static char const rcsid[] = "$Id: makemat.c,v 6.17 2005/07/28 14:52:22 coulouri Exp $"; /* * =========================================================================== * * PUBLIC DOMAIN NOTICE * National Center for Biotechnology Information * * This software/database is a "United States Government Work" under the * terms of the United States Copyright Act. It was written as part of * the author's official duties as a United States Government employee and * thus cannot be copyrighted. This software/database is freely available * to the public for use. The National Library of Medicine and the U.S. * Government have not placed any restriction on its use or reproduction. * * Although all reasonable efforts have been taken to ensure the accuracy * and reliability of the software and data, the NLM and the U.S. * Government do not and cannot warrant the performance or results that * may be obtained by using this software or data. The NLM and the U.S. * Government disclaim all warranties, express or implied, including * warranties of performance, merchantability or fitness for any particular * purpose. * * Please cite the author in any work or product based on this material. * * =========================================================================== */ /***************************************************************************** File name: makemat.c Author: Alejandro Schaffer Contents: main routines for makematrices program to convert PSI-BLAST checkpoints into score matrices. *****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include /*counts the number of items in sequencesFile and matricesFile, assumed to be one per line, and checks that the numbers are equal. returns the number if equal, 0 if unequal, rewinds the file descriptors before returning*/ static Int4 countProfiles(FILE *sequencesFile, FILE *profilesFile) { Int4 sequencesCount = 0; /*count for sequencesFile*/ Int4 matricesCount = 0; /*count for profilesFile*/ Char oneFileName[MAXLINELEN]; /*for reading one line per file*/ while (fgets(oneFileName,MAXLINELEN,sequencesFile)) sequencesCount++; while (fgets(oneFileName,MAXLINELEN,profilesFile)) matricesCount++; rewind(profilesFile); rewind(sequencesFile); if (sequencesCount == matricesCount) { return(sequencesCount); } else { ErrPostEx(SEV_FATAL, 1, 0, "profiles: Sequences file has %ld entries; Matrices file has %d entries; these should be equal\n", (long) sequencesCount,matricesCount); return(0); } } /*converts name of profile file to matrix file by changing suffix to mtx or appending suffix mtx*/ static Char *makeMatrixName(Char *profileName) { int length; /*length of a name*/ Char *returnName; /*string to treturn*/ int c, lastc; /*loop indices*/ length = strlen(profileName); returnName = (Char *) MemNew((length + 5) * sizeof(Char)); for(c = 0; c < length; c++) { returnName[c] = profileName[c]; if(('.' == profileName[c]) && ('c' == profileName[c+1]) && ('h' == profileName[c+2])) lastc = c; } returnName[lastc] = '.'; returnName[lastc+1] = 'm'; returnName[lastc+2] = 't'; returnName[lastc+3] = 'x'; returnName[lastc+4] = '\0'; return(returnName); } /*print out some parameters associated with a Karlin-Alschul scoring system checkFile is the file descriptor to write to kbp is the pointer to a structure with the parameters scaling determines whether scores are being scaled or not scalingDown is 1/scalingFactor because if scores are scaled up, then Lambda is to be scaled down*/ static void putMatrixKbp(FILE * checkFile, BLAST_KarlinBlkPtr kbp, Boolean scaling, Nlm_FloatHi scalingDown) { if (scaling) fprintf(checkFile,"%le\n",kbp->Lambda * scalingDown); else fprintf(checkFile,"%le\n",kbp->Lambda); fprintf(checkFile,"%le\n",kbp->K); fprintf(checkFile,"%le\n",kbp->logK); fprintf(checkFile,"%le\n",kbp->H); } /*print out a score matrix into the file descriptor checkfile compactSerarch and psoSearch stroe information about the matrix and the associated sequence scaleScores determines whether scores are scaled or not*/ static void putMatrixMatrix(FILE *checkFile, compactSearchItems * compactSearch, posSearchItems *posSearch, Boolean scaleScores) { Int4 i, j; /*loop indices*/ if (scaleScores) { for(i = 0; i < compactSearch->qlength; i++) { for(j = 0; j < compactSearch->alphabetSize; j++) fprintf(checkFile,"%ld ", (long) posSearch->posPrivateMatrix[i][j]); fprintf(checkFile,"\n"); } } else { for(i = 0; i < compactSearch->qlength; i++) { for(j = 0; j < compactSearch->alphabetSize; j++) fprintf(checkFile,"%ld ", (long) posSearch->posMatrix[i][j]); fprintf(checkFile,"\n"); } } } /*Write out the matrix compactSearch and PosSearch include fields that store the matrix and the sequence sbp includes information about the underlying matrix fileName is where the matrix is to be written error_return holds error messages scaleScores indicates whether scores in the matrix are to be scaled scalingFactor is the multiplicative factor to use if scaleScores is true */ static Boolean takeMatrixCheckpoint(compactSearchItems * compactSearch, posSearchItems *posSearch, BLAST_ScoreBlkPtr sbp, Char *fileName,ValNodePtr *error_return, Boolean scaleScores, Nlm_FloatHi scalingFactor) { FILE * checkFile; /*file in which to take the checkpoint*/ Int4 length; /*length of query sequence, and an index for it*/ Int4 i; /*indices to position and alphabet */ Char localChar; /*temporary character*/ checkFile = FileOpen(fileName, "w"); if (NULL == checkFile) { ErrPostEx(SEV_ERROR, 0,0, "Could not open checkpoint file"); return(FALSE); } length = compactSearch->qlength; fprintf(checkFile,"%ld\n",(long) length); for(i = 0; i < length; i++) { localChar = getRes(compactSearch->query[i]); fprintf(checkFile,"%c",localChar); /* The following 2 lines are needed to preserve compatibility with the * checkpoint file libraries distributed with IMPALA (from personal * communication with IMPALA's author) */ posSearch->posMatrix[i][Xchar] = Xscore; posSearch->posPrivateMatrix[i][Xchar] = Xscore * scalingFactor; } fprintf(checkFile,"\n"); putMatrixKbp(checkFile, compactSearch->kbp_gap_std[0], scaleScores, 1/scalingFactor); putMatrixKbp(checkFile, compactSearch->kbp_gap_psi[0], scaleScores, 1/scalingFactor); putMatrixKbp(checkFile, sbp->kbp_ideal, scaleScores, 1/scalingFactor); putMatrixMatrix(checkFile, compactSearch, posSearch, scaleScores); FileClose(checkFile); return(TRUE); } /*convert to matrices is the high-level procedure to convert a set of PSI-BLAST checkpoints into a corresponding set of score matrices profilesFile is a descriptor to a file listing the file names of files containing checkpoints, one file name per line sequencesFile is a descriptor to a file listing the file names of sequences containing the master sequences for checkpoints, one file name per line matricesFile is an output file to print out the names of the newly produced files containing score matrices, one file name per line auxiliaryFile is an outputput file to contain some general information about the library of matrices and some parameters for each matrix count is the number of checkpoints/sequences gap_open is the cost of opening a gap gap_extend is the cost of extending a gap effectiveSize is the the size of the original sequence database used to make the PSI-BLAST matrices underlyignMatrixName is the original score matrix used to make the PSI-BLAST matrices scaleScores indicates whether scores should be scaled scalingFactor indicates by how much scores are scaled, if at all*/ static Int4 convertToMatrices(FILE *profilesFile, FILE *sequencesFile, FILE *matricesFile, FILE *auxiliaryFile, Int4 count, Int4 gap_open, Int4 gap_extend, Int4 effectiveSize, Char *underlyingMatrixName, Boolean scaleScores, Nlm_FloatHi scalingFactor, Char *directoryPrefix) { int i; /*loop index over profiles*/ FILE *thisProfileFile, *thisSequenceFile; /*file descriptors for a single profile*/ Char profileFileName[MAX_NAME_LENGTH], sequenceFileName[MAX_NAME_LENGTH]; /*file names for profiles*/ Char * matrixFileName, *relativeMatrixFileName; /*file name for corresponding matrix file*/ Char relativeProfileFileName[MAX_NAME_LENGTH], relativeSequenceFileName[MAX_NAME_LENGTH]; Int4 prefixLength; /*length of directoryPrefix*/ Int4 c1,c2; /*indices over characters in names*/ posSearchItems *posSearch; /*used to store matrix*/ Uint1Ptr query =NULL; /*query sequence read in*/ Int4 queryLength; /*length of query sequence*/ Int4 c; /*index over query*/ compactSearchItems *compactSearch; /*stores query related items*/ ValNodePtr error_return; /*stores error messages*/ Boolean success; /*did one checkpoint recovery succeed*/ BLAST_ResFreqPtr stdrfp; /* gets standard frequencies in prob field */ Int4 a; /*index over characters*/ SeqCodeTablePtr sctp; BLAST_ScoreBlkPtr sbp; BioseqPtr query_bsp; /*structure to hold query information*/ SeqEntryPtr sep; /*structure to hold query retrieval result*/ Int4 *lengthArray; /*array of sequence lengths*/ Nlm_FloatHi *KArray; /*array of K values, one per sequence*/ Int4 maxLength; /*maximum length of a sequence*/ Int4 KarlinReturn; /*return value from calls to set up matrix parameters*/ error_return = NULL; posSearch = (posSearchItems *) MemNew (1 * sizeof(posSearchItems)); compactSearch = (compactSearchItems *) MemNew (1 * sizeof(compactSearchItems)); sctp = SeqCodeTableFindObj(Seq_code_ncbistdaa); compactSearch->alphabetSize = sctp->num; fprintf(auxiliaryFile,"%s\n",underlyingMatrixName); fprintf(auxiliaryFile,"%ld\n",(long) gap_open); fprintf(auxiliaryFile,"%ld\n",(long) gap_extend); lengthArray = (Int4 *) MemNew(count * sizeof(Int4)); KArray = (Nlm_FloatHi *) MemNew(count * sizeof(Nlm_FloatHi)); maxLength = 0; if ('\0' != directoryPrefix[0]) { strcpy(profileFileName, directoryPrefix); strcpy(sequenceFileName, directoryPrefix); prefixLength = strlen(directoryPrefix); } posSearch->stdFreqRatios = PSIMatrixFrequencyRatiosNew(underlyingMatrixName); for(i = 0; i < count; i++) { if ('\0' == directoryPrefix[0]) fscanf(profilesFile,"%s", profileFileName); else { fscanf(profilesFile,"%s", relativeProfileFileName); for(c1 = prefixLength, c2 = 0; relativeProfileFileName[c2] != '\0'; c1++, c2++) profileFileName[c1] = relativeProfileFileName[c2]; profileFileName[c1] = '\0'; } if ((thisProfileFile = FileOpen(profileFileName, "rb")) == NULL) { ErrPostEx(SEV_FATAL, 1, 0, "Unable to open file %s\n", profileFileName); return (1); } if ('\0' == directoryPrefix[0]) fscanf(sequencesFile,"%s", sequenceFileName); else { fscanf(sequencesFile,"%s", relativeSequenceFileName); for(c1 = prefixLength, c2 = 0; relativeSequenceFileName[c2] != '\0'; c1++, c2++) sequenceFileName[c1] = relativeSequenceFileName[c2]; sequenceFileName[c1] = '\0'; } if ((thisSequenceFile = FileOpen(sequenceFileName, "r")) == NULL) { ErrPostEx(SEV_FATAL, 1, 0, "Unable to open file %s\n", sequenceFileName); return (1); } sep = FastaToSeqEntryEx(thisSequenceFile, FALSE, NULL, FALSE); if (sep != NULL) { query_bsp = NULL; SeqEntryExplore(sep, &query_bsp, FindProt); if (query_bsp == NULL) { ErrPostEx(SEV_FATAL, 1, 0, "Unable to obtain bioseq\n"); return 2; } query = BlastGetSequenceFromBioseq(query_bsp, &queryLength); } compactSearch->query = query; for (c= 0; c < queryLength; c++) query[c] = ResToInt(query[c]); compactSearch->qlength = queryLength; sbp = BLAST_ScoreBlkNew(Seq_code_ncbistdaa, 1); sbp->read_in_matrix = TRUE; sbp->protein_alphabet = TRUE; sbp->posMatrix = NULL; sbp->number_of_contexts = 1; BlastScoreBlkMatFill(sbp, underlyingMatrixName); compactSearch->matrix = sbp->matrix; compactSearch->gapped_calculation = TRUE; /* Note that these two assignments are not really needed for * makemat's operation and thus their values are irrelevant */ compactSearch->pseudoCountConst = 10; compactSearch->ethresh = 0.001; BlastScoreBlkFill(sbp, (CharPtr) query, queryLength, 0); if (0 == i) { fprintf(auxiliaryFile, "%le\n", sbp->kbp_std[0]->K); fprintf(auxiliaryFile, "%le\n", sbp->kbp_std[0]->H); } sbp->kbp_gap_std[0] = BlastKarlinBlkCreate(); KarlinReturn = BlastKarlinBlkGappedCalc(sbp->kbp_gap_std[0], gap_open, gap_extend, sbp->name, &error_return); if (1 == KarlinReturn) { BlastErrorPrint(error_return); return(-1); } sbp->kbp_gap_psi[0] = BlastKarlinBlkCreate(); KarlinReturn = BlastKarlinBlkGappedCalc(sbp->kbp_gap_psi[0], gap_open, gap_extend, sbp->name, &error_return); if (1 == KarlinReturn) { BlastErrorPrint(error_return); return(-1); } if (sbp->kbp_ideal == NULL) sbp->kbp_ideal = BlastKarlinBlkStandardCalcEx(sbp); compactSearch->lambda = sbp->kbp_gap_std[0]->Lambda; compactSearch->kbp_std = sbp->kbp_std; compactSearch->kbp_psi = sbp->kbp_psi; compactSearch->kbp_gap_psi = sbp->kbp_gap_psi; compactSearch->kbp_gap_std = sbp->kbp_gap_std; compactSearch->lambda_ideal = sbp->kbp_ideal->Lambda; compactSearch->K_ideal = sbp->kbp_ideal->K; stdrfp = BlastResFreqNew(sbp); BlastResFreqStdComp(sbp,stdrfp); compactSearch->standardProb = MemNew(compactSearch->alphabetSize * sizeof(Nlm_FloatHi)); if (NULL == compactSearch->standardProb) exit(EXIT_FAILURE); for(a = 0; a < compactSearch->alphabetSize; a++) compactSearch->standardProb[a] = stdrfp->prob[a]; stdrfp = BlastResFreqDestruct(stdrfp); posSearch->posInformation = NULL; success = impalaReadCheckpoint(posSearch, compactSearch, profileFileName, &error_return, scalingFactor); if (!success) { ErrPostEx(SEV_FATAL, 1,0, "Unable to recover checkpoint from %s\n",profileFileName); return(1); } /*conversion to matrix and scaling is done in impalaReadCheckpopint*/ if ('\0' == directoryPrefix[0]) { matrixFileName = makeMatrixName(profileFileName); fprintf(matricesFile,"%s\n",matrixFileName); } else { matrixFileName = makeMatrixName(profileFileName); relativeMatrixFileName = makeMatrixName(relativeProfileFileName); fprintf(matricesFile,"%s\n",relativeMatrixFileName); } success = takeMatrixCheckpoint(compactSearch, posSearch, sbp, matrixFileName, &error_return, scaleScores, scalingFactor); if (!success) { ErrPostEx(SEV_FATAL, 1,0, "Unable to take matrix checkpoint from %s\n",profileFileName); return(1); } lengthArray[i] = queryLength; KArray[i] = sbp->kbp_gap_psi[0]->K; if (lengthArray[i] > maxLength) maxLength = lengthArray[i]; posCheckpointFreeMemory(posSearch, queryLength); FileClose(thisProfileFile); thisProfileFile = NULL; FileClose(thisSequenceFile); thisSequenceFile = NULL; MemFree(query); SeqEntryFree(sep); sbp = BLAST_ScoreBlkDestruct(sbp); compactSearch->standardProb = MemFree(compactSearch->standardProb); if (success) { MemFree(matrixFileName); if ('\0' != directoryPrefix[0]) MemFree(relativeMatrixFileName); } } fprintf(auxiliaryFile, "%ld\n", (long) maxLength); fprintf(auxiliaryFile, "%ld\n", (long) effectiveSize); fprintf(auxiliaryFile, "%lf\n", scalingFactor); for(i = 0; i < count; i++) { fprintf(auxiliaryFile, "%ld\n", (long) lengthArray[i]); fprintf(auxiliaryFile, "%le\n", KArray[i]); } MemFree(KArray); MemFree(lengthArray); FileClose(profilesFile); FileClose(sequencesFile); FileClose(matricesFile); FileClose(auxiliaryFile); compactSearchDestruct(compactSearch); PSIMatrixFrequencyRatiosFree(posSearch->stdFreqRatios); MemFree(posSearch); BLAST_ScoreBlkDestruct(sbp); return(0); } #define NUMARG 8 static Args myargs [NUMARG] = { { "Database name for profile database", "stdin", NULL, NULL, FALSE, 'P', ARG_FILE_IN, 0.0, 0, NULL}, { "Cost to open a gap", "11", NULL, NULL, FALSE, 'G', ARG_INT, 0.0, 0, NULL}, { "Cost to extend a gap", "1", NULL, NULL, FALSE, 'E', ARG_INT, 0.0, 0, NULL}, { "Underlying Matrix", "BLOSUM62", NULL, NULL, FALSE, 'U', ARG_STRING, 0.0, 0, NULL}, { "Underlying sequence database used to make profiles", "nr", NULL, NULL, FALSE, 'd', ARG_STRING, 0.0, 0, NULL}, { "Effective length of the profile database (0 for length of -d option)", "0", NULL, NULL, FALSE, 'z', ARG_INT, 0.0, 0, NULL}, { "Scaling factor for matrix outputs to avoid round-off problems", "100.0", NULL, NULL, FALSE, 'S', ARG_FLOAT, 0.0, 0, NULL}, { "Print help; overrides all other arguments", "F", NULL, NULL, FALSE, 'H', ARG_BOOLEAN, 0.0, 0, NULL} }; Int2 Main(void) { Char *profilesDatabase; Char profilesFileName[MAX_NAME_LENGTH]; Char sequencesFileName[MAX_NAME_LENGTH]; Char matricesFileName[MAX_NAME_LENGTH]; Char auxiliaryFileName[MAX_NAME_LENGTH]; Char mmapFileName[MAX_NAME_LENGTH]; FILE *profilesFile, *sequencesFile, *matricesFile, *auxiliaryFile; Int4 count; /*how many profiles*/ Int4 effSize; /*effective database size to use*/ Int4 retcode; ReadDBFILEPtr rdpt=NULL; /*holds result of attempt to read database*/ Boolean scaling; /*are score matrix values going to be scaled*/ Char *directoryPrefix; /*directory where profile library is kept, used to reach other directories indirectly*/ if (! GetArgs ("makematrices", NUMARG, myargs)) { return (1); } if (! SeqEntryLoad()) return (1); UseLocalAsnloadDataAndErrMsg(); ErrSetLogLevel(SEV_WARNING); if ((Boolean) myargs[7].intvalue) { IMPALAPrintHelp(FALSE, 80, "makemat", stdout); return(1); } profilesDatabase = myargs[0].strvalue; directoryPrefix = (Char *) MemNew(MAX_NAME_LENGTH *sizeof(char)); strcpy(directoryPrefix,profilesDatabase); impalaMakeFileNames(profilesDatabase,auxiliaryFileName, mmapFileName,sequencesFileName,matricesFileName, profilesFileName, directoryPrefix); if ((profilesFile = FileOpen(profilesFileName, "r")) == NULL) { ErrPostEx(SEV_FATAL, 1, 0, "Unable to open profiles file %s\n", profilesFileName); return (1); } if ((sequencesFile = FileOpen(sequencesFileName, "r")) == NULL) { ErrPostEx(SEV_FATAL, 1, 0, "Unable to open sequences file %s\n", sequencesFileName); return (1); } if ((matricesFile = FileOpen(matricesFileName, "w")) == NULL) { ErrPostEx(SEV_FATAL, 1, 0, "Unable to open matrices file %s\n", matricesFileName); return (1); } if ((auxiliaryFile = FileOpen(auxiliaryFileName, "w")) == NULL) { ErrPostEx(SEV_FATAL, 1, 0, "Unable to open auxiliary file %s\n", auxiliaryFileName); return (1); } effSize = myargs[5].intvalue; if (0 == effSize) { rdpt = readdb_new(myargs[4].strvalue, TRUE); effSize = readdb_get_dblen(rdpt); rdpt = readdb_destruct(rdpt); } count = countProfiles(sequencesFile, profilesFile); scaling = ((myargs[6].floatvalue < 0.99) || (myargs[6].floatvalue > 1.01)); retcode = convertToMatrices(profilesFile, sequencesFile, matricesFile, auxiliaryFile, count, myargs[1].intvalue, myargs[2].intvalue, effSize, myargs[3].strvalue, scaling, myargs[6].floatvalue, directoryPrefix); MemFree(directoryPrefix); return retcode; }