summaryrefslogtreecommitdiff
path: root/libgstroke/gnome-stroke.c
blob: 09073109a598b9e46f2550fad9c65328515f3fc5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/*
   libgstroke - a GNOME stroke interface library
   Copyright (c) 1996,1997,1998,1999,2000,2001  Mark F. Willey, ETLA Technical

   See the file COPYING for distribution information.

   This file contains the stroke recognition algorithm.
*/

#include "config.h"

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <glib.h>
#include <gtk/gtk.h>
#include "gstroke.h"
#include "gstroke-internal.h"


void
_gstroke_init (struct gstroke_metrics *metrics)
{
  if (metrics->pointList != NULL) {
    /* FIXME: does this free the data too?*/
    g_slist_free (metrics->pointList);
    metrics->pointList = NULL;
    metrics->point_count = 0;
  }
}

/* figure out which bin the point falls in */
static gint
_gstroke_bin (p_point point_p, gint bound_x_1, gint bound_x_2,
	    gint bound_y_1, gint bound_y_2)
{

  gint bin_num = 1;

  if (point_p->x > bound_x_1) bin_num += 1;
  if (point_p->x > bound_x_2) bin_num += 1;
  if (point_p->y > bound_y_1) bin_num += 3;
  if (point_p->y > bound_y_2) bin_num += 3;

  return bin_num;
}

gint
_gstroke_trans (gchar *sequence, struct gstroke_metrics *metrics)
{
  GSList *crt_elem;
  /* number of bins recorded in the stroke */
  guint sequence_count = 0;

  /* points-->sequence translation scratch variables */
  gint prev_bin = 0;
  gint current_bin = 0;
  gint bin_count = 0;

  /* flag indicating the start of a stroke - always count it in the sequence */
  gint first_bin = TRUE;

  /* bin boundary and size variables */
  gint delta_x, delta_y;
  gint bound_x_1, bound_x_2;
  gint bound_y_1, bound_y_2;


  /* determine size of grid */
  delta_x = metrics->max_x - metrics->min_x;
  delta_y = metrics->max_y - metrics->min_y;

  /* calculate bin boundary positions */
  bound_x_1 = metrics->min_x + (delta_x / 3);
  bound_x_2 = metrics->min_x + 2 * (delta_x / 3);

  bound_y_1 = metrics->min_y + (delta_y / 3);
  bound_y_2 = metrics->min_y + 2 * (delta_y / 3);

  if (delta_x > GSTROKE_SCALE_RATIO * delta_y) {
    bound_y_1 = (metrics->max_y + metrics->min_y - delta_x) / 2 + (delta_x / 3);
    bound_y_2 = (metrics->max_y + metrics->min_y - delta_x) / 2 + 2 * (delta_x / 3);
  } else if (delta_y > GSTROKE_SCALE_RATIO * delta_x) {
    bound_x_1 = (metrics->max_x + metrics->min_x - delta_y) / 2 + (delta_y / 3);
    bound_x_2 = (metrics->max_x + metrics->min_x - delta_y) / 2 + 2 * (delta_y / 3);
  }

#if 0
  printf ("DEBUG:: point count: %d\n", metrics->point_count);
  printf ("DEBUG:: metrics->min_x: %d\n", metrics->min_x);
  printf ("DEBUG:: metrics->max_x: %d\n", metrics->max_x);
  printf ("DEBUG:: metrics->min_y: %d\n", metrics->min_y);
  printf ("DEBUG:: metrics->max_y: %d\n", metrics->max_y);
  printf ("DEBUG:: delta_x: %d\n", delta_x);
  printf ("DEBUG:: delta_y: %d\n", delta_y);
  printf ("DEBUG:: bound_x_1: %d\n", bound_x_1);
  printf ("DEBUG:: bound_x_2: %d\n", bound_x_2);
  printf ("DEBUG:: bound_y_1: %d\n", bound_y_1);
  printf ("DEBUG:: bound_y_2: %d\n", bound_y_2);
#endif

  /*
    build string by placing points in bins, collapsing bins and
    discarding those with too few points...  */

  crt_elem = metrics->pointList;
  while (crt_elem != NULL)
    {
      /* figure out which bin the point falls in */

      /*printf ("X = %d Y = %d\n", ((p_point)crt_elem->data)->x,
	((p_point)crt_elem->data)->y); */


      current_bin = _gstroke_bin ((p_point)crt_elem->data, bound_x_1,
                                 bound_x_2, bound_y_1, bound_y_2);

      /* if this is the first point, consider it the previous bin, too. */
      if (prev_bin == 0)
	prev_bin = current_bin;

      /*printf ("DEBUG:: current bin: %d x=%d y = %d\n", current_bin,
	      ((p_point)crt_elem->data)->x,
	      ((p_point)crt_elem->data)->y); */

      if (prev_bin == current_bin)
	bin_count++;
      else {
	/* we are moving to a new bin -- consider adding to the sequence */
	if ((bin_count > (metrics->point_count * GSTROKE_BIN_COUNT_PERCENT))
	    || (first_bin == TRUE)) {

	  //gchar val = '0' + prev_bin;
	  //printf ("%c", val);fflush (stdout);
	  //g_string_append (&sequence, &val);

	  first_bin = FALSE;
	  sequence[sequence_count++] = '0' + prev_bin;
	  /*  printf ("DEBUG:: adding sequence: %d\n", prev_bin); */

	}

	/* restart counting points in the new bin */
	bin_count=0;
	prev_bin = current_bin;
      }

      /* move to next point, freeing current point from list */

      free (crt_elem->data);
      crt_elem = g_slist_next (crt_elem);
    }
  /* add the last run of points to the sequence */
  sequence[sequence_count++] = '0' + current_bin;
  /*  printf ("DEBUG:: adding final sequence: %d\n", current_bin);  */

  _gstroke_init (metrics);

  {
    // FIXME: get rid of this block
    //gchar val = '0' + current_bin;
    //printf ("%c\n", val);fflush (stdout);
    //g_string_append (&sequence,  '\0');
    sequence[sequence_count] = '\0';
  }

  return TRUE;
}

/* my plan is to make a stroke training program where you can enter all of
the variations of slop that map to a canonical set of strokes.  When the
application calls gstroke_canonical, it gets one of the recognized strokes,
or "", if it's not a recognized variation.  I will probably use a hash
table.  Right now, it just passes the values through to gstroke_trans */
gint
_gstroke_canonical (gchar *sequence, struct gstroke_metrics *metrics)
{
  return _gstroke_trans (sequence, metrics);
}


void
_gstroke_record (gint x, gint y, struct gstroke_metrics *metrics)
{
  p_point new_point_p;
  gint delx, dely;
  float ix, iy;

#if 0
  printf ("%d:%d ", x, y); fflush (stdout);
#endif

  if (metrics->point_count < GSTROKE_MAX_POINTS) {
    new_point_p = (p_point) g_malloc (sizeof (struct s_point));

    if (metrics->pointList == NULL) {

      /* first point in list - initialize metrics */
      metrics->min_x = 10000;
      metrics->min_y = 10000;
      metrics->max_x = -1;
      metrics->max_y = -1;

      metrics->pointList = (GSList*) g_malloc (sizeof (GSList));

      metrics->pointList->data = new_point_p;
      metrics->pointList->next = NULL;
      metrics->point_count = 0;

    } else {

#define LAST_POINT ((p_point)(g_slist_last (metrics->pointList)->data))

      /* interpolate between last and current point */
      delx = x - LAST_POINT->x;
      dely = y - LAST_POINT->y;

      if (abs(delx) > abs(dely)) {  /* step by the greatest delta direction */
	iy = LAST_POINT->y;

	/* go from the last point to the current, whatever direction it may be */
	for (ix = LAST_POINT->x; (delx > 0) ? (ix < x) : (ix > x); ix += (delx > 0) ? 1 : -1) {

	  /* step the other axis by the correct increment */
	  iy += fabs(((float) dely / (float) delx)) * (float) ((dely < 0) ? -1.0 : 1.0);

	  /* add the interpolated point */
	  new_point_p->x = ix;
	  new_point_p->y = iy;
	  g_slist_append (metrics->pointList, new_point_p);

	  /* update metrics */
	  if (((gint) ix) < metrics->min_x) metrics->min_x = (gint) ix;
	  if (((gint) ix) > metrics->max_x) metrics->max_x = (gint) ix;
	  if (((gint) iy) < metrics->min_y) metrics->min_y = (gint) iy;
	  if (((gint) iy) > metrics->max_y) metrics->max_y = (gint) iy;
	  metrics->point_count++;

	  new_point_p = (p_point) malloc (sizeof(struct s_point));
	}
      } else {  /* same thing, but for dely larger than delx case... */
	ix = LAST_POINT->x;

	/* go from the last point to the current, whatever direction it may be
	 */
	for (iy = LAST_POINT->y; (dely > 0) ? (iy < y) : (iy > y); iy += (dely > 0) ? 1 : -1) {

	  /* step the other axis by the correct increment */
	  ix += fabs(((float) delx / (float) dely)) * (float) ((delx < 0) ? -1.0 : 1.0);

	  /* add the interpolated point */
	  new_point_p->y = iy;
	  new_point_p->x = ix;
	  g_slist_append(metrics->pointList, new_point_p);

	  /* update metrics */
	  if (((gint) ix) < metrics->min_x) metrics->min_x = (gint) ix;
	  if (((gint) ix) > metrics->max_x) metrics->max_x = (gint) ix;
	  if (((gint) iy) < metrics->min_y) metrics->min_y = (gint) iy;
	  if (((gint) iy) > metrics->max_y) metrics->max_y = (gint) iy;
	  metrics->point_count++;

	  new_point_p = (p_point) malloc (sizeof(struct s_point));
	}
      }

      /* add the sampled point */
      g_slist_append(metrics->pointList, new_point_p);
    }

    /* record the sampled point values */
    new_point_p->x = x;
    new_point_p->y = y;

#if 0
    {
      GSList *crt = metrics->pointList;
      printf ("Record ");
      while (crt != NULL)
	{
	  printf ("(%d,%d)", ((p_point)crt->data)->x, ((p_point)crt->data)->y);
	  crt = g_slist_next (crt);
	}
      printf ("\n");
    }
#endif
  }
}