#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "reson.h" void reson_free(); typedef struct reson_susp_struct { snd_susp_node susp; long terminate_cnt; boolean logically_stopped; sound_type s; long s_cnt; sample_block_values_type s_ptr; double c3; double c3p1; double c3t4; double omc3; double c2; double c1; double y1; double y2; } reson_susp_node, *reson_susp_type; void reson_n_fetch(register reson_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double c3_reg; register double c2_reg; register double c1_reg; register double y1_reg; register double y2_reg; register sample_block_values_type s_ptr_reg; falloc_sample_block(out, "reson_n_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s input sample block: */ susp_check_term_log_samples(s, s_ptr, s_cnt); togo = min(togo, susp->s_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; c3_reg = susp->c3; c2_reg = susp->c2; c1_reg = susp->c1; y1_reg = susp->y1; y2_reg = susp->y2; s_ptr_reg = susp->s_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ { double y0 = c1_reg * *s_ptr_reg++ + c2_reg * y1_reg - c3_reg * y2_reg; *out_ptr_reg++ = (sample_type) y0; y2_reg = y1_reg; y1_reg = y0; }; } while (--n); /* inner loop */ susp->y1 = y1_reg; susp->y2 = y2_reg; /* using s_ptr_reg is a bad idea on RS/6000: */ susp->s_ptr += togo; out_ptr += togo; susp_took(s_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* reson_n_fetch */ void reson_s_fetch(register reson_susp_type susp, snd_list_type snd_list) { int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register double c3_reg; register double c2_reg; register double c1_reg; register double y1_reg; register double y2_reg; register sample_type s_scale_reg = susp->s->scale; register sample_block_values_type s_ptr_reg; falloc_sample_block(out, "reson_s_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the s input sample block: */ susp_check_term_log_samples(s, s_ptr, s_cnt); togo = min(togo, susp->s_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = susp->terminate_cnt - (susp->susp.current + cnt); if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = to_stop; } } n = togo; c3_reg = susp->c3; c2_reg = susp->c2; c1_reg = susp->c1; y1_reg = susp->y1; y2_reg = susp->y2; s_ptr_reg = susp->s_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ { double y0 = c1_reg * (s_scale_reg * *s_ptr_reg++) + c2_reg * y1_reg - c3_reg * y2_reg; *out_ptr_reg++ = (sample_type) y0; y2_reg = y1_reg; y1_reg = y0; }; } while (--n); /* inner loop */ susp->y1 = y1_reg; susp->y2 = y2_reg; /* using s_ptr_reg is a bad idea on RS/6000: */ susp->s_ptr += togo; out_ptr += togo; susp_took(s_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* reson_s_fetch */ void reson_toss_fetch(susp, snd_list) register reson_susp_type susp; snd_list_type snd_list; { long final_count = susp->susp.toss_cnt; time_type final_time = susp->susp.t0; long n; /* fetch samples from s up to final_time for this block of zeros */ while ((round((final_time - susp->s->t0) * susp->s->sr)) >= susp->s->current) susp_get_samples(s, s_ptr, s_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = round((final_time - susp->s->t0) * susp->s->sr - (susp->s->current - susp->s_cnt)); susp->s_ptr += n; susp_took(s_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(susp, snd_list); } void reson_mark(reson_susp_type susp) { sound_xlmark(susp->s); } void reson_free(reson_susp_type susp) { sound_unref(susp->s); ffree_generic(susp, sizeof(reson_susp_node), "reson_free"); } void reson_print_tree(reson_susp_type susp, int n) { indent(n); stdputstr("s:"); sound_print_tree_1(susp->s, n); } sound_type snd_make_reson(sound_type s, double hz, double bw, int normalization) { register reson_susp_type susp; rate_type sr = s->sr; time_type t0 = s->t0; int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; falloc_generic(susp, reson_susp_node, "snd_make_reson"); susp->c3 = exp(bw * -PI2 / s->sr); susp->c3p1 = susp->c3 + 1.0; susp->c3t4 = susp->c3 * 4.0; susp->omc3 = 1.0 - susp->c3; susp->c2 = susp->c3t4 * cos(hz * PI2 / s->sr) / susp->c3p1; susp->c1 = (normalization == 0 ? 1.0 : (normalization == 1 ? susp->omc3 * sqrt(1.0 - susp->c2 * susp->c2 / susp->c3t4) : sqrt(susp->c3p1 * susp->c3p1 - susp->c2 * susp->c2) * susp->omc3 / susp->c3p1)); susp->y1 = 0.0; susp->y2 = 0.0; /* select a susp fn based on sample rates */ interp_desc = (interp_desc << 2) + interp_style(s, sr); switch (interp_desc) { case INTERP_n: susp->susp.fetch = reson_n_fetch; break; case INTERP_s: susp->susp.fetch = reson_s_fetch; break; default: snd_badsr(); break; } susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < s->t0) sound_prepend_zeros(s, t0); /* minimum start time over all inputs: */ t0_min = min(s->t0, t0); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = reson_toss_fetch; } /* initialize susp state */ susp->susp.free = reson_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = reson_mark; susp->susp.print_tree = reson_print_tree; susp->susp.name = "reson"; susp->logically_stopped = false; susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s); susp->susp.current = 0; susp->s = s; susp->s_cnt = 0; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_reson(sound_type s, double hz, double bw, int normalization) { sound_type s_copy = sound_copy(s); return snd_make_reson(s_copy, hz, bw, normalization); }