summaryrefslogtreecommitdiff
path: root/tran/atonev.c
diff options
context:
space:
mode:
Diffstat (limited to 'tran/atonev.c')
-rw-r--r--tran/atonev.c526
1 files changed, 526 insertions, 0 deletions
diff --git a/tran/atonev.c b/tran/atonev.c
new file mode 100644
index 0000000..72532c6
--- /dev/null
+++ b/tran/atonev.c
@@ -0,0 +1,526 @@
+#include "stdio.h"
+#ifndef mips
+#include "stdlib.h"
+#endif
+#include "xlisp.h"
+#include "sound.h"
+
+#include "falloc.h"
+#include "cext.h"
+#include "atonev.h"
+
+void atonev_free();
+
+
+typedef struct atonev_susp_struct {
+ snd_susp_node susp;
+ boolean started;
+ long terminate_cnt;
+ boolean logically_stopped;
+ sound_type s1;
+ long s1_cnt;
+ sample_block_values_type s1_ptr;
+ sound_type hz;
+ long hz_cnt;
+ sample_block_values_type hz_ptr;
+
+ /* support for interpolation of hz */
+ sample_type hz_x1_sample;
+ double hz_pHaSe;
+ double hz_pHaSe_iNcR;
+
+ /* support for ramp between samples of hz */
+ double output_per_hz;
+ long hz_n;
+
+ double cc;
+ double prev;
+} atonev_susp_node, *atonev_susp_type;
+
+
+void atonev_ns_fetch(register atonev_susp_type susp, snd_list_type snd_list)
+{
+ int cnt = 0; /* how many samples computed */
+ int togo;
+ int n;
+ sample_block_type out;
+ register sample_block_values_type out_ptr;
+
+ register sample_block_values_type out_ptr_reg;
+
+ register double cc_reg;
+ register double prev_reg;
+ register sample_type hz_scale_reg = susp->hz->scale;
+ register sample_block_values_type hz_ptr_reg;
+ register sample_block_values_type s1_ptr_reg;
+ falloc_sample_block(out, "atonev_ns_fetch");
+ out_ptr = out->samples;
+ snd_list->block = out;
+
+ while (cnt < max_sample_block_len) { /* outer loop */
+ /* first compute how many samples to generate in inner loop: */
+ /* don't overflow the output sample block: */
+ togo = max_sample_block_len - cnt;
+
+ /* don't run past the s1 input sample block: */
+ susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
+ togo = min(togo, susp->s1_cnt);
+
+ /* don't run past the hz input sample block: */
+ susp_check_term_samples(hz, hz_ptr, hz_cnt);
+ togo = min(togo, susp->hz_cnt);
+
+ /* don't run past terminate time */
+ if (susp->terminate_cnt != UNKNOWN &&
+ susp->terminate_cnt <= susp->susp.current + cnt + togo) {
+ togo = susp->terminate_cnt - (susp->susp.current + cnt);
+ if (togo == 0) break;
+ }
+
+
+ /* don't run past logical stop time */
+ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
+ int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
+ /* break if to_stop == 0 (we're at the logical stop)
+ * AND cnt > 0 (we're not at the beginning of the
+ * output block).
+ */
+ if (to_stop < togo) {
+ if (to_stop == 0) {
+ if (cnt) {
+ togo = 0;
+ break;
+ } else /* keep togo as is: since cnt == 0, we
+ * can set the logical stop flag on this
+ * output block
+ */
+ susp->logically_stopped = true;
+ } else /* limit togo so we can start a new
+ * block at the LST
+ */
+ togo = to_stop;
+ }
+ }
+
+ n = togo;
+ cc_reg = susp->cc;
+ prev_reg = susp->prev;
+ hz_ptr_reg = susp->hz_ptr;
+ s1_ptr_reg = susp->s1_ptr;
+ out_ptr_reg = out_ptr;
+ if (n) do { /* the inner sample computation loop */
+ double current;
+ register double bb;
+ bb = 2.0 - cos((hz_scale_reg * *hz_ptr_reg++));
+ cc_reg = bb - sqrt((bb * bb) - 1.0);
+current = *s1_ptr_reg++;
+ prev_reg = cc_reg * (prev_reg + current);
+ *out_ptr_reg++ = (sample_type) prev_reg;
+ prev_reg -= current;;
+ } while (--n); /* inner loop */
+
+ susp->prev = prev_reg;
+ /* using hz_ptr_reg is a bad idea on RS/6000: */
+ susp->hz_ptr += togo;
+ /* using s1_ptr_reg is a bad idea on RS/6000: */
+ susp->s1_ptr += togo;
+ out_ptr += togo;
+ susp_took(s1_cnt, togo);
+ susp_took(hz_cnt, togo);
+ cnt += togo;
+ } /* outer loop */
+
+ /* test for termination */
+ if (togo == 0 && cnt == 0) {
+ snd_list_terminate(snd_list);
+ } else {
+ snd_list->block_len = cnt;
+ susp->susp.current += cnt;
+ }
+ /* test for logical stop */
+ if (susp->logically_stopped) {
+ snd_list->logically_stopped = true;
+ } else if (susp->susp.log_stop_cnt == susp->susp.current) {
+ susp->logically_stopped = true;
+ }
+} /* atonev_ns_fetch */
+
+
+void atonev_ni_fetch(register atonev_susp_type susp, snd_list_type snd_list)
+{
+ int cnt = 0; /* how many samples computed */
+ int togo;
+ int n;
+ sample_block_type out;
+ register sample_block_values_type out_ptr;
+
+ register sample_block_values_type out_ptr_reg;
+
+ register double cc_reg;
+ register double prev_reg;
+ register double hz_pHaSe_iNcR_rEg = susp->hz_pHaSe_iNcR;
+ register double hz_pHaSe_ReG;
+ register sample_type hz_x1_sample_reg;
+ register sample_block_values_type s1_ptr_reg;
+ falloc_sample_block(out, "atonev_ni_fetch");
+ out_ptr = out->samples;
+ snd_list->block = out;
+
+ /* make sure sounds are primed with first values */
+ if (!susp->started) {
+ register double bb;
+ susp->started = true;
+ susp_check_term_samples(hz, hz_ptr, hz_cnt);
+ susp->hz_x1_sample = susp_fetch_sample(hz, hz_ptr, hz_cnt);
+ bb = 2.0 - cos(susp->hz_x1_sample);
+ susp->cc = bb - sqrt((bb * bb) - 1.0);
+ }
+
+ while (cnt < max_sample_block_len) { /* outer loop */
+ /* first compute how many samples to generate in inner loop: */
+ /* don't overflow the output sample block: */
+ togo = max_sample_block_len - cnt;
+
+ /* don't run past the s1 input sample block: */
+ susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
+ togo = min(togo, susp->s1_cnt);
+
+ /* don't run past terminate time */
+ if (susp->terminate_cnt != UNKNOWN &&
+ susp->terminate_cnt <= susp->susp.current + cnt + togo) {
+ togo = susp->terminate_cnt - (susp->susp.current + cnt);
+ if (togo == 0) break;
+ }
+
+
+ /* don't run past logical stop time */
+ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
+ int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
+ /* break if to_stop == 0 (we're at the logical stop)
+ * AND cnt > 0 (we're not at the beginning of the
+ * output block).
+ */
+ if (to_stop < togo) {
+ if (to_stop == 0) {
+ if (cnt) {
+ togo = 0;
+ break;
+ } else /* keep togo as is: since cnt == 0, we
+ * can set the logical stop flag on this
+ * output block
+ */
+ susp->logically_stopped = true;
+ } else /* limit togo so we can start a new
+ * block at the LST
+ */
+ togo = to_stop;
+ }
+ }
+
+ n = togo;
+ cc_reg = susp->cc;
+ prev_reg = susp->prev;
+ hz_pHaSe_ReG = susp->hz_pHaSe;
+ hz_x1_sample_reg = susp->hz_x1_sample;
+ s1_ptr_reg = susp->s1_ptr;
+ out_ptr_reg = out_ptr;
+ if (n) do { /* the inner sample computation loop */
+ double current;
+ if (hz_pHaSe_ReG >= 1.0) {
+/* fixup-depends hz */
+ register double bb;
+ /* pick up next sample as hz_x1_sample: */
+ susp->hz_ptr++;
+ susp_took(hz_cnt, 1);
+ hz_pHaSe_ReG -= 1.0;
+ susp_check_term_samples_break(hz, hz_ptr, hz_cnt, hz_x1_sample_reg);
+ hz_x1_sample_reg = susp_current_sample(hz, hz_ptr);
+ bb = 2.0 - cos(hz_x1_sample_reg);
+ cc_reg = susp->cc = bb - sqrt((bb * bb) - 1.0);
+ }
+current = *s1_ptr_reg++;
+ prev_reg = cc_reg * (prev_reg + current);
+ *out_ptr_reg++ = (sample_type) prev_reg;
+ prev_reg -= current;;
+ hz_pHaSe_ReG += hz_pHaSe_iNcR_rEg;
+ } while (--n); /* inner loop */
+
+ togo -= n;
+ susp->prev = prev_reg;
+ susp->hz_pHaSe = hz_pHaSe_ReG;
+ susp->hz_x1_sample = hz_x1_sample_reg;
+ /* using s1_ptr_reg is a bad idea on RS/6000: */
+ susp->s1_ptr += togo;
+ out_ptr += togo;
+ susp_took(s1_cnt, togo);
+ cnt += togo;
+ } /* outer loop */
+
+ /* test for termination */
+ if (togo == 0 && cnt == 0) {
+ snd_list_terminate(snd_list);
+ } else {
+ snd_list->block_len = cnt;
+ susp->susp.current += cnt;
+ }
+ /* test for logical stop */
+ if (susp->logically_stopped) {
+ snd_list->logically_stopped = true;
+ } else if (susp->susp.log_stop_cnt == susp->susp.current) {
+ susp->logically_stopped = true;
+ }
+} /* atonev_ni_fetch */
+
+
+void atonev_nr_fetch(register atonev_susp_type susp, snd_list_type snd_list)
+{
+ int cnt = 0; /* how many samples computed */
+ sample_type hz_val;
+ int togo;
+ int n;
+ sample_block_type out;
+ register sample_block_values_type out_ptr;
+
+ register sample_block_values_type out_ptr_reg;
+
+ register double cc_reg;
+ register double prev_reg;
+ register sample_block_values_type s1_ptr_reg;
+ falloc_sample_block(out, "atonev_nr_fetch");
+ out_ptr = out->samples;
+ snd_list->block = out;
+
+ /* make sure sounds are primed with first values */
+ if (!susp->started) {
+ susp->started = true;
+ susp->hz_pHaSe = 1.0;
+ }
+
+ susp_check_term_samples(hz, hz_ptr, hz_cnt);
+
+ while (cnt < max_sample_block_len) { /* outer loop */
+ /* first compute how many samples to generate in inner loop: */
+ /* don't overflow the output sample block: */
+ togo = max_sample_block_len - cnt;
+
+ /* don't run past the s1 input sample block: */
+ susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
+ togo = min(togo, susp->s1_cnt);
+
+ /* grab next hz_x1_sample when phase goes past 1.0; */
+ /* use hz_n (computed below) to avoid roundoff errors: */
+ if (susp->hz_n <= 0) {
+ register double bb;
+ susp_check_term_samples(hz, hz_ptr, hz_cnt);
+ susp->hz_x1_sample = susp_fetch_sample(hz, hz_ptr, hz_cnt);
+ susp->hz_pHaSe -= 1.0;
+ /* hz_n gets number of samples before phase exceeds 1.0: */
+ susp->hz_n = (long) ((1.0 - susp->hz_pHaSe) *
+ susp->output_per_hz);
+ bb = 2.0 - cos(susp->hz_x1_sample);
+ susp->cc = bb - sqrt((bb * bb) - 1.0);
+ }
+ togo = min(togo, susp->hz_n);
+ hz_val = susp->hz_x1_sample;
+ /* don't run past terminate time */
+ if (susp->terminate_cnt != UNKNOWN &&
+ susp->terminate_cnt <= susp->susp.current + cnt + togo) {
+ togo = susp->terminate_cnt - (susp->susp.current + cnt);
+ if (togo == 0) break;
+ }
+
+
+ /* don't run past logical stop time */
+ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
+ int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
+ /* break if to_stop == 0 (we're at the logical stop)
+ * AND cnt > 0 (we're not at the beginning of the
+ * output block).
+ */
+ if (to_stop < togo) {
+ if (to_stop == 0) {
+ if (cnt) {
+ togo = 0;
+ break;
+ } else /* keep togo as is: since cnt == 0, we
+ * can set the logical stop flag on this
+ * output block
+ */
+ susp->logically_stopped = true;
+ } else /* limit togo so we can start a new
+ * block at the LST
+ */
+ togo = to_stop;
+ }
+ }
+
+ n = togo;
+ cc_reg = susp->cc;
+ prev_reg = susp->prev;
+ s1_ptr_reg = susp->s1_ptr;
+ out_ptr_reg = out_ptr;
+ if (n) do { /* the inner sample computation loop */
+ double current;
+current = *s1_ptr_reg++;
+ prev_reg = cc_reg * (prev_reg + current);
+ *out_ptr_reg++ = (sample_type) prev_reg;
+ prev_reg -= current;;
+ } while (--n); /* inner loop */
+
+ susp->prev = prev_reg;
+ /* using s1_ptr_reg is a bad idea on RS/6000: */
+ susp->s1_ptr += togo;
+ out_ptr += togo;
+ susp_took(s1_cnt, togo);
+ susp->hz_pHaSe += togo * susp->hz_pHaSe_iNcR;
+ susp->hz_n -= togo;
+ cnt += togo;
+ } /* outer loop */
+
+ /* test for termination */
+ if (togo == 0 && cnt == 0) {
+ snd_list_terminate(snd_list);
+ } else {
+ snd_list->block_len = cnt;
+ susp->susp.current += cnt;
+ }
+ /* test for logical stop */
+ if (susp->logically_stopped) {
+ snd_list->logically_stopped = true;
+ } else if (susp->susp.log_stop_cnt == susp->susp.current) {
+ susp->logically_stopped = true;
+ }
+} /* atonev_nr_fetch */
+
+
+void atonev_toss_fetch(susp, snd_list)
+ register atonev_susp_type susp;
+ snd_list_type snd_list;
+{
+ long final_count = susp->susp.toss_cnt;
+ time_type final_time = susp->susp.t0;
+ long n;
+
+ /* fetch samples from s1 up to final_time for this block of zeros */
+ while ((round((final_time - susp->s1->t0) * susp->s1->sr)) >=
+ susp->s1->current)
+ susp_get_samples(s1, s1_ptr, s1_cnt);
+ /* fetch samples from hz up to final_time for this block of zeros */
+ while ((round((final_time - susp->hz->t0) * susp->hz->sr)) >=
+ susp->hz->current)
+ susp_get_samples(hz, hz_ptr, hz_cnt);
+ /* convert to normal processing when we hit final_count */
+ /* we want each signal positioned at final_time */
+ n = round((final_time - susp->s1->t0) * susp->s1->sr -
+ (susp->s1->current - susp->s1_cnt));
+ susp->s1_ptr += n;
+ susp_took(s1_cnt, n);
+ n = round((final_time - susp->hz->t0) * susp->hz->sr -
+ (susp->hz->current - susp->hz_cnt));
+ susp->hz_ptr += n;
+ susp_took(hz_cnt, n);
+ susp->susp.fetch = susp->susp.keep_fetch;
+ (*(susp->susp.fetch))(susp, snd_list);
+}
+
+
+void atonev_mark(atonev_susp_type susp)
+{
+ sound_xlmark(susp->s1);
+ sound_xlmark(susp->hz);
+}
+
+
+void atonev_free(atonev_susp_type susp)
+{
+ sound_unref(susp->s1);
+ sound_unref(susp->hz);
+ ffree_generic(susp, sizeof(atonev_susp_node), "atonev_free");
+}
+
+
+void atonev_print_tree(atonev_susp_type susp, int n)
+{
+ indent(n);
+ stdputstr("s1:");
+ sound_print_tree_1(susp->s1, n);
+
+ indent(n);
+ stdputstr("hz:");
+ sound_print_tree_1(susp->hz, n);
+}
+
+
+sound_type snd_make_atonev(sound_type s1, sound_type hz)
+{
+ register atonev_susp_type susp;
+ rate_type sr = s1->sr;
+ time_type t0 = max(s1->t0, hz->t0);
+ int interp_desc = 0;
+ sample_type scale_factor = 1.0F;
+ time_type t0_min = t0;
+ /* combine scale factors of linear inputs (S1) */
+ scale_factor *= s1->scale;
+ s1->scale = 1.0F;
+
+ /* try to push scale_factor back to a low sr input */
+ if (s1->sr < sr) { s1->scale = scale_factor; scale_factor = 1.0F; }
+
+ falloc_generic(susp, atonev_susp_node, "snd_make_atonev");
+ susp->cc = 0.0;
+ susp->prev = 0.0;
+ hz->scale = (sample_type) (hz->scale * (PI2 / s1->sr));
+
+ /* select a susp fn based on sample rates */
+ interp_desc = (interp_desc << 2) + interp_style(s1, sr);
+ interp_desc = (interp_desc << 2) + interp_style(hz, sr);
+ switch (interp_desc) {
+ case INTERP_nn: /* handled below */
+ case INTERP_ns: susp->susp.fetch = atonev_ns_fetch; break;
+ case INTERP_ni: susp->susp.fetch = atonev_ni_fetch; break;
+ case INTERP_nr: susp->susp.fetch = atonev_nr_fetch; break;
+ default: snd_badsr(); break;
+ }
+
+ susp->terminate_cnt = UNKNOWN;
+ /* handle unequal start times, if any */
+ if (t0 < s1->t0) sound_prepend_zeros(s1, t0);
+ if (t0 < hz->t0) sound_prepend_zeros(hz, t0);
+ /* minimum start time over all inputs: */
+ t0_min = min(s1->t0, min(hz->t0, t0));
+ /* how many samples to toss before t0: */
+ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
+ if (susp->susp.toss_cnt > 0) {
+ susp->susp.keep_fetch = susp->susp.fetch;
+ susp->susp.fetch = atonev_toss_fetch;
+ }
+
+ /* initialize susp state */
+ susp->susp.free = atonev_free;
+ susp->susp.sr = sr;
+ susp->susp.t0 = t0;
+ susp->susp.mark = atonev_mark;
+ susp->susp.print_tree = atonev_print_tree;
+ susp->susp.name = "atonev";
+ susp->logically_stopped = false;
+ susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s1);
+ susp->started = false;
+ susp->susp.current = 0;
+ susp->s1 = s1;
+ susp->s1_cnt = 0;
+ susp->hz = hz;
+ susp->hz_cnt = 0;
+ susp->hz_pHaSe = 0.0;
+ susp->hz_pHaSe_iNcR = hz->sr / sr;
+ susp->hz_n = 0;
+ susp->output_per_hz = sr / hz->sr;
+ return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
+}
+
+
+sound_type snd_atonev(sound_type s1, sound_type hz)
+{
+ sound_type s1_copy = sound_copy(s1);
+ sound_type hz_copy = sound_copy(hz);
+ return snd_make_atonev(s1_copy, hz_copy);
+}