;; dspprims.lsp -- interface to dsp primitives ;; ARESON - notch filter ;; (defun areson (s c b &optional (n 0)) (multichan-expand #'nyq:areson s c b n)) (setf areson-implementations (vector #'snd-areson #'snd-aresonvc #'snd-aresoncv #'snd-aresonvv)) ;; NYQ:ARESON - notch filter, single channel ;; (defun nyq:areson (signal center bandwidth normalize) (select-implementation-1-2 areson-implementations signal center bandwidth normalize)) ;; hp - highpass filter ;; (defun hp (s c) (multichan-expand #'nyq:hp s c)) (setf hp-implementations (vector #'snd-atone #'snd-atonev)) ;; NYQ:hp - highpass filter, single channel ;; (defun nyq:hp (s c) (select-implementation-1-1 hp-implementations s c)) ;; comb-delay-from-hz -- compute the delay argument ;; (defun comb-delay-from-hz (hz caller) (recip hz)) ;; comb-feedback-from-decay -- compute the feedback argument ;; (defun comb-feedback (decay delay) (s-exp (mult -6.9087 delay (recip decay)))) ;; COMB - comb filter ;; ;; this is just a feedback-delay with different arguments ;; (defun comb (snd decay hz) (multichan-expand #'nyq:comb snd decay hz)) (defun nyq:comb (snd decay hz) (let (delay feedback len d) ; convert decay to feedback, iterate over array if necessary (setf delay (comb-delay-from-hz hz "comb")) (setf feedback (comb-feedback decay delay)) (nyq:feedback-delay snd delay feedback))) ;; ALPASS - all-pass filter ;; (defun alpass (snd decay hz &optional min-hz) (multichan-expand #'nyq:alpass snd decay hz min-hz)) (defun nyq:alpass (snd decay hz min-hz) (let (delay feedback len d) ; convert decay to feedback, iterate over array if necessary (setf delay (comb-delay-from-hz hz "alpass")) (setf feedback (comb-feedback decay delay)) (nyq:alpass1 snd delay feedback min-hz))) ;; CONST -- a constant at control-srate ;; (defun const (value &optional (dur 1.0)) (let ((d (get-duration dur))) (snd-const value *rslt* *CONTROL-SRATE* d))) ;; CONVOLVE - slow convolution ;; (defun convolve (s r) (multichan-expand #'snd-convolve s r)) ;; FEEDBACK-DELAY -- (delay is quantized to sample period) ;; (defun feedback-delay (snd delay feedback) (multichan-expand #'nyq:feedback-delay snd delay feedback)) ;; SND-DELAY-ERROR -- report type error ;; (defun snd-delay-error (snd delay feedback) (error "feedback-delay with variable delay is not implemented")) ;; NYQ::DELAYCV -- coerce sample rates and call snd-delaycv ;; (defun nyq:delaycv (the-snd delay feedback) (display "delaycv" the-snd delay feedback) (let ((the-snd-srate (snd-srate the-snd)) (feedback-srate (snd-srate feedback))) (cond ((> the-snd-srate feedback-srate) (setf feedback (snd-up the-snd-srate feedback))) ((< the-snd-srate feedback-srate) (format t "Warning: down-sampling feedback in feedback-delay/comb~%") (setf feedback (snd-down the-snd-srate feedback)))) (snd-delaycv the-snd delay feedback))) (setf feedback-delay-implementations (vector #'snd-delay #'snd-delay-error #'nyq:delaycv #'snd-delay-error)) ;; NYQ:FEEDBACK-DELAY -- single channel delay ;; (defun nyq:feedback-delay (snd delay feedback) (select-implementation-1-2 feedback-delay-implementations snd delay feedback)) ;; SND-ALPASS-ERROR -- report type error ;; (defun snd-alpass-error (snd delay feedback) (error "alpass with constant decay and variable hz is not implemented")) (if (not (fboundp 'snd-alpasscv)) (defun snd-alpasscv (snd delay feedback min-hz) (error "snd-alpasscv (ALPASS with variable decay) is not implemented"))) (if (not (fboundp 'snd-alpassvv)) (defun snd-alpassvv (snd delay feedback min-hz) (error "snd-alpassvv (ALPASS with variable decay and feedback) is not implemented"))) (defun snd-alpass-4 (snd delay feedback min-hz) (snd-alpass snd delay feedback)) (defun snd-alpasscv-4 (the-snd delay feedback min-hz) (display "snd-alpasscv-4" (snd-srate the-snd) (snd-srate feedback)) (let ((the-snd-srate (snd-srate the-snd)) (feedback-srate (snd-srate feedback))) (cond ((> the-snd-srate feedback-srate) (setf feedback (snd-up the-snd-srate feedback))) ((< the-snd-srate feedback-srate) (format t "Warning: down-sampling feedback in alpass~%") (setf feedback (snd-down the-snd-srate feedback)))) ;(display "snd-alpasscv-4 after cond" (snd-srate the-snd) (snd-srate feedback)) (snd-alpasscv the-snd delay feedback))) (defun snd-alpassvv-4 (the-snd delay feedback min-hz) ;(display "snd-alpassvv-4" (snd-srate the-snd) (snd-srate feedback)) (let ((the-snd-srate (snd-srate the-snd)) (delay-srate (snd-srate delay)) (feedback-srate (snd-srate feedback)) max-delay) (cond ((or (not (numberp min-hz)) (<= min-hz 0)) (error "alpass needs numeric (>0) 4th parameter (min-hz) when delay is variable"))) (setf max-delay (/ 1.0 min-hz)) ; make sure delay is between 0 and max-delay ; use clip function, which is symetric, with an offset (setf delay (snd-offset (clip (snd-offset delay (* max-delay -0.5)) (* max-delay 0.5)) (* max-delay 0.5))) ; now delay is between 0 and max-delay, so we won't crash nyquist when ; we call snd-alpassvv, which doesn't test for out-of-range data (cond ((> the-snd-srate feedback-srate) (setf feedback (snd-up the-snd-srate feedback))) ((< the-snd-srate feedback-srate) (format t "Warning: down-sampling feedback in alpass~%") (setf feedback (snd-down the-snd-srate feedback)))) (cond ((> the-snd-srate delay-srate) (setf delay (snd-up the-snd-srate delay))) ((< the-snd-srate delay-srate) (format t "Warning: down-sampling delay in alpass~%") (setf delay (snd-down the-snd-srate delay)))) (display "snd-alpassvv-4 after cond" (snd-srate the-snd) (snd-srate feedback)) (snd-alpassvv the-snd delay feedback max-delay))) (setf alpass-implementations (vector #'snd-alpass-4 #'snd-alpass-error #'snd-alpasscv-4 #'snd-alpassvv-4)) ;; NYQ:ALPASS1 -- single channel alpass ;; (defun nyq:alpass1 (snd delay feedback min-hz) (select-implementation-1-2 alpass-implementations snd delay feedback min-hz)) ;; CONGEN -- contour generator, patterned after gated analog env gen ;; (defun congen (gate rise fall) (multichan-expand #'snd-congen gate rise fall)) ;; S-EXP -- exponentiate a sound ;; (defun s-exp (s) (multichan-expand #'nyq:exp s)) ;; NYQ:EXP -- exponentiate number or sound ;; (defun nyq:exp (s) (if (soundp s) (snd-exp s) (exp s))) ;; S-ABS -- absolute value of a sound ;; (defun s-abs (s) (multichan-expand #'nyq:abs s)) ;; NYQ:ABS -- absolute value of number or sound ;; (defun nyq:abs (s) (if (soundp s) (snd-abs s) (abs s))) ;; S-SQRT -- square root of a sound ;; (defun s-sqrt (s) (multichan-expand #'nyq:sqrt s)) ;; NYQ:SQRT -- square root of a number or sound ;; (defun nyq:sqrt (s) (if (soundp s) (snd-sqrt s) (sqrt s))) ;; INTEGRATE -- integration ;; (defun integrate (s) (multichan-expand #'snd-integrate s)) ;; S-LOG -- natural log of a sound ;; (defun s-log (s) (multichan-expand #'nyq:log s)) ;; NYQ:LOG -- log of a number or sound ;; (defun nyq:log (s) (if (soundp s) (snd-log s) (log s))) ;; NOISE -- white noise ;; (defun noise (&optional (dur 1.0)) (let ((d (get-duration dur))) (snd-white *rslt* *SOUND-SRATE* d))) (defun noise-gate (snd &optional (lookahead 0.5) (risetime 0.02) (falltime 0.5) (floor 0.01) (threshold 0.01)) (let ((rms (lp (mult snd snd) (/ *control-srate* 10.0)))) (setf threshold (* threshold threshold)) (mult snd (gate rms floor risetime falltime lookahead threshold)))) ;; QUANTIZE -- quantize a sound ;; (defun quantize (s f) (multichan-expand #'snd-quantize s f)) ;; RECIP -- reciprocal of a sound ;; (defun recip (s) (multichan-expand #'nyq:recip s)) ;; NYQ:RECIP -- reciprocal of a number or sound ;; (defun nyq:recip (s) (if (soundp s) (snd-recip s) (/ (float s)))) ;; RMS -- compute the RMS of a sound ;; (defun rms (s &optional (rate 100.0) window-size) (let (rslt step-size) (cond ((not (eq (type-of s) 'SOUND)) (break "in RMS, first parameter must be a monophonic SOUND"))) (setf step-size (round (/ (snd-srate s) rate))) (cond ((null window-size) (setf window-size step-size))) (setf s (prod s s)) (setf result (snd-avg s window-size step-size OP-AVERAGE)) ;; compute square root of average (s-exp (scale 0.5 (s-log result))))) ;; RESON - bandpass filter ;; (defun reson (s c b &optional (n 0)) (multichan-expand #'nyq:reson s c b n)) (setf reson-implementations (vector #'snd-reson #'snd-resonvc #'snd-resoncv #'snd-resonvv)) ;; NYQ:RESON - bandpass filter, single channel ;; (defun nyq:reson (signal center bandwidth normalize) (select-implementation-1-2 reson-implementations signal center bandwidth normalize)) ;; SHAPE -- waveshaper ;; (defun shape (snd shape origin) (multichan-expand #'snd-shape snd shape origin)) ;; SLOPE -- calculate the first derivative of a signal ;; (defun slope (s) (multichan-expand #'nyq:slope s)) ;; NYQ:SLOPE -- first derivative of single channel ;; (defun nyq:slope (s) (let* ((sr (snd-srate s)) (sr-inverse (/ sr))) (snd-xform (snd-slope s) sr 0 sr-inverse MAX-STOP-TIME 1.0))) ;; lp - lowpass filter ;; (defun lp (s c) (multichan-expand #'nyq:lp s c)) (setf lp-implementations (vector #'snd-tone #'snd-tonev)) ;; NYQ:lp - lowpass filter, single channel ;; (defun nyq:lp (s c) (select-implementation-1-1 lp-implementations s c)) ;;; fixed-parameter filters based on snd-biquad ;;; note: snd-biquad is implemented in biquadfilt.[ch], ;;; while BiQuad.{cpp,h} is part of STK (setf Pi 3.14159265358979) (defun square (x) (* x x)) (defun sinh (x) (* 0.5 (- (exp x) (exp (- x))))) ; remember that snd-biquad uses the opposite sign convention for a_i's ; than Matlab does. ; convenient biquad: normalize a0, and use zero initial conditions. (defun nyq:biquad (x b0 b1 b2 a0 a1 a2) (let ((a0r (/ 1.0 a0))) (snd-biquad x (* a0r b0) (* a0r b1) (* a0r b2) (* a0r a1) (* a0r a2) 0 0))) (defun biquad (x b0 b1 b2 a0 a1 a2) (multichan-expand #'nyq:biquad x b0 b1 b2 a0 a1 a2)) ; biquad with Matlab sign conventions for a_i's. (defun biquad-m (x b0 b1 b2 a0 a1 a2) (multichan-expand #'nyq:biquad-m x b0 b1 b2 a0 a1 a2)) (defun nyq:biquad-m (x b0 b1 b2 a0 a1 a2) (nyq:biquad x b0 b1 b2 a0 (- a1) (- a2))) ; two-pole lowpass (defun lowpass2 (x hz &optional (q 0.7071)) (multichan-expand #'nyq:lowpass2 x hz q)) ;; NYQ:LOWPASS2 -- operates on single channel (defun nyq:lowpass2 (x hz q) (let* ((w (* 2.0 Pi (/ hz (snd-srate x)))) (cw (cos w)) (sw (sin w)) (alpha (* sw (sinh (/ 0.5 q)))) (a0 (+ 1.0 alpha)) (a1 (* -2.0 cw)) (a2 (- 1.0 alpha)) (b1 (- 1.0 cw)) (b0 (* 0.5 b1)) (b2 b0)) (nyq:biquad-m x b0 b1 b2 a0 a1 a2))) ; two-pole highpass (defun highpass2 (x hz &optional (q 0.7071)) (multichan-expand #'nyq:highpass2 x hz q)) (defun nyq:highpass2 (x hz q) (let* ((w (* 2.0 Pi (/ hz (snd-srate x)))) (cw (cos w)) (sw (sin w)) (alpha (* sw (sinh (/ 0.5 q)))) (a0 (+ 1.0 alpha)) (a1 (* -2.0 cw)) (a2 (- 1.0 alpha)) (b1 (- -1.0 cw)) (b0 (* -0.5 b1)) (b2 b0)) (nyq:biquad-m x b0 b1 b2 a0 a1 a2))) ; two-pole bandpass. max gain is unity. (defun bandpass2 (x hz q) (multichan-expand #'nyq:bandpass2 x hz q)) (defun nyq:bandpass2 (x hz q) (let* ((w (* 2.0 Pi (/ hz (snd-srate x)))) (cw (cos w)) (sw (sin w)) (alpha (* sw (sinh (/ 0.5 q)))) (a0 (+ 1.0 alpha)) (a1 (* -2.0 cw)) (a2 (- 1.0 alpha)) (b0 alpha) (b1 0.0) (b2 (- alpha))) (nyq:biquad-m x b0 b1 b2 a0 a1 a2))) ; two-pole notch. (defun notch2 (x hz q) (multichan-expand #'nyq:notch2 x hz q)) (defun nyq:notch2 (x hz q) (let* ((w (* 2.0 Pi (/ hz (snd-srate x)))) (cw (cos w)) (sw (sin w)) (alpha (* sw (sinh (/ 0.5 q)))) (a0 (+ 1.0 alpha)) (a1 (* -2.0 cw)) (a2 (- 1.0 alpha)) (b0 1.0) (b1 (* -2.0 cw)) (b2 1.0)) (nyq:biquad-m x b0 b1 b2 a0 a1 a2))) ; two-pole allpass. (defun allpass2 (x hz q) (multichan-expand #'nyq:allpass x hz q)) (defun nyq:allpass (x hz q) (let* ((w (* 2.0 Pi (/ hz (snd-srate x)))) (cw (cos w)) (sw (sin w)) (k (exp (* -0.5 w (/ 1.0 q)))) (a0 1.0) (a1 (* -2.0 cw k)) (a2 (* k k)) (b0 a2) (b1 a1) (b2 1.0)) (nyq:biquad-m x b0 b1 b2 a0 a1 a2))) ; bass shelving EQ. gain in dB; Fc is halfway point. ; response becomes peaky at slope > 1. (defun eq-lowshelf (x hz gain &optional (slope 1.0)) (multichan-expand #'nyq:eq-lowshelf x hz gain slope)) (defun nyq:eq-lowshelf (x hz gain slope) (let* ((w (* 2.0 Pi (/ hz (snd-srate x)))) (sw (sin w)) (cw (cos w)) (A (expt 10.0 (/ gain (* 2.0 20.0)))) (b (sqrt (- (/ (+ 1.0 (square A)) slope) (square (- A 1.0))))) (apc (* cw (+ A 1.0))) (amc (* cw (- A 1.0))) (bs (* b sw)) (b0 (* A (+ A 1.0 (- amc) bs ))) (b1 (* 2.0 A (+ A -1.0 (- apc) ))) (b2 (* A (+ A 1.0 (- amc) (- bs) ))) (a0 (+ A 1.0 amc bs )) (a1 (* -2.0 (+ A -1.0 apc ))) (a2 (+ A 1.0 amc (- bs) ))) (nyq:biquad-m x b0 b1 b2 a0 a1 a2))) ; treble shelving EQ. gain in dB; Fc is halfway point. ; response becomes peaky at slope > 1. (defun eq-highshelf (x hz gain &optional (slope 1.0)) (multichan-expand #'nyq:eq-highshelf x hz gain slope)) (defun nyq:eq-highshelf (x hz gain slope) (let* ((w (* 2.0 Pi (/ hz (snd-srate x)))) (sw (sin w)) (cw (cos w)) (A (expt 10.0 (/ gain (* 2.0 20.0)))) (b (sqrt (- (/ (+ 1.0 (square A)) slope) (square (- A 1.0))))) (apc (* cw (+ A 1.0))) (amc (* cw (- A 1.0))) (bs (* b sw)) (b0 (* A (+ A 1.0 amc bs ))) (b1 (* -2.0 A (+ A -1.0 apc ))) (b2 (* A (+ A 1.0 amc (- bs) ))) (a0 (+ A 1.0 (- amc) bs )) (a1 (* 2.0 (+ A -1.0 (- apc) ))) (a2 (+ A 1.0 (- amc) (- bs) ))) (nyq:biquad-m x b0 b1 b2 a0 a1 a2))) (defun nyq:eq-band (x hz gain width) (cond ((and (numberp hz) (numberp gain) (numberp width)) (eq-band-ccc x hz gain width)) ((and (soundp hz) (soundp gain) (soundp width)) (snd-eqbandvvv x hz (db-to-linear gain) width)) (t (error "eq-band hz, gain, and width must be all numbers or all sounds")))) ; midrange EQ. gain in dB, width in octaves (half-gain width). (defun eq-band (x hz gain width) (multichan-expand #'nyq:eq-band x hz gain width)) (defun eq-band-ccc (x hz gain width) (let* ((w (* 2.0 Pi (/ hz (snd-srate x)))) (sw (sin w)) (cw (cos w)) (J (sqrt (expt 10.0 (/ gain 20.0)))) ;(dummy (display "eq-band-ccc" gain J)) (g (* sw (sinh (* 0.5 (log 2.0) width (/ w sw))))) ;(dummy2 (display "eq-band-ccc" width w sw g)) (b0 (+ 1.0 (* g J))) (b1 (* -2.0 cw)) (b2 (- 1.0 (* g J))) (a0 (+ 1.0 (/ g J))) (a1 (- b1)) (a2 (- (/ g J) 1.0))) (biquad x b0 b1 b2 a0 a1 a2))) ; see failed attempt in eub-reject.lsp to do these with higher-order fns: ; four-pole Butterworth lowpass (defun lowpass4 (x hz) (lowpass2 (lowpass2 x hz 0.60492333) hz 1.33722126)) ; six-pole Butterworth lowpass (defun lowpass6 (x hz) (lowpass2 (lowpass2 (lowpass2 x hz 0.58338080) hz 0.75932572) hz 1.95302407)) ; eight-pole Butterworth lowpass (defun lowpass8 (x hz) (lowpass2 (lowpass2 (lowpass2 (lowpass2 x hz 0.57622191) hz 0.66045510) hz 0.94276399) hz 2.57900101)) ; four-pole Butterworth highpass (defun highpass4 (x hz) (highpass2 (highpass2 x hz 0.60492333) hz 1.33722126)) ; six-pole Butterworth highpass (defun highpass6 (x hz) (highpass2 (highpass2 (highpass2 x hz 0.58338080) hz 0.75932572) hz 1.95302407)) ; eight-pole Butterworth highpass (defun highpass8 (x hz) (highpass2 (highpass2 (highpass2 (highpass2 x hz 0.57622191) hz 0.66045510) hz 0.94276399) hz 2.57900101)) ; YIN ; maybe this should handle multiple channels, etc. (setfn yin snd-yin) ; FOLLOW (defun follow (sound floor risetime falltime lookahead) ;; use 10000s as "infinite" -- that's about 2^30 samples at 96K (setf lookahead (round (* lookahead (snd-srate sound)))) (extract (/ lookahead (snd-srate sound)) 10000 (snd-follow sound floor risetime falltime lookahead))) ; Note: gate implementation moved to nyquist.lsp ;(defun gate (sound floor risetime falltime lookahead threshold) ; (setf lookahead (round (* lookahead (snd-srate sound)))) ; (setf lookahead (/ lookahead (snd-srate sound))) ; (extract lookahead 10000 ; (snd-gate sound lookahead risetime falltime floor threshold)))