(IFFT-ALG (NAME "ifft") (ARGUMENTS ("time_type" "t0") ("rate_type" "sr") ("LVAL" "src") ("long" "stepsize") ("LVAL" "window")) (SUPPORT-FUNCTIONS " /* index: index into outbuf whree we get output samples * length: size of the frame, window, and outbuf; half size of samples * array: spectral frame goes here (why not a local var?) * window_len: size of window, should equal length * outbuf: real part of samples are multiplied by window and added to * outbuf (after shifting) * src: send :NEXT to this object to get next frame * stepsize: shift by this many and add each frame * samples: result of ifft goes here, real and imag * window: multiply samples by window if any * * IMPLEMENTATION NOTE: * The src argument is an XLisp object that returns either an * array of samples or NIL. The output of ifft is simply the * concatenation of the samples taken from the array. Later, * an ifft will be plugged in and this will return overlapped * adds of the ifft's. * * OVERLAP: stepsize must be less than or equal to the length * of real part of the transformed spectrum. A transform step * works like this: * (1) shift the output buffer by stepsize samples, filling * the end of the buffer with zeros * (2) get and transform an array of spectral coefficients * (3) multiply the result by a window * (4) add the result to the output buffer * (5) output the first stepsize samples of the buffer * * DATA FORMAT: the DC component goes in array elem 0 * Cosine part is in elements 2*i-1 * Sine part is in elements 2*i * Nyquist frequency is in element length-1 */ #include \"samples.h\" #include \"fftext.h\" #define MUST_BE_FLONUM(e) \\ if (!(e) || ntype(e) != FLONUM) { xlerror(\"flonum expected\", (e)); } table_type get_window_samples(LVAL window, sample_type **samples, long *len) { table_type result = NULL; if (soundp(window)) { sound_type window_sound = getsound(window); xlprot1(window); /* maybe not necessary */ result = sound_to_table(window_sound); xlpop(); *samples = result->samples; *len = (long) (result->length + 0.5); } return result; } ") (SAMPLE-RATE "sr") (STATE ("long" "index" "stepsize") ; samples index ("long" "length" "0") ; samples length ("LVAL" "array" "NULL") ("long" "window_len" "0") ("sample_type *" "outbuf" "NULL") ("LVAL" "src" "src") ("long" "stepsize" "stepsize") ("sample_type *" "window" "NULL") ; window samples ("sample_type *" "samples" "NULL") ("table_type" "table" "get_window_samples(window, &susp->window, &susp->window_len)")) (OUTER-LOOP " if (susp->src == NULL) { out: togo = 0; /* indicate termination */ break; /* we're done */ } if (susp->index >= susp->stepsize) { long i; long m, n; LVAL elem; susp->index = 0; susp->array = xleval(cons(s_send, cons(susp->src, consa(s_next)))); if (susp->array == NULL) { susp->src = NULL; goto out; } else if (!vectorp(susp->array)) { xlerror(\"array expected\", susp->array); } else if (susp->samples == NULL) { /* assume arrays are all the same size as first one; now that we know the size, we just have to do this first allocation. */ susp->length = getsize(susp->array); if (susp->length < 1) xlerror(\"array has no elements\", susp->array); if (susp->window && (susp->window_len != susp->length)) xlerror(\"window size and spectrum size differ\", susp->array); /* tricky non-power of 2 detector: only if this is a * power of 2 will the highest 1 bit be cleared when * we subtract 1 ... */ if (susp->length & (susp->length - 1)) xlfail(\"spectrum size must be a power of 2\"); susp->samples = (sample_type *) calloc(susp->length, sizeof(sample_type)); susp->outbuf = (sample_type *) calloc(susp->length, sizeof(sample_type)); } else if (getsize(susp->array) != susp->length) { xlerror(\"arrays must all be the same length\", susp->array); } /* at this point, we have a new array to put samples */ /* the incoming array format is [DC, R1, I1, R2, I2, ... RN] * where RN is the real coef at the Nyquist frequency * but susp->samples should be organized as [DC, RN, R1, I1, ...] */ n = susp->length; /* get the DC (real) coef */ elem = getelement(susp->array, 0); MUST_BE_FLONUM(elem) susp->samples[0] = (sample_type) getflonum(elem); /* get the Nyquist (real) coef */ elem = getelement(susp->array, n - 1); MUST_BE_FLONUM(elem); susp->samples[1] = (sample_type) getflonum(elem); /* get the remaining coef */ for (i = 1; i < n - 1; i++) { elem = getelement(susp->array, i); MUST_BE_FLONUM(elem) susp->samples[i + 1] = (sample_type) getflonum(elem); } susp->array = NULL; /* free the array */ /* here is where the IFFT and windowing should take place */ //fftnf(1, &n, susp->samples, susp->samples + n, -1, 1.0); m = round(log2(n)); if (!fftInit(m)) riffts(susp->samples, m, 1); else xlfail(\"FFT initialization error\"); if (susp->window) { n = susp->length; for (i = 0; i < n; i++) { susp->samples[i] *= susp->window[i]; } } /* shift the outbuf */ n = susp->length - susp->stepsize; for (i = 0; i < n; i++) { susp->outbuf[i] = susp->outbuf[i + susp->stepsize]; } /* clear end of outbuf */ for (i = n; i < susp->length; i++) { susp->outbuf[i] = 0; } /* add in the ifft result */ n = susp->length; for (i = 0; i < n; i++) { susp->outbuf[i] += susp->samples[i]; } } togo = min(togo, susp->stepsize - susp->index); ") (INNER-LOOP "output = outbuf[index++];") (CONSTANT "length" "samples" "array" "src" "window") (TERMINATE COMPUTED) (FINALIZATION " if (susp->samples) free(susp->samples); if (susp->table) table_unref(susp->table); if (susp->outbuf) free(susp->outbuf); ") )