summaryrefslogtreecommitdiff
path: root/debian/patches/99-md.txt.dpatch
blob: eb56ba83260cc0047d569c64b80f6e2ab79a8aff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
#! /bin/sh /usr/share/dpatch/dpatch-run
## 99-md.txt.dpatch by martin f. krafft <madduck@debian.org>
##
## All lines beginning with `## DP:' are a description of the patch.
## DP: No description.

@DPATCH@
diff -urNad mdadm-2.5.2~/md.txt mdadm-2.5.2/md.txt
--- mdadm-2.5.2~/md.txt	1970-01-01 01:00:00.000000000 +0100
+++ mdadm-2.5.2/md.txt	2006-07-06 18:28:20.213989423 +0200
@@ -0,0 +1,357 @@
+Tools that manage md devices can be found at
+   http://www.<country>.kernel.org/pub/linux/utils/raid/....
+
+
+Boot time assembly of RAID arrays
+---------------------------------
+
+You can boot with your md device with the following kernel command
+lines:
+
+for old raid arrays without persistent superblocks:
+  md=<md device no.>,<raid level>,<chunk size factor>,<fault level>,dev0,dev1,...,devn
+
+for raid arrays with persistent superblocks
+  md=<md device no.>,dev0,dev1,...,devn
+or, to assemble a partitionable array:
+  md=d<md device no.>,dev0,dev1,...,devn
+  
+md device no. = the number of the md device ... 
+              0 means md0, 
+	      1 md1,
+	      2 md2,
+	      3 md3,
+	      4 md4
+
+raid level = -1 linear mode
+              0 striped mode
+	      other modes are only supported with persistent super blocks
+
+chunk size factor = (raid-0 and raid-1 only)
+              Set  the chunk size as 4k << n.
+	      
+fault level = totally ignored
+			    
+dev0-devn: e.g. /dev/hda1,/dev/hdc1,/dev/sda1,/dev/sdb1
+			    
+A possible loadlin line (Harald Hoyer <HarryH@Royal.Net>)  looks like this:
+
+e:\loadlin\loadlin e:\zimage root=/dev/md0 md=0,0,4,0,/dev/hdb2,/dev/hdc3 ro
+
+
+Boot time autodetection of RAID arrays
+--------------------------------------
+
+When md is compiled into the kernel (not as module), partitions of
+type 0xfd are scanned and automatically assembled into RAID arrays.
+This autodetection may be suppressed with the kernel parameter
+"raid=noautodetect".  As of kernel 2.6.9, only drives with a type 0
+superblock can be autodetected and run at boot time.
+
+The kernel parameter "raid=partitionable" (or "raid=part") means
+that all auto-detected arrays are assembled as partitionable.
+
+Boot time assembly of degraded/dirty arrays
+-------------------------------------------
+
+If a raid5 or raid6 array is both dirty and degraded, it could have
+undetectable data corruption.  This is because the fact that it is
+'dirty' means that the parity cannot be trusted, and the fact that it
+is degraded means that some datablocks are missing and cannot reliably
+be reconstructed (due to no parity).
+
+For this reason, md will normally refuse to start such an array.  This
+requires the sysadmin to take action to explicitly start the array
+desipite possible corruption.  This is normally done with
+   mdadm --assemble --force ....
+
+This option is not really available if the array has the root
+filesystem on it.  In order to support this booting from such an
+array, md supports a module parameter "start_dirty_degraded" which,
+when set to 1, bypassed the checks and will allows dirty degraded
+arrays to be started.
+
+So, to boot with a root filesystem of a dirty degraded raid[56], use
+
+   md-mod.start_dirty_degraded=1
+
+
+Superblock formats
+------------------
+
+The md driver can support a variety of different superblock formats.
+Currently, it supports superblock formats "0.90.0" and the "md-1" format
+introduced in the 2.5 development series.
+
+The kernel will autodetect which format superblock is being used.
+
+Superblock format '0' is treated differently to others for legacy
+reasons - it is the original superblock format.
+
+
+General Rules - apply for all superblock formats
+------------------------------------------------
+
+An array is 'created' by writing appropriate superblocks to all
+devices.
+
+It is 'assembled' by associating each of these devices with an
+particular md virtual device.  Once it is completely assembled, it can
+be accessed.
+
+An array should be created by a user-space tool.  This will write
+superblocks to all devices.  It will usually mark the array as
+'unclean', or with some devices missing so that the kernel md driver
+can create appropriate redundancy (copying in raid1, parity
+calculation in raid4/5).
+
+When an array is assembled, it is first initialized with the
+SET_ARRAY_INFO ioctl.  This contains, in particular, a major and minor
+version number.  The major version number selects which superblock
+format is to be used.  The minor number might be used to tune handling
+of the format, such as suggesting where on each device to look for the
+superblock.
+
+Then each device is added using the ADD_NEW_DISK ioctl.  This
+provides, in particular, a major and minor number identifying the
+device to add.
+
+The array is started with the RUN_ARRAY ioctl.
+
+Once started, new devices can be added.  They should have an
+appropriate superblock written to them, and then passed be in with
+ADD_NEW_DISK.
+
+Devices that have failed or are not yet active can be detached from an
+array using HOT_REMOVE_DISK.
+
+
+Specific Rules that apply to format-0 super block arrays, and
+       arrays with no superblock (non-persistent).
+-------------------------------------------------------------
+
+An array can be 'created' by describing the array (level, chunksize
+etc) in a SET_ARRAY_INFO ioctl.  This must has major_version==0 and
+raid_disks != 0.
+
+Then uninitialized devices can be added with ADD_NEW_DISK.  The
+structure passed to ADD_NEW_DISK must specify the state of the device
+and it's role in the array.
+
+Once started with RUN_ARRAY, uninitialized spares can be added with
+HOT_ADD_DISK.
+
+
+
+MD devices in sysfs
+-------------------
+md devices appear in sysfs (/sys) as regular block devices,
+e.g.
+   /sys/block/md0
+
+Each 'md' device will contain a subdirectory called 'md' which
+contains further md-specific information about the device.
+
+All md devices contain:
+  level
+     a text file indicating the 'raid level'.  This may be a standard
+     numerical level prefixed by "RAID-" - e.g. "RAID-5", or some
+     other name such as "linear" or "multipath".
+     If no raid level has been set yet (array is still being
+     assembled), this file will be empty.
+
+  raid_disks
+     a text file with a simple number indicating the number of devices
+     in a fully functional array.  If this is not yet known, the file
+     will be empty.  If an array is being resized (not currently
+     possible) this will contain the larger of the old and new sizes.
+     Some raid level (RAID1) allow this value to be set while the
+     array is active.  This will reconfigure the array.   Otherwise
+     it can only be set while assembling an array.
+
+  chunk_size
+     This is the size if bytes for 'chunks' and is only relevant to
+     raid levels that involve striping (1,4,5,6,10). The address space
+     of the array is conceptually divided into chunks and consecutive
+     chunks are striped onto neighbouring devices.
+     The size should be atleast PAGE_SIZE (4k) and should be a power
+     of 2.  This can only be set while assembling an array
+
+  component_size
+     For arrays with data redundancy (i.e. not raid0, linear, faulty,
+     multipath), all components must be the same size - or at least
+     there must a size that they all provide space for.  This is a key
+     part or the geometry of the array.  It is measured in sectors
+     and can be read from here.  Writing to this value may resize
+     the array if the personality supports it (raid1, raid5, raid6),
+     and if the component drives are large enough.
+
+  metadata_version
+     This indicates the format that is being used to record metadata
+     about the array.  It can be 0.90 (traditional format), 1.0, 1.1,
+     1.2 (newer format in varying locations) or "none" indicating that
+     the kernel isn't managing metadata at all.
+
+  level
+     The raid 'level' for this array.  The name will often (but not
+     always) be the same as the name of the module that implements the
+     level.  To be auto-loaded the module must have an alias
+        md-$LEVEL  e.g. md-raid5
+     This can be written only while the array is being assembled, not
+     after it is started.
+
+   new_dev
+     This file can be written but not read.  The value written should
+     be a block device number as major:minor.  e.g. 8:0
+     This will cause that device to be attached to the array, if it is
+     available.  It will then appear at md/dev-XXX (depending on the
+     name of the device) and further configuration is then possible.
+
+   sync_speed_min
+   sync_speed_max
+     This are similar to /proc/sys/dev/raid/speed_limit_{min,max}
+     however they only apply to the particular array.
+     If no value has been written to these, of if the word 'system'
+     is written, then the system-wide value is used.  If a value,
+     in kibibytes-per-second is written, then it is used.
+     When the files are read, they show the currently active value
+     followed by "(local)" or "(system)" depending on whether it is
+     a locally set or system-wide value.
+
+   sync_completed
+     This shows the number of sectors that have been completed of
+     whatever the current sync_action is, followed by the number of
+     sectors in total that could need to be processed.  The two
+     numbers are separated by a '/'  thus effectively showing one
+     value, a fraction of the process that is complete.
+
+   sync_speed
+     This shows the current actual speed, in K/sec, of the current
+     sync_action.  It is averaged over the last 30 seconds.
+
+
+As component devices are added to an md array, they appear in the 'md'
+directory as new directories named
+      dev-XXX
+where XXX is a name that the kernel knows for the device, e.g. hdb1.
+Each directory contains:
+
+      block
+        a symlink to the block device in /sys/block, e.g.
+	     /sys/block/md0/md/dev-hdb1/block -> ../../../../block/hdb/hdb1
+
+      super
+        A file containing an image of the superblock read from, or
+        written to, that device.
+
+      state
+        A file recording the current state of the device in the array
+	which can be a comma separated list of
+	      faulty   - device has been kicked from active use due to
+                         a detected fault
+	      in_sync  - device is a fully in-sync member of the array
+	      spare    - device is working, but not a full member.
+			 This includes spares that are in the process
+			 of being recoverred to
+	This list make grow in future.
+
+      errors
+	An approximate count of read errors that have been detected on
+	this device but have not caused the device to be evicted from
+	the array (either because they were corrected or because they
+	happened while the array was read-only).  When using version-1
+	metadata, this value persists across restarts of the array.
+
+	This value can be written while assembling an array thus
+	providing an ongoing count for arrays with metadata managed by
+	userspace.
+
+      slot
+        This gives the role that the device has in the array.  It will
+	either be 'none' if the device is not active in the array
+        (i.e. is a spare or has failed) or an integer less than the
+	'raid_disks' number for the array indicating which possition
+	it currently fills.  This can only be set while assembling an
+	array.  A device for which this is set is assumed to be working.
+
+      offset
+        This gives the location in the device (in sectors from the
+        start) where data from the array will be stored.  Any part of
+        the device before this offset us not touched, unless it is
+        used for storing metadata (Formats 1.1 and 1.2).
+
+      size
+        The amount of the device, after the offset, that can be used
+        for storage of data.  This will normally be the same as the
+	component_size.  This can be written while assembling an
+        array.  If a value less than the current component_size is
+        written, component_size will be reduced to this value.
+
+
+An active md device will also contain and entry for each active device
+in the array.  These are named
+
+    rdNN
+
+where 'NN' is the possition in the array, starting from 0.
+So for a 3 drive array there will be rd0, rd1, rd2.
+These are symbolic links to the appropriate 'dev-XXX' entry.
+Thus, for example,
+       cat /sys/block/md*/md/rd*/state
+will show 'in_sync' on every line.
+
+
+
+Active md devices for levels that support data redundancy (1,4,5,6)
+also have
+
+   sync_action
+     a text file that can be used to monitor and control the rebuild
+     process.  It contains one word which can be one of:
+       resync        - redundancy is being recalculated after unclean
+                       shutdown or creation
+       recover       - a hot spare is being built to replace a
+                       failed/missing device
+       idle          - nothing is happening
+       check         - A full check of redundancy was requested and is
+                       happening.  This reads all block and checks
+                       them. A repair may also happen for some raid
+                       levels.
+       repair        - A full check and repair is happening.  This is
+                       similar to 'resync', but was requested by the
+                       user, and the write-intent bitmap is NOT used to
+		       optimise the process.
+
+      This file is writable, and each of the strings that could be
+      read are meaningful for writing.
+
+       'idle' will stop an active resync/recovery etc.  There is no
+           guarantee that another resync/recovery may not be automatically
+	   started again, though some event will be needed to trigger
+           this.
+	'resync' or 'recovery' can be used to restart the
+           corresponding operation if it was stopped with 'idle'.
+	'check' and 'repair' will start the appropriate process
+           providing the current state is 'idle'.
+
+   mismatch_count
+      When performing 'check' and 'repair', and possibly when
+      performing 'resync', md will count the number of errors that are
+      found.  The count in 'mismatch_cnt' is the number of sectors
+      that were re-written, or (for 'check') would have been
+      re-written.  As most raid levels work in units of pages rather
+      than sectors, this my be larger than the number of actual errors
+      by a factor of the number of sectors in a page.
+
+Each active md device may also have attributes specific to the
+personality module that manages it.
+These are specific to the implementation of the module and could
+change substantially if the implementation changes.
+
+These currently include
+
+  stripe_cache_size  (currently raid5 only)
+      number of entries in the stripe cache.  This is writable, but
+      there are upper and lower limits (32768, 16).  Default is 128.
+  strip_cache_active (currently raid5 only)
+      number of active entries in the stripe cache