#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "fmfbv.h" void fmfbv_free(); typedef struct fmfbv_susp_struct { snd_susp_node susp; boolean started; long terminate_cnt; boolean logically_stopped; sound_type index; long index_cnt; sample_block_values_type index_ptr; /* support for interpolation of index */ sample_type index_x1_sample; double index_pHaSe; double index_pHaSe_iNcR; /* support for ramp between samples of index */ double output_per_index; long index_n; double yy; double sin_y; double phase; double ph_incr; } fmfbv_susp_node, *fmfbv_susp_type; void fmfbv_n_fetch(register fmfbv_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double yy_reg; register double sin_y_reg; register double phase_reg; register double ph_incr_reg; register sample_block_values_type index_ptr_reg; falloc_sample_block(out, "fmfbv_n_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the index input sample block: */ susp_check_term_log_samples(index, index_ptr, index_cnt); togo = min(togo, susp->index_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; yy_reg = susp->yy; sin_y_reg = susp->sin_y; phase_reg = susp->phase; ph_incr_reg = susp->ph_incr; index_ptr_reg = susp->index_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ phase_reg += ph_incr_reg; if (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN; /* PHASE is incremented and INDEX scaled to table INDEX, and sin_y_reg is a signal (-1 to +1) */ yy_reg = phase_reg + *index_ptr_reg++ * sin_y_reg; /* so yy_reg is a table index */ while (yy_reg > SINE_TABLE_LEN) yy_reg -= SINE_TABLE_LEN; while (yy_reg < 0) yy_reg += SINE_TABLE_LEN; sin_y_reg = sine_table[(int) yy_reg]; /* truncation gets valid index */ /* sin_y_reg is now a signal not ready for table lookup */ *out_ptr_reg++ = sin_y_reg;; } while (--n); /* inner loop */ susp->yy = yy_reg; susp->sin_y = sin_y_reg; susp->phase = phase_reg; /* using index_ptr_reg is a bad idea on RS/6000: */ susp->index_ptr += togo; out_ptr += togo; susp_took(index_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* fmfbv_n_fetch */ void fmfbv_s_fetch(register fmfbv_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double yy_reg; register double sin_y_reg; register double phase_reg; register double ph_incr_reg; register sample_type index_scale_reg = susp->index->scale; register sample_block_values_type index_ptr_reg; falloc_sample_block(out, "fmfbv_s_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the index input sample block: */ susp_check_term_log_samples(index, index_ptr, index_cnt); togo = min(togo, susp->index_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; yy_reg = susp->yy; sin_y_reg = susp->sin_y; phase_reg = susp->phase; ph_incr_reg = susp->ph_incr; index_ptr_reg = susp->index_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ phase_reg += ph_incr_reg; if (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN; /* PHASE is incremented and INDEX scaled to table INDEX, and sin_y_reg is a signal (-1 to +1) */ yy_reg = phase_reg + (index_scale_reg * *index_ptr_reg++) * sin_y_reg; /* so yy_reg is a table index */ while (yy_reg > SINE_TABLE_LEN) yy_reg -= SINE_TABLE_LEN; while (yy_reg < 0) yy_reg += SINE_TABLE_LEN; sin_y_reg = sine_table[(int) yy_reg]; /* truncation gets valid index */ /* sin_y_reg is now a signal not ready for table lookup */ *out_ptr_reg++ = sin_y_reg;; } while (--n); /* inner loop */ susp->yy = yy_reg; susp->sin_y = sin_y_reg; susp->phase = phase_reg; /* using index_ptr_reg is a bad idea on RS/6000: */ susp->index_ptr += togo; out_ptr += togo; susp_took(index_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* fmfbv_s_fetch */ void fmfbv_i_fetch(register fmfbv_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double yy_reg; register double sin_y_reg; register double phase_reg; register double ph_incr_reg; register double index_pHaSe_iNcR_rEg = susp->index_pHaSe_iNcR; register double index_pHaSe_ReG; register sample_type index_x1_sample_reg; falloc_sample_block(out, "fmfbv_i_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp_check_term_log_samples(index, index_ptr, index_cnt); susp->index_x1_sample = susp_fetch_sample(index, index_ptr, index_cnt); } while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; yy_reg = susp->yy; sin_y_reg = susp->sin_y; phase_reg = susp->phase; ph_incr_reg = susp->ph_incr; index_pHaSe_ReG = susp->index_pHaSe; index_x1_sample_reg = susp->index_x1_sample; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ if (index_pHaSe_ReG >= 1.0) { /* fixup-depends index */ /* pick up next sample as index_x1_sample: */ susp->index_ptr++; susp_took(index_cnt, 1); index_pHaSe_ReG -= 1.0; susp_check_term_log_samples_break(index, index_ptr, index_cnt, index_x1_sample_reg); index_x1_sample_reg = susp_current_sample(index, index_ptr); } phase_reg += ph_incr_reg; if (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN; /* PHASE is incremented and INDEX scaled to table INDEX, and sin_y_reg is a signal (-1 to +1) */ yy_reg = phase_reg + index_x1_sample_reg * sin_y_reg; /* so yy_reg is a table index */ while (yy_reg > SINE_TABLE_LEN) yy_reg -= SINE_TABLE_LEN; while (yy_reg < 0) yy_reg += SINE_TABLE_LEN; sin_y_reg = sine_table[(int) yy_reg]; /* truncation gets valid index */ /* sin_y_reg is now a signal not ready for table lookup */ *out_ptr_reg++ = sin_y_reg;; index_pHaSe_ReG += index_pHaSe_iNcR_rEg; } while (--n); /* inner loop */ togo -= n; susp->yy = yy_reg; susp->sin_y = sin_y_reg; susp->phase = phase_reg; susp->index_pHaSe = index_pHaSe_ReG; susp->index_x1_sample = index_x1_sample_reg; out_ptr += togo; cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* fmfbv_i_fetch */ void fmfbv_r_fetch(register fmfbv_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ sample_type index_val; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double yy_reg; register double sin_y_reg; register double phase_reg; register double ph_incr_reg; falloc_sample_block(out, "fmfbv_r_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp->index_pHaSe = 1.0; } susp_check_term_log_samples(index, index_ptr, index_cnt); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* grab next index_x1_sample when phase goes past 1.0; */ /* use index_n (computed below) to avoid roundoff errors: */ if (susp->index_n <= 0) { susp_check_term_log_samples(index, index_ptr, index_cnt); susp->index_x1_sample = susp_fetch_sample(index, index_ptr, index_cnt); susp->index_pHaSe -= 1.0; /* index_n gets number of samples before phase exceeds 1.0: */ susp->index_n = (long) ((1.0 - susp->index_pHaSe) * susp->output_per_index); } togo = min(togo, susp->index_n); index_val = susp->index_x1_sample; /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; yy_reg = susp->yy; sin_y_reg = susp->sin_y; phase_reg = susp->phase; ph_incr_reg = susp->ph_incr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ phase_reg += ph_incr_reg; if (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN; /* PHASE is incremented and INDEX scaled to table INDEX, and sin_y_reg is a signal (-1 to +1) */ yy_reg = phase_reg + index_val * sin_y_reg; /* so yy_reg is a table index */ while (yy_reg > SINE_TABLE_LEN) yy_reg -= SINE_TABLE_LEN; while (yy_reg < 0) yy_reg += SINE_TABLE_LEN; sin_y_reg = sine_table[(int) yy_reg]; /* truncation gets valid index */ /* sin_y_reg is now a signal not ready for table lookup */ *out_ptr_reg++ = sin_y_reg;; } while (--n); /* inner loop */ susp->yy = yy_reg; susp->sin_y = sin_y_reg; susp->phase = phase_reg; out_ptr += togo; susp->index_pHaSe += togo * susp->index_pHaSe_iNcR; susp->index_n -= togo; cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* fmfbv_r_fetch */ void fmfbv_toss_fetch(susp, snd_list) register fmfbv_susp_type susp; snd_list_type snd_list; { long final_count = susp->susp.toss_cnt; time_type final_time = susp->susp.t0; long n; /* fetch samples from index up to final_time for this block of zeros */ while ((round((final_time - susp->index->t0) * susp->index->sr)) >= susp->index->current) susp_get_samples(index, index_ptr, index_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = round((final_time - susp->index->t0) * susp->index->sr - (susp->index->current - susp->index_cnt)); susp->index_ptr += n; susp_took(index_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(susp, snd_list); } void fmfbv_mark(fmfbv_susp_type susp) { sound_xlmark(susp->index); } void fmfbv_free(fmfbv_susp_type susp) { sound_unref(susp->index); ffree_generic(susp, sizeof(fmfbv_susp_node), "fmfbv_free"); } void fmfbv_print_tree(fmfbv_susp_type susp, int n) { indent(n); stdputstr("index:"); sound_print_tree_1(susp->index, n); } sound_type snd_make_fmfbv(time_type t0, double hz, rate_type sr, sound_type index) { register fmfbv_susp_type susp; /* sr specified as input parameter */ /* t0 specified as input parameter */ int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; falloc_generic(susp, fmfbv_susp_node, "snd_make_fmfbv"); susp->yy = 0.0; susp->sin_y = 0.0; susp->phase = 0.0; susp->ph_incr = hz * SINE_TABLE_LEN / sr; index->scale *= SINE_TABLE_LEN / PI2 ; /* select a susp fn based on sample rates */ interp_desc = (interp_desc << 2) + interp_style(index, sr); switch (interp_desc) { case INTERP_n: susp->susp.fetch = fmfbv_n_fetch; break; case INTERP_s: susp->susp.fetch = fmfbv_s_fetch; break; case INTERP_i: susp->susp.fetch = fmfbv_i_fetch; break; case INTERP_r: susp->susp.fetch = fmfbv_r_fetch; break; default: snd_badsr(); break; } susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < index->t0) sound_prepend_zeros(index, t0); /* minimum start time over all inputs: */ t0_min = min(index->t0, t0); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = fmfbv_toss_fetch; } /* initialize susp state */ susp->susp.free = fmfbv_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = fmfbv_mark; susp->susp.print_tree = fmfbv_print_tree; susp->susp.name = "fmfbv"; susp->logically_stopped = false; susp->susp.log_stop_cnt = logical_stop_cnt_cvt(index); susp->started = false; susp->susp.current = 0; susp->index = index; susp->index_cnt = 0; susp->index_pHaSe = 0.0; susp->index_pHaSe_iNcR = index->sr / sr; susp->index_n = 0; susp->output_per_index = sr / index->sr; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_fmfbv(time_type t0, double hz, rate_type sr, sound_type index) { sound_type index_copy = sound_copy(index); return snd_make_fmfbv(t0, hz, sr, index_copy); }