summaryrefslogtreecommitdiff
path: root/src/SFML/Graphics/RenderTarget.cpp
blob: 28b35e453e3454de72bb2583ef941498a15025b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2015 Laurent Gomila (laurent@sfml-dev.org)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
//    you must not claim that you wrote the original software.
//    If you use this software in a product, an acknowledgment
//    in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
//    and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/RenderTarget.hpp>
#include <SFML/Graphics/Drawable.hpp>
#include <SFML/Graphics/Shader.hpp>
#include <SFML/Graphics/Texture.hpp>
#include <SFML/Graphics/VertexArray.hpp>
#include <SFML/Graphics/GLCheck.hpp>
#include <SFML/System/Err.hpp>
#include <cassert>
#include <iostream>

namespace
{
    // Convert an sf::BlendMode::Factor constant to the corresponding OpenGL constant.
    sf::Uint32 factorToGlConstant(sf::BlendMode::Factor blendFactor)
    {
        switch (blendFactor)
        {
            case sf::BlendMode::Zero:             return GL_ZERO;
            case sf::BlendMode::One:              return GL_ONE;
            case sf::BlendMode::SrcColor:         return GL_SRC_COLOR;
            case sf::BlendMode::OneMinusSrcColor: return GL_ONE_MINUS_SRC_COLOR;
            case sf::BlendMode::DstColor:         return GL_DST_COLOR;
            case sf::BlendMode::OneMinusDstColor: return GL_ONE_MINUS_DST_COLOR;
            case sf::BlendMode::SrcAlpha:         return GL_SRC_ALPHA;
            case sf::BlendMode::OneMinusSrcAlpha: return GL_ONE_MINUS_SRC_ALPHA;
            case sf::BlendMode::DstAlpha:         return GL_DST_ALPHA;
            case sf::BlendMode::OneMinusDstAlpha: return GL_ONE_MINUS_DST_ALPHA;
        }

        sf::err() << "Invalid value for sf::BlendMode::Factor! Fallback to sf::BlendMode::Zero." << std::endl;
        assert(false);
        return GL_ZERO;
    }


    // Convert an sf::BlendMode::BlendEquation constant to the corresponding OpenGL constant.
    sf::Uint32 equationToGlConstant(sf::BlendMode::Equation blendEquation)
    {
        switch (blendEquation)
        {
            case sf::BlendMode::Add:             return GLEXT_GL_FUNC_ADD;
            case sf::BlendMode::Subtract:        return GLEXT_GL_FUNC_SUBTRACT;
        }

        sf::err() << "Invalid value for sf::BlendMode::Equation! Fallback to sf::BlendMode::Add." << std::endl;
        assert(false);
        return GLEXT_GL_FUNC_ADD;
    }
}


namespace sf
{
////////////////////////////////////////////////////////////
RenderTarget::RenderTarget() :
m_defaultView(),
m_view       (),
m_cache      ()
{
    m_cache.glStatesSet = false;
}


////////////////////////////////////////////////////////////
RenderTarget::~RenderTarget()
{
}


////////////////////////////////////////////////////////////
void RenderTarget::clear(const Color& color)
{
    if (activate(true))
    {
        // Unbind texture to fix RenderTexture preventing clear
        applyTexture(NULL);

        glCheck(glClearColor(color.r / 255.f, color.g / 255.f, color.b / 255.f, color.a / 255.f));
        glCheck(glClear(GL_COLOR_BUFFER_BIT));
    }
}


////////////////////////////////////////////////////////////
void RenderTarget::setView(const View& view)
{
    m_view = view;
    m_cache.viewChanged = true;
}


////////////////////////////////////////////////////////////
const View& RenderTarget::getView() const
{
    return m_view;
}


////////////////////////////////////////////////////////////
const View& RenderTarget::getDefaultView() const
{
    return m_defaultView;
}


////////////////////////////////////////////////////////////
IntRect RenderTarget::getViewport(const View& view) const
{
    float width  = static_cast<float>(getSize().x);
    float height = static_cast<float>(getSize().y);
    const FloatRect& viewport = view.getViewport();

    return IntRect(static_cast<int>(0.5f + width  * viewport.left),
                   static_cast<int>(0.5f + height * viewport.top),
                   static_cast<int>(0.5f + width  * viewport.width),
                   static_cast<int>(0.5f + height * viewport.height));
}


////////////////////////////////////////////////////////////
Vector2f RenderTarget::mapPixelToCoords(const Vector2i& point) const
{
    return mapPixelToCoords(point, getView());
}


////////////////////////////////////////////////////////////
Vector2f RenderTarget::mapPixelToCoords(const Vector2i& point, const View& view) const
{
    // First, convert from viewport coordinates to homogeneous coordinates
    Vector2f normalized;
    IntRect viewport = getViewport(view);
    normalized.x = -1.f + 2.f * (point.x - viewport.left) / viewport.width;
    normalized.y =  1.f - 2.f * (point.y - viewport.top)  / viewport.height;

    // Then transform by the inverse of the view matrix
    return view.getInverseTransform().transformPoint(normalized);
}


////////////////////////////////////////////////////////////
Vector2i RenderTarget::mapCoordsToPixel(const Vector2f& point) const
{
    return mapCoordsToPixel(point, getView());
}


////////////////////////////////////////////////////////////
Vector2i RenderTarget::mapCoordsToPixel(const Vector2f& point, const View& view) const
{
    // First, transform the point by the view matrix
    Vector2f normalized = view.getTransform().transformPoint(point);

    // Then convert to viewport coordinates
    Vector2i pixel;
    IntRect viewport = getViewport(view);
    pixel.x = static_cast<int>(( normalized.x + 1.f) / 2.f * viewport.width  + viewport.left);
    pixel.y = static_cast<int>((-normalized.y + 1.f) / 2.f * viewport.height + viewport.top);

    return pixel;
}


////////////////////////////////////////////////////////////
void RenderTarget::draw(const Drawable& drawable, const RenderStates& states)
{
    drawable.draw(*this, states);
}


////////////////////////////////////////////////////////////
void RenderTarget::draw(const Vertex* vertices, std::size_t vertexCount,
                        PrimitiveType type, const RenderStates& states)
{
    // Nothing to draw?
    if (!vertices || (vertexCount == 0))
        return;

    // GL_QUADS is unavailable on OpenGL ES
    #ifdef SFML_OPENGL_ES
        if (type == Quads)
        {
            err() << "sf::Quads primitive type is not supported on OpenGL ES platforms, drawing skipped" << std::endl;
            return;
        }
        #define GL_QUADS 0
    #endif

    if (activate(true))
    {
        // First set the persistent OpenGL states if it's the very first call
        if (!m_cache.glStatesSet)
            resetGLStates();

        // Check if the vertex count is low enough so that we can pre-transform them
        bool useVertexCache = (vertexCount <= StatesCache::VertexCacheSize);
        if (useVertexCache)
        {
            // Pre-transform the vertices and store them into the vertex cache
            for (std::size_t i = 0; i < vertexCount; ++i)
            {
                Vertex& vertex = m_cache.vertexCache[i];
                vertex.position = states.transform * vertices[i].position;
                vertex.color = vertices[i].color;
                vertex.texCoords = vertices[i].texCoords;
            }

            // Since vertices are transformed, we must use an identity transform to render them
            if (!m_cache.useVertexCache)
                applyTransform(Transform::Identity);
        }
        else
        {
            applyTransform(states.transform);
        }

        // Apply the view
        if (m_cache.viewChanged)
            applyCurrentView();

        // Apply the blend mode
        if (states.blendMode != m_cache.lastBlendMode)
            applyBlendMode(states.blendMode);

        // Apply the texture
        Uint64 textureId = states.texture ? states.texture->m_cacheId : 0;
        if (textureId != m_cache.lastTextureId)
            applyTexture(states.texture);

        // Apply the shader
        if (states.shader)
            applyShader(states.shader);

        // If we pre-transform the vertices, we must use our internal vertex cache
        if (useVertexCache)
        {
            // ... and if we already used it previously, we don't need to set the pointers again
            if (!m_cache.useVertexCache)
                vertices = m_cache.vertexCache;
            else
                vertices = NULL;
        }

        // Setup the pointers to the vertices' components
        if (vertices)
        {
            const char* data = reinterpret_cast<const char*>(vertices);
            glCheck(glVertexPointer(2, GL_FLOAT, sizeof(Vertex), data + 0));
            glCheck(glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(Vertex), data + 8));
            glCheck(glTexCoordPointer(2, GL_FLOAT, sizeof(Vertex), data + 12));
        }

        // Find the OpenGL primitive type
        static const GLenum modes[] = {GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES,
                                       GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUADS};
        GLenum mode = modes[type];

        // Draw the primitives
        glCheck(glDrawArrays(mode, 0, vertexCount));

        // Unbind the shader, if any
        if (states.shader)
            applyShader(NULL);

        // If the texture we used to draw belonged to a RenderTexture, then forcibly unbind that texture.
        // This prevents a bug where some drivers do not clear RenderTextures properly.
        if (states.texture && states.texture->m_fboAttachment)
            applyTexture(NULL);

        // Update the cache
        m_cache.useVertexCache = useVertexCache;
    }
}


////////////////////////////////////////////////////////////
void RenderTarget::pushGLStates()
{
    if (activate(true))
    {
        #ifdef SFML_DEBUG
            // make sure that the user didn't leave an unchecked OpenGL error
            GLenum error = glGetError();
            if (error != GL_NO_ERROR)
            {
                err() << "OpenGL error (" << error << ") detected in user code, "
                      << "you should check for errors with glGetError()"
                      << std::endl;
            }
        #endif

        #ifndef SFML_OPENGL_ES
            glCheck(glPushClientAttrib(GL_CLIENT_ALL_ATTRIB_BITS));
            glCheck(glPushAttrib(GL_ALL_ATTRIB_BITS));
        #endif
        glCheck(glMatrixMode(GL_MODELVIEW));
        glCheck(glPushMatrix());
        glCheck(glMatrixMode(GL_PROJECTION));
        glCheck(glPushMatrix());
        glCheck(glMatrixMode(GL_TEXTURE));
        glCheck(glPushMatrix());
    }

    resetGLStates();
}


////////////////////////////////////////////////////////////
void RenderTarget::popGLStates()
{
    if (activate(true))
    {
        glCheck(glMatrixMode(GL_PROJECTION));
        glCheck(glPopMatrix());
        glCheck(glMatrixMode(GL_MODELVIEW));
        glCheck(glPopMatrix());
        glCheck(glMatrixMode(GL_TEXTURE));
        glCheck(glPopMatrix());
        #ifndef SFML_OPENGL_ES
            glCheck(glPopClientAttrib());
            glCheck(glPopAttrib());
        #endif
    }
}


////////////////////////////////////////////////////////////
void RenderTarget::resetGLStates()
{
    // Check here to make sure a context change does not happen after activate(true)
    bool shaderAvailable = Shader::isAvailable();

    if (activate(true))
    {
        // Make sure that extensions are initialized
        priv::ensureExtensionsInit();

        // Make sure that the texture unit which is active is the number 0
        if (GLEXT_multitexture)
        {
            glCheck(GLEXT_glClientActiveTexture(GLEXT_GL_TEXTURE0));
            glCheck(GLEXT_glActiveTexture(GLEXT_GL_TEXTURE0));
        }

        // Define the default OpenGL states
        glCheck(glDisable(GL_CULL_FACE));
        glCheck(glDisable(GL_LIGHTING));
        glCheck(glDisable(GL_DEPTH_TEST));
        glCheck(glDisable(GL_ALPHA_TEST));
        glCheck(glEnable(GL_TEXTURE_2D));
        glCheck(glEnable(GL_BLEND));
        glCheck(glMatrixMode(GL_MODELVIEW));
        glCheck(glEnableClientState(GL_VERTEX_ARRAY));
        glCheck(glEnableClientState(GL_COLOR_ARRAY));
        glCheck(glEnableClientState(GL_TEXTURE_COORD_ARRAY));
        m_cache.glStatesSet = true;

        // Apply the default SFML states
        applyBlendMode(BlendAlpha);
        applyTransform(Transform::Identity);
        applyTexture(NULL);
        if (shaderAvailable)
            applyShader(NULL);

        m_cache.useVertexCache = false;

        // Set the default view
        setView(getView());
    }
}


////////////////////////////////////////////////////////////
void RenderTarget::initialize()
{
    // Setup the default and current views
    m_defaultView.reset(FloatRect(0, 0, static_cast<float>(getSize().x), static_cast<float>(getSize().y)));
    m_view = m_defaultView;

    // Set GL states only on first draw, so that we don't pollute user's states
    m_cache.glStatesSet = false;
}


////////////////////////////////////////////////////////////
void RenderTarget::applyCurrentView()
{
    // Set the viewport
    IntRect viewport = getViewport(m_view);
    int top = getSize().y - (viewport.top + viewport.height);
    glCheck(glViewport(viewport.left, top, viewport.width, viewport.height));

    // Set the projection matrix
    glCheck(glMatrixMode(GL_PROJECTION));
    glCheck(glLoadMatrixf(m_view.getTransform().getMatrix()));

    // Go back to model-view mode
    glCheck(glMatrixMode(GL_MODELVIEW));

    m_cache.viewChanged = false;
}


////////////////////////////////////////////////////////////
void RenderTarget::applyBlendMode(const BlendMode& mode)
{
    // Apply the blend mode, falling back to the non-separate versions if necessary
    if (GLEXT_blend_func_separate)
    {
        glCheck(GLEXT_glBlendFuncSeparate(
            factorToGlConstant(mode.colorSrcFactor), factorToGlConstant(mode.colorDstFactor),
            factorToGlConstant(mode.alphaSrcFactor), factorToGlConstant(mode.alphaDstFactor)));
    }
    else
    {
        glCheck(glBlendFunc(
            factorToGlConstant(mode.colorSrcFactor),
            factorToGlConstant(mode.colorDstFactor)));
    }

    if (GLEXT_blend_minmax && GLEXT_blend_subtract)
    {
        if (GLEXT_blend_equation_separate)
        {
            glCheck(GLEXT_glBlendEquationSeparate(
                equationToGlConstant(mode.colorEquation),
                equationToGlConstant(mode.alphaEquation)));
        }
        else
        {
            glCheck(GLEXT_glBlendEquation(equationToGlConstant(mode.colorEquation)));
        }
    }
    else if ((mode.colorEquation != BlendMode::Add) || (mode.alphaEquation != BlendMode::Add))
    {
        static bool warned = false;

        if (!warned)
        {
            err() << "OpenGL extension EXT_blend_minmax and/or EXT_blend_subtract unavailable" << std::endl;
            err() << "Selecting a blend equation not possible" << std::endl;
            err() << "Ensure that hardware acceleration is enabled if available" << std::endl;

            warned = true;
        }
    }

    m_cache.lastBlendMode = mode;
}


////////////////////////////////////////////////////////////
void RenderTarget::applyTransform(const Transform& transform)
{
    // No need to call glMatrixMode(GL_MODELVIEW), it is always the
    // current mode (for optimization purpose, since it's the most used)
    glCheck(glLoadMatrixf(transform.getMatrix()));
}


////////////////////////////////////////////////////////////
void RenderTarget::applyTexture(const Texture* texture)
{
    Texture::bind(texture, Texture::Pixels);

    m_cache.lastTextureId = texture ? texture->m_cacheId : 0;
}


////////////////////////////////////////////////////////////
void RenderTarget::applyShader(const Shader* shader)
{
    Shader::bind(shader);
}

} // namespace sf


////////////////////////////////////////////////////////////
// Render states caching strategies
//
// * View
//   If SetView was called since last draw, the projection
//   matrix is updated. We don't need more, the view doesn't
//   change frequently.
//
// * Transform
//   The transform matrix is usually expensive because each
//   entity will most likely use a different transform. This can
//   lead, in worst case, to changing it every 4 vertices.
//   To avoid that, when the vertex count is low enough, we
//   pre-transform them and therefore use an identity transform
//   to render them.
//
// * Blending mode
//   Since it overloads the == operator, we can easily check
//   whether any of the 6 blending components changed and,
//   thus, whether we need to update the blend mode.
//
// * Texture
//   Storing the pointer or OpenGL ID of the last used texture
//   is not enough; if the sf::Texture instance is destroyed,
//   both the pointer and the OpenGL ID might be recycled in
//   a new texture instance. We need to use our own unique
//   identifier system to ensure consistent caching.
//
// * Shader
//   Shaders are very hard to optimize, because they have
//   parameters that can be hard (if not impossible) to track,
//   like matrices or textures. The only optimization that we
//   do is that we avoid setting a null shader if there was
//   already none for the previous draw.
//
////////////////////////////////////////////////////////////