file name without path is saved in the document (‘/’
and ‘\’ characters are not allowed in the data file’s name).

Input file (required) specifies the name of the data file (it is recommended to include
full path in this parameter; the path is removed when writing to DigiDoc container file).

Mime type (required) represents the MIME type of the original file like “text/plain” “r
"application/msword”.

Content type reflects how the original files are embedded in the container:
EMBEDDED_BASE64 (embedding binary data in base64 format) is supported and
used by default.

Chars–t - UTF-8 encoding is supported and used by default.

-add-mem <input-file> <mime-type> [<content-type>]

Alternative version of t–e -add command. The operation is conducted “in memory”,
meaning that the data is read into a memory buffer and no intermediary data is written
to temporary files on the disk.

-sign <pin-code> [[[manifest] [city] [state] [zip] [country]] [slot(0)] [ocsp(1)]
[PKCS11/CNG/PKCS12] [pkcs12-file-name]]

Adds a digital signature to the digidoc document. Note that adding signatures to DigiDoc
files in older formats SK-XML, DIGIDOC-XML 1.1 and DIGIDOC-XML 1.2 is no longer
supported. You can use the command with the following parameters:

pin-code PIN code of the identity token. In case of Estonian ID cards, PIN2
code is used for digital signing.

Required when signing via PKCS#11 (the default module) and
PKCS#12 module, optional in case of CNG API and minidriver
(see also parameter “PKCS11/CNG/PKCS12” of the current
command).

manifest Role and resolution of the signer, as a single string, separated with
a slash character, e.g. “role / resolution”. It is also possible to
specify only the signer’s role. At most one role/resolution value is
allowed for a signature, the value is written to a single
<ClaimedRole> element in the singed file.

city City where the signature is created

state State or province where the signature is created

zip Postal code of the place where the signature is created

country Country of origin. ISO 3166-type 2-character country codes are
used (e.g. EE)

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 39 / 65

slot Identifier of the signer’s certificate’s and private key’s sequence
number (counting from zero) among all signature certificates on
an identity token.

When operating for example with a single Estonian ID card (which
contains one signature key) then the key can be found in slot 0 –
which is used by default.

The library makes some assumptions about PKCS#11 drivers and
card layouts:

 - you have signature and/or authentication keys on the card

 - both key and certificate are in one slot

 - if you have many keys like 1 signature and 1 authentication key
then they are in different slots

- you can sign with signature key that has a corresponding
certificate wi“h "NonRepudiat”on" bit set.

You may need to specify a different slot to be used when for
example operating with multiple smart cards on the same system.
In this case, the signature slots are counted as follows:

- slot 0 – signature key of the 1st smartcard

- slot 1 – signature key of the 2nd smartcard

If the slot needs to be specified during signing, then the 5 previous
optional parameters (manifest, city, state, zip, country) should be
filled first (either with the appropriate data or as ““ for no value).

ocsp Specifies whether an OCSP confirmation is added to the signature
that is being created. Possible values are 0 – confirmation is not
added; 1 – confirmation is added. By default, the value is set to 1.

Parameter value 0 can be used when creating a technical
signature. Technical signature is a signature with no OCSP
confirmation and no timestamp value.

PKCS11/CNG/PKCS12 Optional parameter to specify module that is used for accessing
the signature token. Possible values are:

- “PKCS11” - default module for signing with smart card

- “CN–” - alternative module for signing with smart card, uses
Microsoft CNG API and smart card’s minidriver. A dialog
window is opened for the user to choose a signing certificate
and insert PIN code (i.e. the “pin-code” parameter of the
current command may be left unspecified by inserting an
empty string “”).

- “PKCS1–” - module for signing with a software token
(PKCS#12 file). When signing with a software token then
firstly, the appropriate configuration settings should be applied
(see section 3.4, subsection “Configuring software token
usage”). The current command’s parameter “pin-code” must be
set according to the PKCS#12 container’s PIN code,
parameter “ocsp” must be set to 0 and parameter’s “pkcs12-
file-name” value should be specified.

pkcs12-file-name Used only when signing with software token (PKCS#12 file) via
PKCS#12 module (i.e. if the previous parameter’s value has been
set to “PKCS12”).

Specifies the software token’s file name.

-mid-sign <phone-no> <per-code> [[<country>(EE)] [<lang>(EST)] [<service>(Testing)]
[<manifest>] [<city> <state> <zip>]]

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 40 / 65

Note: Mobile-ID functionality in CDigiDoc is experimental.

Invokes mobile signing of a ddoc file using Mobile-ID and DigiDocService.

Mobile-ID is a service based on Wireless PKI providing for mobile authentication and
digital signing, currently supported by all Estonian and some Lithuanian mobile
operators.

The Mobile-ID user gets a special SIM card with private keys on it. Hash to be signed
is sent over the GSM network to the phone and the user shall enter PIN code to sign.
The signed result is sent back over the air.

DigiDocService is a SOAP-based web service, access to the service is IP-based and
requires a written contract with provider of DigiDocService.

You can use Mobile-ID signing with the following parameters:

phone-no Required. Phone number of the signer with the country code in format
+xxxxxxxxx (for example +3706234566)

per-code Required. Identification number of the signer (personal national ID number).

country Country of origin. ISO 3166-type 2-character country codes are used (e.g.
default is EE)

lang Language for user dialog in mobile phone. 3-character capitalized acronyms
are used (e.g. default is EST)

service Name of the service – previously agreed with Application Provider and
DigiDocService operator. Maximum length – 20 chars. (e.g. default is
Testing)

manifest Role or resolution of the signer

city City where the signature is created

state State or province where the signature is created

zip Postal code of the place where the signature is created

-out <output-file>

Stores the newly created or modified DigiDoc document in a file.

-out-mem <output-file>

Alternative version of t–e -out command. The operation is conducted “in memory”,
meaning that the data is read from and written to a memory buffer, no intermediary
data is written to temporary files on the disk.

Sample commands for creating and signing DigiDoc files:

Sample: creating new DigiDoc file without signing, with default format and
version (DIGIDOC-XML, version 1.3)

> cdigid–c -n–w -add c:\temp\test1.txt text/pla–n -out c:\temp\test1.ddoc

 Input:
 - c:\temp\test1.txt - a data file to be added to container
 - text/plain - mime type of the data file
 - c:\temp\test1.ddoc - container to be created

Sample: creating new DigiDoc file with signing

> cdigid–c -n–w -add c:\temp\test1.txt text/pla–n -sign 123–5 -out
c:\temp\test1.ddoc

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 41 / 65

Input:
 - c:\temp\test1.txt - a data file to be added to container
 - text/plain - mime type of the data file
 - 12345 - id-card pin2
 - c:\temp\test1.ddoc - container to be created

Sample: signing an existing DigiDoc container (adding signatures)
> cdigid–c -in c:\temp\test1.dd–c -sign 123–5 -out c:\temp\test1.ddoc

Input:
 - c:\temp\test1.ddoc - container to be signed
 - 12345 - id-card pin2
 - c:\temp\test1.ddoc - output (modified) digidoc container

Sample: using Mobile-ID for signing (note: Mobile-ID functionality in
CDigiDoc is experimental)
> cdigid–c -n–w -add c:\temp\test1.txt text/plain –mid-sign +3706234566
411101702–0 -out c:\temp\test1.ddoc

Input:
- c:\temp\test1.txt - a data file to be added to container
- text/plain - mime type of the data file
- +3706234566 - signer’s mobile number
- 41110170240 - signer’s personal code
- c:\temp\test1.ddoc - container to be created

Sample: Adding multiple data files to an existing unsigned DigiDoc container
> cdigid–c -in c:\temp\test1.dd–c -add C:\temp\test3.txt text/pla–n -add
C:\temp\test4.txt text/pla–n -out c:\temp\test1.ddoc

Input:
- c:\temp\test1.ddoc - unsigned container to be read and modified
- C:\temp\test3.txt - first data file to be added
- C:\temp\test4.txt - second data file to be added
- text/plain - mime type of the data files
- c:\temp\test1.ddoc - output (modified) digidoc container

Sample: signing an existing digidoc container via CAPI/CNG module
> cdigid–c -in c:\temp\test1.dd–c -sign “” “” “” “” “” “” 0 1 C–G -out
c:\temp\test1.ddoc

Input:
- c:\temp\test1.ddoc - unsigned container to be read and modified
- “” - empty strings for PIN code and other optional
 parameter values (manifest, city, state, zip, country)
- 0 - signature slot
- 1 - OCSP confirmation is added
- CNG - identifier of CAPI/CNG module usage
- c:\temp\test1.ddoc - output (modified) digidoc container

Sample commands for signing in memory

Sample: creating new DigiDoc file with signing, operation in memory

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 42 / 65

> cdigid–c -new –add-mem c:\temp\test1.txt text/pla–n -sign 12345 –out-mem
c:\temp\test1.ddoc

Input:
 - c:\temp\test1.txt - a data file to be added to container
 - text/plain - mime type of the data file
 - 12345 - id-card pin2
 - c:\temp\test1.ddoc - container to be created

Sample: signing an existing DigiDoc container (adding signatures), operation
in memory
> cdigidoc –in-mem c:\temp\test1.dd–c -sign 12345 –out-mem
c:\temp\test1.ddoc

Input:
 - c:\temp\test1.ddoc - container to be signed
 - 12345 - id-card pin2
 - c:\temp\test1.ddoc - output (modified) digidoc container

Sample commands for signing with technical signature

Technical signature is a signature with no OCSP confirmation or a signature created with a
software token. Note that when verifying a signature that has no OCSP confirmation, an error
message “Signature has no OCSP confirmation!” is produced. When verifying signature that
is created with a software token, an error message “Signer’s cert does not have non-
repudiation bit set!” is produced.

Sample: signing an existing digidoc container with a technical signature
(via default (PKCS#11) module)
> cdigid–c -in c:\temp\test1.dd–c -sign 67890 “” “” “” “” “” 0–0 -out
c:\temp\test1.ddoc

Input:
- c:\temp\test1.ddoc - unsigned container to be read and modified
- 67890 - PIN code
- “” - empty strings for optional parameter values

 (manifest, country, state, city, zip)
- 0 - signature slot
- 0 - OCSP confirmation is not added
- c:\temp\test1.ddoc - output (modified) digidoc container

Sample: signing an existing digidoc container with a technical signature by
using a PKCS#12 software token (via PKCS#12 module)
> cdigid–c -in c:\temp\test1.dd–c -sign 67890 “” “” “” “” “” 0 0 PKCS12
c:\test\pkcs12.p–x -out c:\temp\test1.ddoc

Input:
- c:\temp\test1.ddoc - unsigned container to be read and modified
- 67890 - software token’s PIN code
- “” - empty strings for optional parameter values

 (manifest, country, state, city, zip)
- 0 - signature slot
- 0 - OCSP confirmation identifier
- PKCS12 - identifier of PKCS12 module
- c:\test\pkcs12.pfx - your software token’s PKCS#12 container file
- c:\temp\test1.ddoc - output (modified) digidoc container

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 43 / 65

Reading DigiDoc files and verifying signatures

-in <input-digidoc-file>

Specifies the input DigiDoc file name. It is recommended to pass the full path of the
DigiDoc file in this parameter.

-in-mem <input-digidoc-file>

Alternative version of t–e -in command. The operation is conducted “in memory”,
meaning that the data is kept in memory buffers and no intermediary data is written to
temporary files on the disk.

-verify

Displays the data file and signature info of a DigiDoc document just read in; validates
all signatures. Note that starting from the library’s 3.8 version, warnings system is used,
i.e. minor technical errors are printed out as warnings. See chapter “5.2.3.1 Validation
status VALID WITH WARNINGS” for detailed information about warning situations.

Returns:

o Digidoc container data, in format:

SignedDoc | <format-identifier> | <version>

For example: SignedDoc | DIGIDOC-XML | 1.3

o List of all data files, in format:

DataFile | <file identifier> | <file name> | <file size in bytes> | <mime type> |
<data file embedding option>

For example: DataFile | D0 | test1.txt | 44 | text/plain | EMBEDDED_BASE64

o List of all signatures (if existing), in format:

Signature | <signature identifier> | <signer’s key info: last name, first name,
personal code> | <verification return code> | <verification result>

For example: Signature | S0 | MÄNNIK,MARI-LIIS,47101010033 | 0 | No errors

o Signer’s certificate information

o OCSP responder certificate information

o Signature validation warning (if present), in format:

WARNING | <error-code> | <warning message>

For example: WARNING |172|Test signature!

Parameter –libraryerrors can be added to the command to distinguish errors that are
returned by the library.

-extract <data-file-id> <output-file>

Extracts the selected data file from the DigiDoc container and stores it in a file.

Data file id represents the ID for data file to be extracted from inside the DigiDoc
container (e.g. D0, D1…).

Output file represents the name of the output file.

-extract-mem <data-file-id> <output-file>

Alternative version of t–e -extract command. The operation is conducted “in memory”,
meaning that the data is kept in memory buffers and no intermediary data is written to
temporary files on the disk.

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 44 / 65

Sample commands for reading/validating/extracting from DigiDoc files:

Sample: listing DigiDoc file’s contents, signed
> cdigid–c -in c:\Temp\test1_s.dd–c -verify

Input:
 - c:\temp\test1_s.ddoc – the digidoc file which contents are to be listed

Returns:
SignedDoc|DIGIDOC-XML|1.3
DataFile|D0|test1.txt|44|text/plain|EMBEDDED_BASE64
DataFile|D1|test2.txt|84|text/plain|EMBEDDED_BASE64
Signature|S0|MÄNNIK,MARI-LIIS,47101010033|0|No errors
/prints out signer’s and OCSP responder’s certificate data/

Sample: Extracting a data file from an existing DigiDoc file
> cdigid–c -in c:\temp\test1.dd–c -extract D0 c:\temp\test_ext.txt

Input:
- c:\temp\test1.ddoc – the digidoc file to be extracted from
- D0 - the data file ID to be extracted
- c:\temp\test_ext.t–t - file for storing the extracted data

 Encryption commands

 -in <input-encrypted-file> - reads in the specified encrypted input document

 -in-mem <input-encrypted-file> - reads in an encrypted file. The operation is
conducted “in memory”, meaning that the data is read into a memory buffer and no
intermediary data is written to temporary files on the disk.

 -out <output-decrypted-file> - specifies the decrypted output document’s name

 -out-mem <output-decrypted-file> - creates a decrypted output document at the
specified location. The operation is conducted “in memory”, meaning that the data is
read from and written to a memory buffer, no intermediary data is written to
temporary files on the disk.

 -denc-list <input-encrypted-file> - displays the encrypted document data and
recipient’s info.

 -encrecv <certificate-file> - adds recipient to an encrypted document

 -encrypt-sk <input-file> - encrypts the input document; recommended for
compatibility with other DigiDoc software components, places the data file to be
encrypted inside a new DigiDoc container–

o -encrypt <input-file> - used for encrypting small files, not recommended for
compatibility with other DigiDoc software component–.

o -encrypt-file <input-file> <output-file> - used for encrypting large files, not
recommended for compatibility with other DigiDoc software components.

 -decrypt-sk <output-file> <pin> - decrypts the input file; recommended for
compatibility with other DigiDoc software components, expects the encrypted input file
to be in a DigiDoc container. Alternatives ar–:

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 45 / 65

o -decrypt <output-file> <pin> - used for decrypting small files in any original
forma–.

o -decrypt-file <input-file> <output-file> <pin> - used for decrypting large files
in any original format.

o decrypt-hex <input-file> <key> <output-file> - used for testing decryption
operation, Previously decrypted transport key value has to be provided.

Reading encrypted files

-in <input-encrypted-file>

Input encrypted file (required) specifies the encrypted file’s name.

-in-mem <input-encrypted-file>

Alternative version of t–e -in command. The operation is conducted “in memory”,
meaning that the data is read into a memory buffer and no intermediary data is written
to temporary files on the disk.

-denc-list

Displays the encrypted data and recipient’s info of an encrypted document just read in.

Sample: Displaying encrypted file’s recipient info and data
> cdigid–c -denc-list c:\Temp\test1b.cdoc

Input:
 - c:\temp\test1b.cdoc – the encrypted file to be read

Returns:
EncryptedData|||http://www.isi.edu/in-

 noes/iana/assignments/mediatypes/application/zip|http://www.w3.org/2001/04
 /xmlenc#aes128-cbc
LIBRARy|CDigiDoc|2.7.1.59
FORMAT|ENCDOC-XML|1.0
EncryptedKey||MÄNNIK,MARI-

 LIIS,47101010033|||http://www.w3.org/2001/04/xmlenc#rsa-1_5|OK
EncryptionProperties|
EncryptionProperty|||LibraryVersion|CDigiDoc|2.7.1.59
EncryptionProperty|||DocumentFormat|ENCDOC-XML|1.0
EncryptionProperty|||Filename|test1.txt
EncryptionProperty|||OriginalMimeType|http://www.sk.ee/DigiDoc/v1.3.0/digi

 doc.xsd
EncryptionProperty|||orig_file|c:\temp\test1.txt|44|application/file|D0
EncryptionProperty|||OriginalSize|360
EncryptionProperty|||OriginalMimeType|http://www.sk.ee/DigiDoc/v1.3.0/digi

 doc.xsd

Encrypting files

-encrecv <certificate-file> [recipient] [KeyName] [CarriedKeyName]

Adds a new recipient certificate and other metadata to an encrypted document.
Certificate file (required) specifies the file from which the public key component is
fetched for encrypting the data. The decryption can be performed only by using private
key corresponding to that certificate.

The input certificate files for encryption must come from the file system (PEM encodings
are supported). Possible sources where the certificate files can be obtained from
include:

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 46 / 65

 Windows Certificate Store (“Other Persons”)

 LDAP directories

 ID-card in smart-card reader

Nb! encryption should be done for the authentication certificates on all the recipient’s
valid identity tokens (e.g. the national ID-card and Digi-ID card used in Estonia), except
of the Mobile-ID certificates.

For example the certificate files for Estonian ID card owners can be retrieved from a
LDAP directory at ldap://ldap.sk.ee. The query can be made in following format through
the web browser (IE): ldap://ldap.sk.ee:389/c=EE??sub?(serialNumber= xxxxxxxxxxx)
where serial Number is the recipient’s personal identification number,
e,g.38307240240).

Other parameters include:

recipient If left unspecified, then the program assigns a unique value to this
attribute.

This is later used as a command line option to identify the recipient whose
key and smart card is used to decrypt the data.

Note:

Although this parameter is optional, it is recommended to pass on the
entire CN value from the recipient’s certificate as the recipient identifier
here, especially when dealing with multiple recipients.

For example if CN = MÄNNIK,MARI-LIIS,41110212444, then recipient =
MÄNNIK,MARI-LIIS,41110212444

KeyName Sub-element <KeyName> can be added to better identify the key object.
Optional, but can be used to search for the right recipient’s key or display
its data in an application.

CarriedKeyName Sub-element <CarriedKeyName> can be added to better identify the key
object. Optional, but can be used to search for the right recipient’s key or
display its data in an application.

-out <output-encrypted-file>

Output encrypted file (required) specifies the name of the output file which will be
created in the current encrypted document format (ENCDOC-XML ver 1.0), with file
extension .cdoc.

-out-mem <output-encrypted-file>

Alternative version of t–e -out command. The operation is conducted “in memory”,
meaning that the data is read from and written to a memory buffer, no intermediary
data is written to temporary files on the disk.

-encrypt-sk <input-file>

Encrypts the data from the given input file and writes the completed encrypted document
in a file. Recommended for providing cross-usability with other DigiDoc software
components.

This command places the data file to be encrypted in a new DigiDoc container.
Therefore handling such encrypted documents later with other DigiDoc applications is
fully supported (e.g. DigiDoc3 client).

Input file (required) specifies the original data file to be encrypted.

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 47 / 65

Note: There are also alternative encryption commands which are however not
recommended for providing cross-usability with other DigiDoc software
components:

-encrypt <input-file>

Encrypts the data from the given input file and writes the completed encrypted
document in a file. Should be used only for encrypting small documents, already
in DIGIDOC-XML format.

Input file (required) specifies the original data file to be encrypted.

-encrypt-file <input-file> <output-file>

Encrypts the input file and writes to output file. Should be used only for encrypting
large documents, already in DIGIDOC-XML format. Note that the command in
not currently tested.

Input file (required) specifies the original data file to be encrypted.

Output file (required) specifies the name of the output file which will be created
in the current encrypted document format (ENCDOC-XML ver 1.0), with file
extension .cdoc.

Command line samples for encrypting documents:

Sample: encrypting small doc (DigiDoc compatible, original in any format)
> cdigid–c -encrypt-sk c:\temp\test_Small.txt –out c:\Temp\test1.cd–c -
encrecv c:\temp\Rcert.cer MÄNNIK,MARI-LIIS,47101010033

Input:
- c:\temp\test_Small.txt – the input file to be encrypted
- c:\temp\test1.cdoc - the encrypted file to be created
- c:\temp\Rcert.cer – the recipient’s certificate file
- MÄNNIK,MARI-LIIS,471010100–3 - the recipient’s ID (= certificate’s CN)

Sample: encrypting small doc (not DigiDoc compatible, unless original doc
already in DIGIDOC-XML format)
> cdigid–c -encrypt c:\temp\test_Small.dd–c -out c:\Temp\test1.cd–c -encrecv
c:\temp\Rcert.cer

Input:
- c:\temp\Rcert.cer – the recipient’s certificate file
- c:\temp\test_Small.ddoc – the input file to be encrypted
- c:\temp\test1.cdoc - the encrypted file to be created

Sample: encrypting large doc (not DigiDoc compatible, unless original doc
already in DIGIDOC-XML format)
> cdigid–c -encrypt-file c:\temp\test_Large.ddoc c:\Temp\test1.cd–c -encrecv
c:\temp\Rcert.cer

Input:
- c:\temp\Rcert.cer – the recipient’s certificate file
- c:\temp\test_Large.ddoc – the input file to be encrypted
- c:\temp\test1.cdoc - the encrypted file to be created

Sample: encrypting small doc for multiple recipients
> cdigid–c -encrypt-sk c:\temp\test1.txt –out c:\Temp\test1.cd–c -encrecv
c:\temp\R1cert.c–r -encrecv c:\temp\R2cert.cer

Input:
- C:\temp\test1.txt – the input file to be encrypted
- C:\temp\test1.cdoc - the encrypted file to be created
- C:\temp\R1cert.cer – the 1st recipient’s certificate file

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 48 / 65

- C:\temp\R2cert.cer – the 2nd recipient’s certificate file

Sample: encrypting small doc (DigiDoc compatible, original in any format),
operation in memory
> cdigid–c -encrypt-sk c:\temp\test_Small.txt –out-mem c:\Temp\test1.cd–c -
encrecv c:\temp\Rcert.cer MÄNNIK,MARI-LIIS,47101010033

Input:
- c:\temp\test_Small.txt – the input file to be encrypted
- c:\temp\test1.cdoc - the encrypted file to be created
- c:\temp\Rcert.cer – the recipient’s certificate file
- MÄNNIK,MARI-LIIS,471010100–3 - the recipient’s ID (= certificate’s CN)

Decrypting files

-decrypt-sk <input-file> <pin> [pkcs12-file] [slot(0)]

Decrypts and possibly decompresses the encrypted file just read in and writes to output
file. Expects the encrypted file to be inside a DigiDoc container.

Input file (required) specifies the input file’s name.

Pin (required) represents the recipient’s pin1 (in context of Estonian ID cards).

pkcs12-file (optional) specifies the PKCS#12 file if decrypting is done with a software
token.

slot (optional) specifies sequence number (counting from zero) of the recipient’s
decryption certificate and accompanying private key on the identity token. Slot 0 is used
by default. Note that the sequence number used in the current command may not be
the same as the actual slot’s ID.

Note: There are also alternative commands for decryption, depending on the encrypted
file’s format, size and the certificate type used for decrypting it.

-decrypt <input-file> <pin> [pkcs12-file] [slot(0)]

Offers same functionality –s -decrypt-sk, should be used for decrypting small files
(which do not need to be inside a DigiDoc container).

Input file (required) specifies the input file’s name.

Pin (required) represents the recipient’s pin1 (in contexts of Estonian ID cards).

pkcs12-file (optional) specifies the PKCS#12 file if decrypting is done with a
software token.

slot (optional) specifies sequence number (counting from zero) of the recipient’s
decryption certificate and accompanying private key on the identity token. Slot 0
is used by default. Note that the sequence number used in the current command
may not be the same as the actual slot’s ID.

-decrypt-file <input-file> <output-file> <pin> [pkcs12-file]

Offers same functionality –s -decrypt for decrypting documents, should be used
for decrypting large files (which do not need to be inside a DigiDoc container).
Expects the encrypted data not to be compressed. Note that the command is not
currently tested.

Input file (required) specifies the encrypted file to be decrypted.

Output file (required) specifies the output file name.

Pin (required) represents the recipient’s pin1 (in contexts of Estonian ID cards).

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 49 / 65

pkcs12-file (optional) specifies the PKCS#12 file if decrypting is done with a
software token.

-decrypt-hex <input-file> <key> <output-file>

For testing purposes. Decryption of the input file can be done by providing
transport key value that has previously been decrypted with the recipient’s private
key.

Input file (required) specifies the encrypted file to be decrypted.

Key (required) specifies transport key’s value that has previously been decrypted
with recipient’s private authentication key. The key should be provided in
hexadecimal format.

Output file (required) specifies the output file name.

Command line samples for decrypting documents:

Sample: decrypting small encrypted file, inside a DigiDoc container
> cdigid–c -decrypt-sk c:\Temp\test1_small.cdoc 12–4 -out
c:\Temp\test1_d.ddoc

Input:
 - c:\Temp\test1_small.cdoc – the encrypted file to be decrypted
 - 1234 – the recipients pin1
 - C:\temp\test1_d.ddoc - the decrypted file to be created

Sample: decrypting small encrypted file, in any original format
> cdigid–c -decrypt c:\Temp\test1_small.cdoc 12–4 -out c:\Temp\test1_d.ddoc

Input:
 - c:\Temp\test1_small.cdoc – the encrypted file to be decrypted
 - 1234 – the recipients pin1
 - C:\temp\test1_d.ddoc - the decrypted file to be created

Sample: decrypting large encrypted file, in any original format
 > cdigid–c -decrypt-file c:\Temp\test1_large.cdoc c:\Temp\test1_d.ddoc 1234

Input:
 - c:\Temp\test1_large.cdoc – the encrypted file to be decrypted
- MÄNNIK,MARI-LIIS,411102124–4 - the recipient’s ID (= certificate’s CN)
 - 1234 – the recipients pin1
 - c:\temp\test1_d.ddoc - the decrypted file to be created

Sample: decrypting, using PKCS#12 software token, in any original format
 > cdigid–c -decrypt-sk c:\Temp\test1_small.cdoc 123456 c:\test\pkcs12.p–x -
out c:\Temp\test1_d.txt

Input:
 - c:\Temp\test1_small.cdoc – the encrypted file to be decrypted
- 123456 - pin code of the software token
- c:\test\pkcs12.pfx - software token (PKCS#12 container) file

 - c:\temp\test1_d.txt - the decrypted file to be created

Sample: decrypting, specifying slot value
> cdigid–c -decrypt-sk c:\Temp\test1_small.cdoc 1234 “”–1 -out
c:\Temp\test1_d.ddoc

Input:
 - c:\Temp\test1_small.cdoc – the encrypted file to be decrypted
 - 1234 – the PIN code of the recipient

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 50 / 65

- “” - empty string for optional PKCS#12 file
parameter
- 1 - slot (sequence number) of the recipient’s

decryption certificate on identity token
 - C:\temp\test1_d.ddoc - the decrypted file to be created

Sample: decrypting small encrypted file, inside a DigiDoc container,
operation in memory
> cdigid–c -decrypt-sk c:\Temp\test1_small.cdoc 1234 –out-mem
c:\Temp\test1_d.ddoc

Input:
 - c:\Temp\test1_small.cdoc – the encrypted file to be decrypted
 - 1234 – the recipients pin1
 - C:\temp\test1_d.ddoc - the decrypted file to be created

 Commands in CGI mode

CDigiDoc utility program can be used as a CGI program to add digital signature creation
functionality to web sites.

Note: the CGI mode commands are not currently included in testing.

 -calc-sign <cert-file> [<manifest>] [<city> <state> <zip> <country>] – calculate
hash of a digital signature. The certificate file has to be in PEM format, in a separate
file. The calculated hash is displayed in console in base64 format.

 -add-sign-value <sign-value-file> <sign-id> - add a RSA-SHA1 signature. The
signature has to be in base64 format in a separate file.

 -del-sign <sign-id> - remove a digital signature.

 -cgimode [<output-separator>] - output in CGI mode. Data sets in output are
separated with the specified output separator symbol. ‘|’ is used by default.

 -consolemo–e - output in console (not CGI) mode

 -S–X - use SAX parser

 -XR–R - use XmlReader parser

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 51 / 65

7. National and cross-border support

 National PKI solutions and support

7.1.1 Supported Estonian identity tokens

Currently, CDigiDoc library has been tested with the following Estonian ID tokens:

Token Type Description
Supported CDigiDoc
functionality

EstEID 3.5
and 1.0

Certificate–based
PKI smart cards

Different Estonian ID
card versions.

All CDigiDoc functionalities
(authentication, signing, verification,
encryption/decryption)

Digi-ID

(since 2010)

Certificate–based
PKI smart card

Estonian Digital ID card
for use only in
electronic environments

All CDigiDoc functionalities

Aladdin
eToken Pro

Certificate–based
PKI USB
authenticator

Carrier for ID
certificates issued to
organizations.

Note: tested only indirectly via

DigiDoc3 Client application.

7.1.2 Trusted Estonian Certificate Authorities

AS Sertifitseerimiskeskus (SK, http://sk.ee/en) functions as CA for all the Estonian ID
tokens, maintains the electronic infrastructure necessary for issuing and using the ID cards,
and develops the associated services and software.

SK issues the certificates and acts as Trusted Service Provider (TSP) for validation of
authentication requests and digital signatures. SK maintains the following electronic services
for checking certificate validity including:

 OCSP validation service (an RFC2560-compliant OCSP server, operating directly
off the CA master certificate database and providing validity confirmations to
certificates and signatures). There are two ways of getting access the service:

o having a contract with SK and accessing the service from a specific IP
address(es) – as practiced by companies/services

o by having certificate for accessing the service and sending signed reques–s -
as used by private persons for giving digital signatures; registering for the
service is required and service is limited to 10 signatures per month

 CRL-s (mainly for backward compatibility)

 LDAP directory service (containing all valid certificates)

7.1.2.1 Supported SK live hierarchy chains

Note: no additional actions are needed for using the following CA and OCSP responder
certificates with CDigiD–c - these certificate files have been:

 included in the CDigiDoc distribution

 registered in the CDigiDoc configuration file.

Certificate Common Name (CN) Valid to Description

JUUR-SK 26-Aug-2016 SK’s 1st root certificate

 ESTEID-SK 13-Jan-2012 for ID cards issued until
2007

http://sk.ee/en

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 52 / 65

Certificate Common Name (CN) Valid to Description

 ESTEID-SK OCSP
RESPONDER

24-Mar-2005 ESTEID-SK OCSP
Responder

 ESTEID-SK OCSP
RESPONDER 2005

12-Jan- 2012 ESTEID-SK OCSP
Responder

 ESTEID-SK
2007

 26-Aug-2016 for ID cards, Digi-ID and
Mobile-IDs issued until
06.2011

 ESTEID-SK 2007
OCSP
RESPONDER

08-Jan-2010 ESTEID-SK 2007 OCSP
Responder

 ESTEID-SK 2007
OCSP
RESPONDER 2010

26-Aug-2016 ESTEID-SK 2007 OCSP
Responder

 EID-SK 08-May-2014 for all other personal
certificates issued until
01.2007

 EID-SK 2007 OCSP
RESPONDER

15-May-2007 EID-SK OCSP Responder

 EID-SK 2007 26-Aug-2016 for Estonian Mobile-IDs
issued until 02.2011 and
Lithuanian Mobile IDs
issued until 06.2011

 EID-SK 2007 OCSP
RESPONDER

17-Apr- 2010 EID-SK 2007 OCSP
Responder

 EID-SK 2007 OCSP
RESPONDER 2010

26-Aug- 2010 EID-SK 2007 OCSP
Responder

 KLASS3-SK 05-May-2012 for organizational
certificates issued until
10.2010

 KLASS3-SK OCSP
RESPONDER

05-Apr- 2006 KLASS3-SK OCSP
Responder

 KLASS3-SK OCSP
2006 RESPONDER

27-Mar-2009 KLASS3-SK OCSP
Responder

 KLASS3-SK OCSP
2009 RESPONDER

04-May- 2012 KLASS3-SK OCSP
Responder

 KLASS3-SK
2010

 26-Aug-2016 for organizational
certificates issued from
10.2010

 KLASS3-SK 2010
OCSP
RESPONDER

26-Aug- 2016 KLASS3-SK 2010 OCSP
Responder

EECCRCA 18-Dec- 2030 SK’s 2nd root certificate

 ESTEID-SK
2011

 18-Mar- 2024 for ID cards, Digi-ID and
Mobile-IDs issued from
06.2011

 EID-SK 2011 18-Mar- 2024 for all other personal
certificates issued from
06.2011

 KLASS3-SK
2010

 18-Mar-2024 for organizational
certificates.

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 53 / 65

Certificate Common Name (CN) Valid to Description

 SK OCSP
2011
RESPONDER

 18-Mar- 2024 common OCSP
responder for all
certificates issued under
EECCRCA

7.1.2.2 Supported SK test certificate hierarchy chains

Note: the following test certificates have been registered in the CDigiDoc configuration file but
have not been included in the CDigiDoc distribution. In order to use the test certificates with
CDigiDoc, you need to install them separately (the installation package containing both
Estonian and Finnish test certificates is accessible from
https://installer.id.ee/media/windows/Eesti_ID_kaart_testsertifikaadid.msi).

Note that the test certificates should not be used in live applications as the CDigiDoc library
does not give notifications to the user in case of test signatures.

Certificate Common Name (CN) Valid to Description

Test JUUR-SK 27-Aug-2016 SK’s 1st test root
certificate

 TEST-SK 26-Aug-2016 for all test cards and
certificates issued until
04.2011

 Test-SK OCSP
RESPONDER 2005

06-Apr-2012 TEST-SK OCSP
responder

 TEST of
KLASS3-SK
2010

 21-March-
2025

for organizational test
certificates

TEST EECCRCA 18-Dec-2030 SK’s 2nd test root
certificate

 TEST of
ESTEID-SK
2011

 07-Sep-2023 for test ID cards, Digi-ID
and Mobile-ID certificates
issued from 04.2011

 TEST of EID-
SK 2011

 07-Sep-2023 for all other test
certificates issued from
04.2011

 Test SK OCSP
RESPONDER
2011

 07-Sep-2024 common OCSP responder
for all test certificates
issued under TEST-
EECCRCA

 Interoperability testing

7.2.1 DigiDoc framework cross-usability tests

Automated cross-usability tests of digitally signed and encrypted files are periodically carried
out between different DigiDoc software libraries [13]:

 Cross-usability tests of digitally signed files in DIGIDOC-XML 1.3 format (.ddoc files)
are carried out between JDigiDoc and CDigiDoc software libraries.

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 54 / 65

 Cross-usability of BDOC 2.1 (.bdoc or .asice) file format is tested between JDigiDoc
and Libdigidocpp libraries.

 Cross-usability of encrypted file format CDOC 1.0 is carried out between JDigiDoc
and CDigiDoc software libraries.

The interoperability tests are executed through the command line utility tools of the
software libraries (for example, in case of JDigiDoc library, the utility program).

7.2.2 CDigiDoc API’s usage in CDigiDoc utility program

The CDigiDoc API’s methods that are directly called out by CDigiDoc utility program are listed
in the table below. Note that as the API is tested via the CDigiDoc utility program then the
following functions have been tested the most thoroughly.

CDigiDoc utility’s command Called CDigiDoc API method(s)

-check-cert ReadCertificate(X509 **x509, const char *szCertfile);

ddocVerifyCertByOCSP(X509* pCert, OCSP_RESPONSE **ppResp);

ddocCertGetSubjectCN(X509* pCert, DigiDocMemBuf* pMemBuf);

-in <input-ddoc-file> ConfigItem_lookup_int(const char* key, int defValue);

ddocSaxReadSignedDocFromFile(SignedDoc** ppSigDoc, const
char* szFileName, int checkFileDigest, long
lMaxDFLen);

-in <input-encrypted-file> ConfigItem_lookup_int(const char* key, int defValue);

dencSaxReadEncryptedData(DEncEncryptedData** ppEncData,
const char* szFileName);

-new ConfigItem_lookup(const char* key);

SignedDoc_new(SignedDoc **pSignedDoc, const char* format,
const char* version);

-add <input-file> <mime-
type>

ddocConvertInput(const char* src, char** dest);

getFullFileName(const char* szFileName, char* szDest, int
len);

DataFile_new(DataFile **newDataFile, SignedDoc* pSigDoc,
const char* id, const char* filename, const char*
contentType, const char* mime, long size, const
byte* digest, int digLen, const char* digType,
const char* szCharset);

calculateDataFileSizeAndDigest(SignedDoc* pSigDoc, const
char* id, const char* filename, int digType);

-sign <pin-code> signDocumentWithSlotAndSigner(SignedDoc* pSigDoc,
SignatureInfo** ppSigInfo, const char* pin, const
char* manifest, const char* city, const char*
state, const char* zip, const char* country, int
nSlot, int nOcsp, int nSigner, const char*
szPkcs12FileName);

-out <output-ddoc-file> createSignedDoc(SignedDoc* pSigDoc, const char* szOldFile,
const char* szOutputFile);

-out <output-encrypted-file> dencGenEncryptedData_writeToFile(DEncEncryptedData*
pEncData, const char* szFileName);

-verify getCountOfSignatures(const SignedDoc* pSigDoc);

getSignature(const SignedDoc* pSigDoc, int nIdx);

ddocCertGetSubjectCN(X509* pCert, DigiDocMemBuf* pMemBuf);

verifySignatureAndNotary(SignedDoc* pSigDoc, SignatureInfo*
pSigInfo, const char* szFileName);

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 55 / 65

CDigiDoc utility’s command Called CDigiDoc API method(s)

getCountOfSignerRoles(SignatureInfo* pSigInfo, int
nCertified);

getSignerRole(SignatureInfo* pSigInfo, int nCertified, int
nIdx);

ddocSigInfo_GetSignersCert(const SignatureInfo* pSigInfo);

getNotaryWithSigId(const SignedDoc* pSigDoc, const char*
sigId);

ddocNotInfo_GetResponderId(const NotaryInfo* pNotary);

ReadCertSerialNumber(char* szSerial, int nMaxLen, X509
*x509);

ddocCertGetIssuerDN(X509* pCert, DigiDocMemBuf* pMemBuf);

ddocCertGetSubjectDN(X509* pCert, DigiDocMemBuf* pMemBuf);

getCertNotBefore(const SignedDoc* pSigDoc, X509* cert,
char* timestamp, int len);

getCertNotAfter(const SignedDoc* pSigDoc, X509* cert, char*
timestamp, int len);

readCertPolicies(X509* pX509, PolicyIdentifier** pPolicies,
int* nPols);

-extract <data-file-id>
<output-file>

ddocExtractDataFile(SignedDoc* pSigDoc, const char*
szFileName, const char* szDataFileName, const char*
szDocId, const char* szCharset);

-extract-mem <data-file-id>
<output-file>

ddocGetDataFileCachedData(SignedDoc* pSigDoc, const char*
szDocId, void** ppBuf, long* pLen);

-get-confirmation
<signature-id>

getSignatureWithId(const SignedDoc* pSigDoc, const char*
id);

notarizeSignature(SignedDoc* pSigDoc, SignatureInfo*
pSigInfo);

-mid-sign <phone-no> <per-
code> [[<country>(EE)]
[<lang>(EST)]
[<service>(Testing)]
[<manifest>] [<city> <state>
<zip>]]

ConfigItem_lookup_int(const char* key, int defValue);

ConfigItem_lookup(const char* key);

ddsSign(SignedDoc* pSigDoc, const char* szIdCode, const
char* szPhoneNo, const char* szLang, const char*
szServiceName, const char* manifest, const char*
city, const char* state, const char* zip, const
char* country, char* url, char* proxyHost, char*
proxyPort, long* pSesscode, char* szChallenge, int
nChalLen);

ddsGetStatus(SignedDoc* pSigDoc, long lSesscode, char* url,
char* proxyHost, char* proxyPort, int* pStatus);

-denc-list <input-file> dencSaxReadEncryptedData(DEncEncryptedData** ppEncData,
const char* szFileName);

dencMetaInfo_GetLibVersion(DEncEncryptedData* pEncData,
char* szLibrary, int nLibLen, char* szVersion, int
nVerLen);

dencMetaInfo_GetFormatVersion(DEncEncryptedData* pEncData,
char* szFormat, int nFormat, char* szVersion, int
nVersion);

-encrecv <certificate-file> dencEncryptedData_new(DEncEncryptedData** pEncData, const
char* szXmlNs, const char* szEncMethod, const char*
szId, const char* szType, const char* szMimeType);

dencMetaInfo_SetLibVersion(DEncEncryptedData* pEncData);

dencMetaInfo_SetFormatVersion(DEncEncryptedData* pEncData);

ReadCertificate(X509 **x509, const char *szCertfile);

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 56 / 65

CDigiDoc utility’s command Called CDigiDoc API method(s)

ddocCertGetSubjectCN(X509* pCert, DigiDocMemBuf* pMemBuf);

dencEncryptedKey_new(DEncEncryptedData* pEncData,
DEncEncryptedKey** pEncKey, X509* pCert, const
char* szEncMethod, const char* szId, const char*
szRecipient, const char* szKeyName, const char*
szCarriedKeyName);

-encrypt-sk <input-file> ConfigItem_lookup_int(const char* key, int defValue);

dencEncryptedData_new(DEncEncryptedData** pEncData, const
char* szXmlNs, const char* szEncMethod, const char*
szId, const char* szType, const char* szMimeType);

dencMetaInfo_SetLibVersion(DEncEncryptedData* pEncData);

dencMetaInfo_SetFormatVersion(DEncEncryptedData* pEncData);

ddocConvertInput(const char* src, char** dest);

dencEncryptionProperty_new(DEncEncryptedData* pEncData,
DEncEncryptionProperty** ppEncProperty, const char*
szId, const char* szTarget, const char* szName,
const char* szContent);

SignedDoc_new(SignedDoc **pSignedDoc, const char* format,
const char* version);

calculateFileSize(const char* szFileName, long* lFileLen);

DataFile_new(DataFile **newDataFile, SignedDoc* pSigDoc,
const char* id, const char* filename, const char*
contentType, const char* mime, long size, const
byte* digest, int digLen, const char* digType,
const char* szCharset);

dencOrigContent_registerDigiDoc(DEncEncryptedData*
pEncData, SignedDoc* pSigDoc);

createSignedDoc(SignedDoc* pSigDoc, const char* szOldFile,
const char* szOutputFile);

ddocReadFile(const char* szFileName, DigiDocMemBuf* pData);

dencEncryptedData_encryptData(DEncEncryptedData* pEncData,
int nCompressOption);

-encrypt <input-file> ConfigItem_lookup_int(const char* key, int defValue);

dencEncryptedData_new(DEncEncryptedData** pEncData, const
char* szXmlNs, const char* szEncMethod, const char*
szId, const char* szType, const char* szMimeType);

dencMetaInfo_SetLibVersion(DEncEncryptedData* pEncData);

dencMetaInfo_SetFormatVersion(DEncEncryptedData* pEncData);

dencEncryptionProperty_new(DEncEncryptedData* EncData,
DEncEncryptionProperty** ppEncProperty, const char*
szId, const char* szTarget, const char* szName,
const char* szContent);

dencEncryptedData_AppendData(DEncEncryptedData* pEncData,
const char* data, int len);

ddocSaxReadSignedDocFromFile(SignedDoc** ppSigDoc, const
char* szFileName, int checkFileDigest, long
lMaxDFLen);

dencOrigContent_registerDigiDoc(DEncEncryptedData*
pEncData, SignedDoc* pSigDoc);

dencEncryptedData_encryptData(DEncEncryptedData* pEncData,
int nCompressOption);

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 57 / 65

CDigiDoc utility’s command Called CDigiDoc API method(s)

-encrypt-file <input-file>
<output-file>

dencEncryptFile(DEncEncryptedData* pEncData, const char*
szInputFileName, const char* szOutputFileName,
const char* szMimeType);

-decrypt-sk <output-file>
<pin>

Functions of –decrypt command.

utf82unicode(const char* utf8, char** unicode, int*
outlen);

ddocSaxReadSignedDocFromFile(SignedDoc** ppSigDoc, const
char* szFileName, int checkFileDigest, long
lMaxDFLen);

getCountOfDataFiles(const SignedDoc* pSigDoc);

getDataFile(const SignedDoc* pSigDoc, int nIdx);

ddocExtractDataFile(SignedDoc* pSigDoc, const char*
szFileName, const char* szDataFileName, const char*
szDocId, const char* szCharset);

-decrypt <output-file> <pin> dencSaxReadEncryptedData(DEncEncryptedData** ppEncData,
const char* szFileName);

dencEncryptedData_findEncryptedKeyByPKCS12(DEncEncryptedDat
a* pEncData, DEncEncryptedKey** ppEncKey,
EVP_PKEY** ppKey, const char* szPkcs12File, const
char* szPasswd);

dencEncryptedData_findEncryptedKeyByPKCS11UsingSlot(DEncEnc
ryptedData* pEncData, DEncEncryptedKey** ppEncKey,
int nSlot);

dencEncryptedData_decryptWithKey(DEncEncryptedData*
pEncData, DEncEncryptedKey* pEncKey, EVP_PKEY*
pKey);

dencEncryptedData_decryptUsingSlot(DEncEncryptedData*
pEncData, DEncEncryptedKey* pEncKey, const char*
pin, int nSlot);

-decrypt-file <input-file>
<output-file> <pin>

dencSaxReadDecryptFile(const char* szInputFileName, const
char* szOutputFileName, const char* szPin, const
char* szPkcs12File);

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 58 / 65

8. CDigiDoc library’s implementation notes

The following section describes properties of DIGIDOC-XML 1.3 files that are not strictly
defined in the DIGIDOC-XML 1.3 [1] specification but are used in CDigiDoc library’s
implementation (and also in other DigiDoc software libraries) of the file formats.

 General implementation notes

Digital signature related notes:

1. One OCSP confirmation (time-mark) is allowed for each signature (due to security
reasons and in order to maintain testing efficiency).

2. <Transforms> element is not supported for security purposes and in order to
maintain testing efficiency.

3. Two data files with the same name are allowed in DDOC container, except of
CDigiDoc versions 3.8 and 3.9.

4. All data files in the container must be signed. All signatures in the container must
sign all of the data files.

5. During signature creation, it is checked that there is only one <ClaimedRole>
element in the signature, which contains the signer’s role and optionally the signer’s
resolution. If the <ClaimedRole> element contains both role and resolution then they
must be separated with a slash mark, e.g. “role / resolution”. Note that when setting
the resolution value then role must also be specified.

6. During signature validation, at most two <ClaimedRole> elements are allowed for a
signature.

7. Altering files in older formats SK-XML 1.0, DIGIDOC-XML 1.1 and 1.2 is not
supported by the library. It is possible to validate and extract data files from these
documents, but validation is expected to return error code about old DigiDoc file
format. CDigiDoc utility program (identically to DigiDoc3 Client application) regards
this validation error as a validation warning.

Signer certificate related notes:

1. Valid signatures (qualified electronic signatures) can be created with a certificate
that has “Non-repudiation” value (also referred to as “Content Commitment”) in its
“Key usage” field. The requirement is based on the following sources:

o ETSI TS 102 280 (V1.1.1): “X.509 V3 Certificate Profile for Certificates
Issued to Natural Persons” [10]; chap. 5.4.3;

o Profile of certificates issued to private persons by AS Sertifitseerimiskeskus:
“Certificates on identity card of Republic of Estonia”, version 3.3 [11];
appendix A.3.3;

o Profile of certificates issued to legal entities by AS Sertifitseerimiskeskus:
“Profile of institution certificates and Certificate Revocation Lists”, version
1.3 [12]; chap. 3.2.2.

2. Signature can be created with a certificate that doesn’t have “Non-repudiation” value
in its “Key-Usage” field when specific parameters have been set but validation of
such signature will produce a respective error message and the signature is not
considered as a qualified electronic signature.

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 59 / 65

 DIGIDOC-XML 1.3 specific implementation notes

1. The only data file embedding mode that is supported, is
CONTENT_EMBEDDED_BASE64 which means that the data file is included in the
DigiDoc container in base64 encoding.

2. The nonce value’s calculation in case of time-marking mechanism of DIGIDOC-XML
1.3 file format is implemented as follows:

- the contents of <SignatureValue> element (i.e. the value without XML tags) is
taken and decoded from base64 encoding;

- digest of the value found in the previous step is calculated by using SHA-1
algorithm.

- the digest value is included in the OCSP request’s “nonce” field and must be
present in the respective field of the OCSP response.

3. In case of DigiDocService web service [9] and DIGIDOC-XML 1.3 file format,
CDigiDoc software library supports HASHCODE data file mode for intermediary
ddoc files. The mode allows sending only the data file’s digest value to the service,
instead of embedding the whole data file to the container. In this case, it is possible
to add larger data files than 4MB to the container (which would otherwise be the
maximum data file size allowed in DigiDocService).

4. Embedding data files to the container as pure XML (EMBEDDED data file mode)
and signing data files that are not included in the container (DETACHED data file
mode) are not supported.

5. <DataFile> element’s Id attribute value is set as “D<seq_no>” when adding the file to
DigiDoc container. During verification, the Id attribute “DO” is also accepted as valid.

6. In case of DIGIDOC-XML 1.3 documents, the following validation errors are regarded as
minor technical errors and are treated as validation warnings in cdigidoc utility
program (identically to DigiDoc3 Client application):

o <DataFile> element’s xmlns attribute is missing.

o <IssuerSerial><X509IssuerName> and/or <IssuerSerial><X509SerialNumber>
element’s xmlns attribute is missing.

7. It is possible to use CDigiDoc configuration file’s parameter CHECK_OCSP_NONCE
with DIGIDOC-XML 1.3 files, which, if set to “true”, means that the presence of
OCSP response’s (the contents of <EncapsulatedOCSPValue> element) nonce
value’s ASN.1 prefix is not required during signature validation. Otherwise, it is
required by RFC 2560 specification (“Online Certificate Status Protocol - OCSP”)
that the OCSP response’s nonce value must have the corresponding ASN.1 prefix
(OCTET STRING tag (04hex) followed by the length of the nonce value in
hexadecimal format). By default, the nonce value’s ASN.1 prefix is not checked in
order to support validation of DIGIDOC-XML 1.3 files created with CDigiDoc library’s
version below v3.7.

AS Sertifitseerimiskeskus (Certification Centre Ltd.)

Appendix 1: CDigiDoc configuration file

A sample CDigiDoc configuration file may consist of the following sections and possible
entries:

 user-specific values to be always checked and possibly modified in purple

 optional and alternative settings in blue

 section headers in green

 # is indicating all out-commented parameters and additional notes

#--

DigiDoc library global configuration file

#--

PKCS#11 module settings - change this according to your signature device!!!

DIGIDOC_DEFAULT_DRIVER = 1

DIGIDOC_DRIVERS = 1

DIGIDOC_DRIVER_1_NAME = OpenSC

DIGIDOC_DRIVER_1_DESC = OpenSC projects PKCS#11 driver

DIGIDOC_DRIVER_1_FILE = opensc-pkcs11.dll

for Linux: DIGIDOC_DRIVER_1_FILE = opensc-pkcs11.so

Digital signing settings

Identifier of the signer’s private key’s slot on an identity token.

DIGIDOC_SIGNATURE_SLOT = 1

Default OCSP responder URL

DIGIDOC_OCSP_URL = http://ocsp.sk.ee

OpenXAdeS test responder URL

#DIGIDOC_OCSP_URL = http://www.openxades.org/cgi-bin/ocsp.cgi

Sign OCSP requests or not. Depends on your responder

Set this parameter value to “true” if OCSP requests need to be signed

SIGN_OCSP = false

The PKCS#12 file used to sign OCSP requests

DIGIDOC_PKCS_FILE = <your-pkcs12-file-name>

Password for this key

DIGIDOC_PKCS_PASSWD = <your-pkcs12-passwd>

Your HTTP proxy if necessary

USE_PROXY = false

DIGIDOC_PROXY_HOST = <your-proxy-hostname>

DIGIDOC_PROXY_PORT = <proxy-port>

DIGIDOC_PROXY_USER = <proxy-username>

DIGIDOC_PROXY_PASS = <proxy-password>

Signature verification settings

CHECK_OCSP_NONCE = false

CA certificates

CA_CERT_PATH = C:\Program Files\Estonian ID Card Development\libdigidoc\certs

CA_CERTS = 17

CA_CERT_1 = JUUR-SK.crt

CA_CERT_1_CN = Juur-SK

CA_CERT_2 = ESTEID-SK.crt

http://ocsp.sk.ee/

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 61 / 65

CA_CERT_2_CN = ESTEID-SK

CA_CERT_3 = ESTEID-SK 2007.crt

CA_CERT_3_CN = ESTEID-SK 2007

CA_CERT_4 = KLASS3-SK.crt

CA_CERT_4_CN = KLASS3-SK

CA_CERT_5 = KLASS3-SK 2010.crt

CA_CERT_5_CN = KLASS3-SK 2010

CA_CERT_6 = KLASS3-SK 2010 EECCRCA.crt

CA_CERT_6_CN = KLASS3-SK 2010

CA_CERT_7 = EID-SK.crt

CA_CERT_7_CN = EID-SK

CA_CERT_8 = EID-SK 2007.crt

CA_CERT_8_CN = EID-SK 2007

CA_CERT_9 = EECCRCA.crt

CA_CERT_9_CN = EE Certification Centre Root CA

CA_CERT_10 = ESTEID-SK 2011.crt

CA_CERT_10_CN = ESTEID-SK 2011

CA_CERT_11 = EID-SK 2011.crt

CA_CERT_11_CN = EID-SK 2011

Certificates for Estonian test ID-cards

CA_CERT_12 = TEST Juur-SK.crt

CA_CERT_12_CN = TEST Juur-SK

CA_CERT_13 = TEST-SK.crt

CA_CERT_13_CN = TEST-SK

CA_CERT_14 = TEST EECCRCA.crt

CA_CERT_14_CN = TEST of EE Certification Centre Root CA

CA_CERT_15 = TEST ESTEID-SK 2011.crt

CA_CERT_15_CN = TEST of ESTEID-SK 2011

CA_CERT_16 = TEST EID-SK 2011.crt

CA_CERT_16_CN = TEST of EID-SK 2011

CA_CERT_17 = TEST KLASS3 2010.crt

CA_CERT_17_CN = TEST of KLASS3-SK 2010

OCSP responder certificates

Note: if you add or remove some of these certificates, update the following number,

also pay attention to proper naming

DIGIDOC_OCSP_RESPONDER_CERTS = 24

DIGIDOC_OCSP_RESPONDER_CERT_1=TEST-SK OCSP 2005.crt

DIGIDOC_OCSP_RESPONDER_CERT_1_CN=TEST-SK OCSP RESPONDER 2005

DIGIDOC_OCSP_RESPONDER_CERT_1_CA=TEST-SK

DIGIDOC_OCSP_RESPONDER_CERT_1_URL=http://www.openxades.org/cgi-bin/ocsp.cgi

DIGIDOC_OCSP_RESPONDER_CERT_2=KLASS3-SK OCSP 2009.crt

DIGIDOC_OCSP_RESPONDER_CERT_2_CN=KLASS3-SK OCSP RESPONDER 2009

DIGIDOC_OCSP_RESPONDER_CERT_2_CA=KLASS3-SK

DIGIDOC_OCSP_RESPONDER_CERT_3=ESTEID-SK OCSP 2005.crt

DIGIDOC_OCSP_RESPONDER_CERT_3_CN=ESTEID-SK OCSP RESPONDER 2005

DIGIDOC_OCSP_RESPONDER_CERT_3_CA=ESTEID-SK

DIGIDOC_OCSP_RESPONDER_CERT_4=ESTEID-SK 2007 OCSP.crt

DIGIDOC_OCSP_RESPONDER_CERT_4_CN=ESTEID-SK 2007 OCSP RESPONDER

DIGIDOC_OCSP_RESPONDER_CERT_4_CA=ESTEID-SK 2007

DIGIDOC_OCSP_RESPONDER_CERT_5=EID-SK 2007 OCSP.crt

DIGIDOC_OCSP_RESPONDER_CERT_5_CN=EID-SK 2007 OCSP RESPONDER

DIGIDOC_OCSP_RESPONDER_CERT_5_CA=EID-SK 2007

DIGIDOC_OCSP_RESPONDER_CERT_6=EID-SK OCSP 2006.crt

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 62 / 65

DIGIDOC_OCSP_RESPONDER_CERT_6_1=EID-SK OCSP.crt

DIGIDOC_OCSP_RESPONDER_CERT_6_CN=EID-SK OCSP RESPONDER

DIGIDOC_OCSP_RESPONDER_CERT_6_CA=EID-SK

DIGIDOC_OCSP_RESPONDER_CERT_7=ESTEID-SK OCSP.crt

DIGIDOC_OCSP_RESPONDER_CERT_7_CN=ESTEID-SK OCSP RESPONDER

DIGIDOC_OCSP_RESPONDER_CERT_7_CA=ESTEID-SK

DIGIDOC_OCSP_RESPONDER_CERT_8=KLASS3-SK OCSP 2006.crt

DIGIDOC_OCSP_RESPONDER_CERT_8_1=KLASS3-SK OCSP.crt

DIGIDOC_OCSP_RESPONDER_CERT_8_CN=KLASS3-SK OCSP RESPONDER

DIGIDOC_OCSP_RESPONDER_CERT_8_CA=KLASS3-SK

DIGIDOC_OCSP_RESPONDER_CERT_9=EID-SK 2007 OCSP 2010.crt

DIGIDOC_OCSP_RESPONDER_CERT_9_CN=EID-SK 2007 OCSP RESPONDER 2010

DIGIDOC_OCSP_RESPONDER_CERT_9_CA=EID-SK 2007

DIGIDOC_OCSP_RESPONDER_CERT_10=ESTEID-SK 2007 OCSP 2010.crt

DIGIDOC_OCSP_RESPONDER_CERT_10_CN=ESTEID-SK 2007 OCSP RESPONDER 2010

DIGIDOC_OCSP_RESPONDER_CERT_10_CA=ESTEID-SK 2007

DIGIDOC_OCSP_RESPONDER_CERT_11=KLASS3-SK 2010 OCSP.crt

DIGIDOC_OCSP_RESPONDER_CERT_11_CN=KLASS3-SK 2010 OCSP RESPONDER

DIGIDOC_OCSP_RESPONDER_CERT_11_CA=KLASS3-SK 2010

DIGIDOC_OCSP_RESPONDER_CERT_12=SK OCSP 2011.crt

DIGIDOC_OCSP_RESPONDER_CERT_12_CN=SK OCSP RESPONDER 2011

DIGIDOC_OCSP_RESPONDER_CERT_12_CA=EE Certification Centre Root CA

DIGIDOC_OCSP_RESPONDER_CERT_13=SK OCSP 2011.crt

DIGIDOC_OCSP_RESPONDER_CERT_13_CN=SK OCSP RESPONDER 2011

DIGIDOC_OCSP_RESPONDER_CERT_13_CA=ESTEID-SK 2011

DIGIDOC_OCSP_RESPONDER_CERT_14=SK OCSP 2011.crt

DIGIDOC_OCSP_RESPONDER_CERT_14_CN=SK OCSP RESPONDER 2011

DIGIDOC_OCSP_RESPONDER_CERT_14_CA=EID-SK 2011

OCSP responder settings for Estonian test ID-cards

DIGIDOC_OCSP_RESPONDER_CERT_15=TEST SK OCSP 2011.crt

DIGIDOC_OCSP_RESPONDER_CERT_15_CN=TEST of SK OCSP RESPONDER 2011

DIGIDOC_OCSP_RESPONDER_CERT_15_CA=TEST of EE Certification Centre Root CA

DIGIDOC_OCSP_RESPONDER_CERT_15_URL=http://www.openxades.org/cgi-bin/ocsp.cgi

DIGIDOC_OCSP_RESPONDER_CERT_16=TEST SK OCSP 2011.crt

DIGIDOC_OCSP_RESPONDER_CERT_16_CN=TEST of SK OCSP RESPONDER 2011

DIGIDOC_OCSP_RESPONDER_CERT_16_CA=TEST of ESTEID-SK 2011

DIGIDOC_OCSP_RESPONDER_CERT_16_URL=http://www.openxades.org/cgi-bin/ocsp.cgi

DIGIDOC_OCSP_RESPONDER_CERT_17=TEST SK OCSP 2011.crt

DIGIDOC_OCSP_RESPONDER_CERT_17_CN=TEST of SK OCSP RESPONDER 2011

DIGIDOC_OCSP_RESPONDER_CERT_17_CA=TEST of EID-SK 2011

DIGIDOC_OCSP_RESPONDER_CERT_17_URL=http://www.openxades.org/cgi-bin/ocsp.cgi

DIGIDOC_OCSP_RESPONDER_CERT_18=TEST SK OCSP 2011.crt

DIGIDOC_OCSP_RESPONDER_CERT_18_CN=TEST of SK OCSP RESPONDER 2011

DIGIDOC_OCSP_RESPONDER_CERT_18_CA=TEST of KLASS3-SK 2010

DIGIDOC_OCSP_RESPONDER_CERT_18_URL=http://www.openxades.org/cgi-bin/ocsp.cgi

OCSP responder settings for Finnish ID-cards

DIGIDOC_OCSP_RESPONDER_CERT_19=TEST SK OCSP 2011.crt

DIGIDOC_OCSP_RESPONDER_CERT_19_CN=TEST of SK OCSP RESPONDER 2011

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 63 / 65

DIGIDOC_OCSP_RESPONDER_CERT_19_CA=VRK CA for Test Purposes

DIGIDOC_OCSP_RESPONDER_CERT_19_URL=http://www.openxades.org/cgi-bin/ocsp.cgi

DIGIDOC_OCSP_RESPONDER_CERT_20=TEST SK OCSP 2011.crt

DIGIDOC_OCSP_RESPONDER_CERT_20_CN=TEST of SK OCSP RESPONDER 2011

DIGIDOC_OCSP_RESPONDER_CERT_20_CA=VRK TEST Root CA

DIGIDOC_OCSP_RESPONDER_CERT_20_URL=http://www.openxades.org/cgi-bin/ocsp.cgi

DIGIDOC_OCSP_RESPONDER_CERT_21=SK OCSP 2011.crt

DIGIDOC_OCSP_RESPONDER_CERT_21_CN=SK OCSP RESPONDER 2011

DIGIDOC_OCSP_RESPONDER_CERT_21_CA=VRK Gov. Root CA

DIGIDOC_OCSP_RESPONDER_CERT_21_URL=http://ocsp.sk.ee/_proxy

DIGIDOC_OCSP_RESPONDER_CERT_22=SK OCSP 2011.crt

DIGIDOC_OCSP_RESPONDER_CERT_22_CN=SK OCSP RESPONDER 2011

DIGIDOC_OCSP_RESPONDER_CERT_22_CA=VRK Gov. CA for Citizen Qualified Certificates

DIGIDOC_OCSP_RESPONDER_CERT_22_URL=http://ocsp.sk.ee/_proxy

DIGIDOC_OCSP_RESPONDER_CERT_23=SK OCSP 2011.crt

DIGIDOC_OCSP_RESPONDER_CERT_23_CN=SK OCSP RESPONDER 2011

DIGIDOC_OCSP_RESPONDER_CERT_23_CA=VRK CA for Healthcare Professionals Qualified Certificates

DIGIDOC_OCSP_RESPONDER_CERT_23_URL=http://ocsp.sk.ee/_proxy

DIGIDOC_OCSP_RESPONDER_CERT_24=SK OCSP 2011.crt

DIGIDOC_OCSP_RESPONDER_CERT_24_CN=SK OCSP RESPONDER 2011

DIGIDOC_OCSP_RESPONDER_CERT_24_CA=VRK CA for Qualified Certificates

DIGIDOC_OCSP_RESPONDER_CERT_24_URL=http://ocsp.sk.ee/_proxy

Encryption settings

Compression mode of data before encryption. Possible values: 0 – always compress, 1 – never

compress, 2 – best effort

DENC_COMPRESS_MODE = 0

DENC_COMPRESS_MODE = 1

DENC_COMPRESS_MODE = 2

Debugging settings

Specifies the amount of information printed out. Possible value range: 0-9

DEBUG_LEVEL = 3

Note that the directory where you want to store the output file has to exist before

debugging, otherwise the file is not created.

DEBUG_FILE = <your-debugging-log-file>

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 64 / 65

Appendix 2: Signature types

The signatures which are created can be either digital stamps, qualified electronic signatures
or technical signatures depending on the certificate which is used for signing and whether
OCSP confirmation is added or not.

Qualified electronic signature, i.e. ordinary digital signature

Qualified electronic signatures have the following characteristics:

 the certificate for signing has been issued to a private person,

 the signer’s certificate has “Non-repudiation” value in its “Key usage” field (see also
figure 1),

 the signature has OCSP confirmation.

Certificates which can be used for qualified electronic signature creation are stored on physical
identity tokens: ID-card, Digi-ID, Mobile-ID or cryptostick.

 A certificate with “Non-Repudiation” value in its “Key Usage” field

Digital stamp

Digital stamps are same as qualified electronic signatures, except of the certificate type that
has been used for creating the signature. Digital stamps have the following characteristics:

 the certificate for signing is a “digital stamp” certificate issued to an organization (i.e.
legal entity),

 the certificate has “Non-repudiation” value in its “Key usage” field (see also figure
above),

 the signature has OCSP confirmation.

Digital stamp certificates are issued by AS Sertifitseerimiskeskus (SK) (see also
https://www.sk.ee/en/services/Digital-stamp/), the certificates are stored on cryptosticks.

Technical signature

Technical signatures are signatures which have at least one of the following characteristics:

 the signer’s certificate does not have “Non-repudiation” value in its “Key usage” field
(see also figure below),

 OCSP confirmation has not been added to the signature.

Technical signatures can be created both by private persons and organizations.

https://www.sk.ee/en/services/Digital-stamp/

SK-CDD-PRG-GUIDE

CDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 65 / 65

Note: verification of a technical signature is expected to produce specific error message(s)
depending on the signature’s properties:

 technical signature with no OCSP confirmation is expected to produce error
message “Signature has no OCSP confirmation!”.

 technical signature which has been created with a certificate that doesn’t have “Non-
repudiation” value in its “Key usage” field is expected to produce error message
“Signer’s cert does not have non-repudiation bit set!”.

A certificate with “Key Encipherment” value in its “Key Usage” field

Note that in the meaning of Estonian legislation (see [6]), qualified electronic signatures and
digital stamps are equivalent to handwritten signatures whereas technical signatures are not.

