#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "delaycv.h" void delaycv_free(); typedef struct delaycv_susp_struct { snd_susp_node susp; long terminate_cnt; sound_type s; long s_cnt; sample_block_values_type s_ptr; sound_type feedback; long feedback_cnt; sample_block_values_type feedback_ptr; long delaylen; sample_type *delaybuf; sample_type *delayptr; sample_type *endptr; } delaycv_susp_node, *delaycv_susp_type; void delaycv_nn_fetch(register delaycv_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register sample_type * delayptr_reg; register sample_type * endptr_reg; register sample_block_values_type feedback_ptr_reg; register sample_block_values_type s_ptr_reg; falloc_sample_block(out, "delaycv_nn_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s input sample block: */ susp_check_term_samples(s, s_ptr, s_cnt); togo = min(togo, susp->s_cnt); /* don't run past the feedback input sample block: */ susp_check_samples(feedback, feedback_ptr, feedback_cnt); togo = min(togo, susp->feedback_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } n = togo; delayptr_reg = susp->delayptr; endptr_reg = susp->endptr; feedback_ptr_reg = susp->feedback_ptr; s_ptr_reg = susp->s_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ *out_ptr_reg++ = *delayptr_reg; *delayptr_reg = *delayptr_reg * *feedback_ptr_reg++ + *s_ptr_reg++; if (++delayptr_reg >= endptr_reg) delayptr_reg = susp->delaybuf;; } while (--n); /* inner loop */ susp->delayptr = delayptr_reg; susp->endptr = endptr_reg; /* using feedback_ptr_reg is a bad idea on RS/6000: */ susp->feedback_ptr += togo; /* using s_ptr_reg is a bad idea on RS/6000: */ susp->s_ptr += togo; out_ptr += togo; susp_took(s_cnt, togo); susp_took(feedback_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } } /* delaycv_nn_fetch */ void delaycv_ns_fetch(register delaycv_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register sample_type * delayptr_reg; register sample_type * endptr_reg; register sample_type feedback_scale_reg = susp->feedback->scale; register sample_block_values_type feedback_ptr_reg; register sample_block_values_type s_ptr_reg; falloc_sample_block(out, "delaycv_ns_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s input sample block: */ susp_check_term_samples(s, s_ptr, s_cnt); togo = min(togo, susp->s_cnt); /* don't run past the feedback input sample block: */ susp_check_samples(feedback, feedback_ptr, feedback_cnt); togo = min(togo, susp->feedback_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } n = togo; delayptr_reg = susp->delayptr; endptr_reg = susp->endptr; feedback_ptr_reg = susp->feedback_ptr; s_ptr_reg = susp->s_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ *out_ptr_reg++ = *delayptr_reg; *delayptr_reg = *delayptr_reg * (feedback_scale_reg * *feedback_ptr_reg++) + *s_ptr_reg++; if (++delayptr_reg >= endptr_reg) delayptr_reg = susp->delaybuf;; } while (--n); /* inner loop */ susp->delayptr = delayptr_reg; susp->endptr = endptr_reg; /* using feedback_ptr_reg is a bad idea on RS/6000: */ susp->feedback_ptr += togo; /* using s_ptr_reg is a bad idea on RS/6000: */ susp->s_ptr += togo; out_ptr += togo; susp_took(s_cnt, togo); susp_took(feedback_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } } /* delaycv_ns_fetch */ void delaycv_toss_fetch(susp, snd_list) register delaycv_susp_type susp; snd_list_type snd_list; { long final_count = susp->susp.toss_cnt; time_type final_time = susp->susp.t0; long n; /* fetch samples from s up to final_time for this block of zeros */ while ((round((final_time - susp->s->t0) * susp->s->sr)) >= susp->s->current) susp_get_samples(s, s_ptr, s_cnt); /* fetch samples from feedback up to final_time for this block of zeros */ while ((round((final_time - susp->feedback->t0) * susp->feedback->sr)) >= susp->feedback->current) susp_get_samples(feedback, feedback_ptr, feedback_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = round((final_time - susp->s->t0) * susp->s->sr - (susp->s->current - susp->s_cnt)); susp->s_ptr += n; susp_took(s_cnt, n); n = round((final_time - susp->feedback->t0) * susp->feedback->sr - (susp->feedback->current - susp->feedback_cnt)); susp->feedback_ptr += n; susp_took(feedback_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(susp, snd_list); } void delaycv_mark(delaycv_susp_type susp) { sound_xlmark(susp->s); sound_xlmark(susp->feedback); } void delaycv_free(delaycv_susp_type susp) { free(susp->delaybuf); sound_unref(susp->s); sound_unref(susp->feedback); ffree_generic(susp, sizeof(delaycv_susp_node), "delaycv_free"); } void delaycv_print_tree(delaycv_susp_type susp, int n) { indent(n); stdputstr("s:"); sound_print_tree_1(susp->s, n); indent(n); stdputstr("feedback:"); sound_print_tree_1(susp->feedback, n); } sound_type snd_make_delaycv(sound_type s, time_type delay, sound_type feedback) { register delaycv_susp_type susp; rate_type sr = max(s->sr, feedback->sr); time_type t0 = max(s->t0, feedback->t0); int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; /* combine scale factors of linear inputs (S) */ scale_factor *= s->scale; s->scale = 1.0F; /* try to push scale_factor back to a low sr input */ if (s->sr < sr) { s->scale = scale_factor; scale_factor = 1.0F; } falloc_generic(susp, delaycv_susp_node, "snd_make_delaycv"); susp->delaylen = round(s->sr * delay); susp->delaybuf = (sample_type *) calloc (sizeof(double), susp->delaylen); susp->delayptr = susp->delaybuf; susp->endptr = susp->delaybuf + susp->delaylen; /* select a susp fn based on sample rates */ interp_desc = (interp_desc << 2) + interp_style(s, sr); interp_desc = (interp_desc << 2) + interp_style(feedback, sr); switch (interp_desc) { case INTERP_nn: susp->susp.fetch = delaycv_nn_fetch; break; case INTERP_ns: susp->susp.fetch = delaycv_ns_fetch; break; default: snd_badsr(); break; } susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < s->t0) sound_prepend_zeros(s, t0); if (t0 < feedback->t0) sound_prepend_zeros(feedback, t0); /* minimum start time over all inputs: */ t0_min = min(s->t0, min(feedback->t0, t0)); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = delaycv_toss_fetch; } /* initialize susp state */ susp->susp.free = delaycv_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = delaycv_mark; susp->susp.print_tree = delaycv_print_tree; susp->susp.name = "delaycv"; susp->susp.log_stop_cnt = UNKNOWN; susp->susp.current = 0; susp->s = s; susp->s_cnt = 0; susp->feedback = feedback; susp->feedback_cnt = 0; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_delaycv(sound_type s, time_type delay, sound_type feedback) { sound_type s_copy = sound_copy(s); sound_type feedback_copy = sound_copy(feedback); return snd_make_delaycv(s_copy, delay, feedback_copy); }