summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRuben Undheim <ruben.undheim@gmail.com>2019-02-10 08:20:54 +0000
committerRuben Undheim <ruben.undheim@gmail.com>2019-02-10 08:20:54 +0000
commitffda26309128be5d112df61a03e4827e47ecfac8 (patch)
tree7552a0f13b6873dbf98c41b84cb81bac0f220ca7
parent086965becc2a02254e3441a1d97b61ccab2d66ea (diff)
Import GIT HEAD of openEMS sub-project (with Python interface)
-rw-r--r--openEMS/CMakeLists.txt10
-rw-r--r--openEMS/Common/engine_interface_base.h4
-rw-r--r--openEMS/Common/processfields.cpp66
-rw-r--r--openEMS/Common/processfields.h4
-rw-r--r--openEMS/Common/processmodematch.cpp2
-rw-r--r--openEMS/FDTD/engine_interface_fdtd.cpp46
-rw-r--r--openEMS/FDTD/engine_interface_fdtd.h11
-rw-r--r--openEMS/FDTD/engine_multithread.cpp3
-rw-r--r--openEMS/FDTD/engine_sse.cpp3
-rw-r--r--openEMS/FDTD/excitation.cpp10
-rw-r--r--openEMS/FDTD/excitation.h10
-rw-r--r--openEMS/FDTD/extensions/operator_ext_lorentzmaterial.cpp6
-rw-r--r--openEMS/FDTD/extensions/operator_ext_tfsf.cpp2
-rw-r--r--openEMS/FDTD/operator.cpp6
-rw-r--r--openEMS/FDTD/operator_sse.cpp6
-rw-r--r--openEMS/FDTD/operator_sse.h2
-rw-r--r--openEMS/FDTD/operator_sse_compressed.cpp12
-rw-r--r--openEMS/FDTD/operator_sse_compressed.h2
-rw-r--r--openEMS/matlab/DelayFidelity.m9
-rw-r--r--openEMS/matlab/RunOpenEMS.m6
-rw-r--r--openEMS/matlab/plotRefl.m19
-rw-r--r--openEMS/matlab/setup.m8
-rw-r--r--openEMS/nf2ff/nf2ff_calc.cpp14
-rw-r--r--openEMS/openems.cpp22
-rw-r--r--openEMS/openems.h4
-rw-r--r--openEMS/python/README.md14
-rw-r--r--openEMS/python/Tutorials/Bent_Patch_Antenna.py198
-rw-r--r--openEMS/python/Tutorials/CRLH_Extraction.py239
-rw-r--r--openEMS/python/Tutorials/Helical_Antenna.py191
-rw-r--r--openEMS/python/Tutorials/MSL_NotchFilter.py123
-rw-r--r--openEMS/python/Tutorials/RCS_Sphere.py126
-rw-r--r--openEMS/python/Tutorials/Rect_Waveguide.py125
-rw-r--r--openEMS/python/Tutorials/Simple_Patch_Antenna.py151
-rw-r--r--openEMS/python/doc/Tutorials/Antenna_Tutorials.rst9
-rw-r--r--openEMS/python/doc/Tutorials/Bent_Patch_Antenna.rst35
-rw-r--r--openEMS/python/doc/Tutorials/CRLH_Extraction.rst40
-rw-r--r--openEMS/python/doc/Tutorials/Helical_Antenna.rst32
-rw-r--r--openEMS/python/doc/Tutorials/Intro_Tutorials.rst10
-rw-r--r--openEMS/python/doc/Tutorials/MSL_NotchFilter.rst27
-rw-r--r--openEMS/python/doc/Tutorials/MicroWave_Tutorials.rst10
-rw-r--r--openEMS/python/doc/Tutorials/RCS_Sphere.rst32
-rw-r--r--openEMS/python/doc/Tutorials/Rect_Waveguide.rst27
-rw-r--r--openEMS/python/doc/Tutorials/Simple_Patch_Antenna.rst42
-rw-r--r--openEMS/python/doc/Tutorials/images/Bent_Patch.pngbin0 -> 353961 bytes
-rw-r--r--openEMS/python/doc/Tutorials/images/Bent_Patch_Pattern.pngbin0 -> 128101 bytes
-rw-r--r--openEMS/python/doc/Tutorials/images/Bent_Patch_SPara.pngbin0 -> 44995 bytes
-rw-r--r--openEMS/python/doc/Tutorials/images/CRLH_Spara.pngbin0 -> 43439 bytes
-rw-r--r--openEMS/python/doc/Tutorials/images/CRLH_cell.pngbin0 -> 160686 bytes
-rw-r--r--openEMS/python/doc/Tutorials/images/CRLH_dispersion.pngbin0 -> 58633 bytes
-rw-r--r--openEMS/python/doc/Tutorials/images/Helix_Ant.pngbin0 -> 311208 bytes
-rw-r--r--openEMS/python/doc/Tutorials/images/Helix_Ant_Pattern.pngbin0 -> 63799 bytes
-rw-r--r--openEMS/python/doc/Tutorials/images/Notch_Filter_SPara.pngbin0 -> 49022 bytes
-rw-r--r--openEMS/python/doc/Tutorials/images/RCS_norm.pngbin0 -> 43421 bytes
-rw-r--r--openEMS/python/doc/Tutorials/images/RCS_pattern.pngbin0 -> 61739 bytes
-rw-r--r--openEMS/python/doc/Tutorials/images/Rect_WG_SPara.pngbin0 -> 28698 bytes
-rw-r--r--openEMS/python/doc/Tutorials/images/Simp_Patch_Pattern.pngbin0 -> 53846 bytes
-rw-r--r--openEMS/python/doc/Tutorials/images/Simp_Patch_S11.pngbin0 -> 28926 bytes
-rw-r--r--openEMS/python/doc/Tutorials/images/Simp_Patch_Zin.pngbin0 -> 39892 bytes
-rw-r--r--openEMS/python/doc/Tutorials/index.rst12
-rw-r--r--openEMS/python/doc/conf.py297
-rwxr-xr-xopenEMS/python/doc/convert_tutorials.py63
-rw-r--r--openEMS/python/doc/index.rst24
-rw-r--r--openEMS/python/doc/nf2ff.rst16
-rw-r--r--openEMS/python/doc/openEMS.rst8
-rw-r--r--openEMS/python/doc/openEMS_API.rst11
-rw-r--r--openEMS/python/doc/ports.rst37
-rw-r--r--openEMS/python/openEMS/__init__.py4
-rw-r--r--openEMS/python/openEMS/_nf2ff.pxd49
-rw-r--r--openEMS/python/openEMS/_nf2ff.pyx59
-rw-r--r--openEMS/python/openEMS/automesh.py77
-rw-r--r--openEMS/python/openEMS/nf2ff.py210
-rw-r--r--openEMS/python/openEMS/openEMS.pxd65
-rw-r--r--openEMS/python/openEMS/openEMS.pyx447
-rw-r--r--openEMS/python/openEMS/physical_constants.py26
-rw-r--r--openEMS/python/openEMS/ports.py433
-rw-r--r--openEMS/python/openEMS/utilities.py66
-rw-r--r--openEMS/python/setup.py47
-rw-r--r--openEMS/tools/sar_calculation.cpp2
78 files changed, 3599 insertions, 72 deletions
diff --git a/openEMS/CMakeLists.txt b/openEMS/CMakeLists.txt
index 898f280..3325abb 100644
--- a/openEMS/CMakeLists.txt
+++ b/openEMS/CMakeLists.txt
@@ -122,15 +122,7 @@ find_package(Boost 1.46 COMPONENTS
)
# vtk
-if (WIN32)
- find_package(VTK 6.1 REQUIRED)
-else()
- # prefer >=6.1, fallback to >=5.4
- find_package(VTK 6.1 COMPONENTS vtkIOXML vtkIOGeometry vtkIOLegacy vtkIOPLY NO_MODULE)
- IF (NOT ${VTK_FOUND})
- find_package(VTK REQUIRED)
- endif()
-endif()
+find_package(VTK COMPONENTS vtkIOXML vtkIOGeometry vtkIOLegacy vtkIOPLY NO_MODULE REQUIRED)
message(STATUS "Found package VTK. Using version " ${VTK_VERSION})
if("${VTK_MAJOR_VERSION}" GREATER 5)
diff --git a/openEMS/Common/engine_interface_base.h b/openEMS/Common/engine_interface_base.h
index 6ce466b..15be488 100644
--- a/openEMS/Common/engine_interface_base.h
+++ b/openEMS/Common/engine_interface_base.h
@@ -56,6 +56,10 @@ public:
virtual double* GetJField(const unsigned int* pos, double* out) const =0;
//! Get the total current density field by rot(H) at \p pos. \sa SetInterpolationType
virtual double* GetRotHField(const unsigned int* pos, double* out) const =0;
+ //! Get the (interpolated) electric flux density field at \p pos. \sa SetInterpolationType
+ virtual double* GetDField(const unsigned int* pos, double* out) const =0;
+ //! Get the (interpolated) magnetic flux density field at \p pos. \sa SetInterpolationType
+ virtual double* GetBField(const unsigned int* pos, double* out) const =0;
//! Calculate the electric field integral along a given line
virtual double CalcVoltageIntegral(const unsigned int* start, const unsigned int* stop) const =0;
diff --git a/openEMS/Common/processfields.cpp b/openEMS/Common/processfields.cpp
index f52fc14..b486c32 100644
--- a/openEMS/Common/processfields.cpp
+++ b/openEMS/Common/processfields.cpp
@@ -71,6 +71,10 @@ string ProcessFields::GetFieldNameByType(DumpType type)
return "J-Field";
case ROTH_FIELD_DUMP:
return "RotH-Field";
+ case D_FIELD_DUMP:
+ return "D-Field";
+ case B_FIELD_DUMP:
+ return "B-Field";
case SAR_LOCAL_DUMP:
return "SAR-local";
case SAR_1G_DUMP:
@@ -95,6 +99,30 @@ bool ProcessFields::NeedConductivity() const
return false;
}
+bool ProcessFields::NeedPermittivity() const
+{
+ switch (m_DumpType)
+ {
+ case D_FIELD_DUMP:
+ return true;
+ default:
+ return false;
+ }
+ return false;
+}
+
+bool ProcessFields::NeedPermeability() const
+{
+ switch (m_DumpType)
+ {
+ case B_FIELD_DUMP:
+ return true;
+ default:
+ return false;
+ }
+ return false;
+}
+
void ProcessFields::InitProcess()
{
if (Enabled==false) return;
@@ -333,6 +361,44 @@ FDTD_FLOAT**** ProcessFields::CalcField()
}
}
return field;
+ case D_FIELD_DUMP:
+ for (unsigned int i=0; i<numLines[0]; ++i)
+ {
+ pos[0]=posLines[0][i];
+ for (unsigned int j=0; j<numLines[1]; ++j)
+ {
+ pos[1]=posLines[1][j];
+ for (unsigned int k=0; k<numLines[2]; ++k)
+ {
+ pos[2]=posLines[2][k];
+
+ m_Eng_Interface->GetDField(pos,out);
+ field[0][i][j][k] = out[0];
+ field[1][i][j][k] = out[1];
+ field[2][i][j][k] = out[2];
+ }
+ }
+ }
+ return field;
+ case B_FIELD_DUMP:
+ for (unsigned int i=0; i<numLines[0]; ++i)
+ {
+ pos[0]=posLines[0][i];
+ for (unsigned int j=0; j<numLines[1]; ++j)
+ {
+ pos[1]=posLines[1][j];
+ for (unsigned int k=0; k<numLines[2]; ++k)
+ {
+ pos[2]=posLines[2][k];
+
+ m_Eng_Interface->GetBField(pos,out);
+ field[0][i][j][k] = out[0];
+ field[1][i][j][k] = out[1];
+ field[2][i][j][k] = out[2];
+ }
+ }
+ }
+ return field;
default:
cerr << "ProcessFields::CalcField(): Error, unknown dump type..." << endl;
return field;
diff --git a/openEMS/Common/processfields.h b/openEMS/Common/processfields.h
index 3d4085b..d954484 100644
--- a/openEMS/Common/processfields.h
+++ b/openEMS/Common/processfields.h
@@ -40,7 +40,7 @@ public:
Current dump types are electric field (E_FIELD_DUMP), magnetic field (H_FIELD_DUMP),
(conduction) electric current density (kappa*E) (J_FIELD_DUMP) and total current density (rotH)
*/
- enum DumpType { E_FIELD_DUMP=0, H_FIELD_DUMP=1, J_FIELD_DUMP=2, ROTH_FIELD_DUMP=3, SAR_LOCAL_DUMP=20, SAR_1G_DUMP=21, SAR_10G_DUMP=22, SAR_RAW_DATA=29};
+ enum DumpType { E_FIELD_DUMP=0, H_FIELD_DUMP=1, J_FIELD_DUMP=2, ROTH_FIELD_DUMP=3, D_FIELD_DUMP=4, B_FIELD_DUMP=5, SAR_LOCAL_DUMP=20, SAR_1G_DUMP=21, SAR_10G_DUMP=22, SAR_RAW_DATA=29};
virtual std::string GetProcessingName() const {return "common field processing";}
@@ -75,6 +75,8 @@ public:
static std::string GetFieldNameByType(DumpType type);
virtual bool NeedConductivity() const;
+ virtual bool NeedPermittivity() const;
+ virtual bool NeedPermeability() const;
protected:
DumpType m_DumpType;
diff --git a/openEMS/Common/processmodematch.cpp b/openEMS/Common/processmodematch.cpp
index 620257d..85d2d58 100644
--- a/openEMS/Common/processmodematch.cpp
+++ b/openEMS/Common/processmodematch.cpp
@@ -174,7 +174,7 @@ void ProcessModeMatch::InitProcess()
for (int n=0; n<2; ++n)
{
m_ModeDist[n][posP][posPP] = m_ModeParser[n]->Eval(var); //calc mode template
- if ((isnan(m_ModeDist[n][posP][posPP])) || (isinf(m_ModeDist[n][posP][posPP])))
+ if ((std::isnan(m_ModeDist[n][posP][posPP])) || (std::isinf(m_ModeDist[n][posP][posPP])))
m_ModeDist[n][posP][posPP] = 0.0;
norm += pow(m_ModeDist[n][posP][posPP],2) * area;
}
diff --git a/openEMS/FDTD/engine_interface_fdtd.cpp b/openEMS/FDTD/engine_interface_fdtd.cpp
index b8fd9de..b5155fb 100644
--- a/openEMS/FDTD/engine_interface_fdtd.cpp
+++ b/openEMS/FDTD/engine_interface_fdtd.cpp
@@ -47,6 +47,11 @@ double* Engine_Interface_FDTD::GetJField(const unsigned int* pos, double* out) c
return GetRawInterpolatedField(pos, out, 1);
}
+double* Engine_Interface_FDTD::GetDField(const unsigned int* pos, double* out) const
+{
+ return GetRawInterpolatedField(pos, out, 3);
+}
+
double* Engine_Interface_FDTD::GetRotHField(const unsigned int* pos, double* out) const
{
return GetRawInterpolatedField(pos, out, 2);
@@ -117,6 +122,27 @@ double* Engine_Interface_FDTD::GetRawInterpolatedField(const unsigned int* pos,
double* Engine_Interface_FDTD::GetHField(const unsigned int* pos, double* out) const
{
+ return GetRawInterpolatedDualField(pos, out, 0);
+}
+
+double* Engine_Interface_FDTD::GetBField(const unsigned int* pos, double* out) const
+{
+ return GetRawInterpolatedDualField(pos, out, 1);
+}
+
+double Engine_Interface_FDTD::GetRawDualField(unsigned int n, const unsigned int* pos, int type) const
+{
+ double value = m_Eng->GetCurr(n,pos[0],pos[1],pos[2]);
+ double delta = m_Op->GetEdgeLength(n,pos,true);
+ if ((type==0) && (delta))
+ return value/delta;
+ if ((type==1) && (m_Op->m_mueR) && (delta))
+ return value*m_Op->m_mueR[n][pos[0]][pos[1]][pos[2]]/delta;
+ return 0.0;
+}
+
+double* Engine_Interface_FDTD::GetRawInterpolatedDualField(const unsigned int* pos, double* out, int type) const
+{
unsigned int iPos[] = {pos[0],pos[1],pos[2]};
int nP,nPP;
double delta;
@@ -124,9 +150,9 @@ double* Engine_Interface_FDTD::GetHField(const unsigned int* pos, double* out) c
{
default:
case NO_INTERPOLATION:
- out[0] = m_Eng->GetCurr(0,pos) / m_Op->GetEdgeLength(0,pos,true);
- out[1] = m_Eng->GetCurr(1,pos) / m_Op->GetEdgeLength(1,pos,true);
- out[2] = m_Eng->GetCurr(2,pos) / m_Op->GetEdgeLength(2,pos,true);
+ out[0] = GetRawDualField(0, pos, type);
+ out[1] = GetRawDualField(1, pos, type);
+ out[2] = GetRawDualField(2, pos, type);
break;
case NODE_INTERPOLATE:
for (int n=0; n<3; ++n)
@@ -138,13 +164,13 @@ double* Engine_Interface_FDTD::GetHField(const unsigned int* pos, double* out) c
out[n] = 0;
continue;
}
- out[n]=m_Eng->GetCurr(n,iPos)/m_Op->GetEdgeLength(n,iPos,true);
+ out[n] = GetRawDualField(n, iPos, type);
--iPos[nP];
- out[n]+=m_Eng->GetCurr(n,iPos)/m_Op->GetEdgeLength(n,iPos,true);
+ out[n]+= GetRawDualField(n, iPos, type);
--iPos[nPP];
- out[n]+=m_Eng->GetCurr(n,iPos)/m_Op->GetEdgeLength(n,iPos,true);
+ out[n]+= GetRawDualField(n, iPos, type);
++iPos[nP];
- out[n]+=m_Eng->GetCurr(n,iPos)/m_Op->GetEdgeLength(n,iPos,true);
+ out[n]+= GetRawDualField(n, iPos, type);
++iPos[nPP];
out[n]/=4;
}
@@ -153,7 +179,7 @@ double* Engine_Interface_FDTD::GetHField(const unsigned int* pos, double* out) c
for (int n=0; n<3; ++n)
{
delta = m_Op->GetEdgeLength(n,iPos,true);
- out[n] = m_Eng->GetCurr(n,iPos);
+ out[n] = GetRawDualField(n, iPos, type);
if ((pos[n]>=m_Op->GetNumberOfLines(n,true)-1))
{
out[n] = 0; //magnetic field on the outer boundaries is always zero
@@ -162,7 +188,7 @@ double* Engine_Interface_FDTD::GetHField(const unsigned int* pos, double* out) c
++iPos[n];
double deltaUp = m_Op->GetEdgeLength(n,iPos,true);
double deltaRel = delta / (delta+deltaUp);
- out[n] = out[n]*(1.0-deltaRel)/delta + (double)m_Eng->GetCurr(n,iPos)/deltaUp*deltaRel;
+ out[n] = out[n]*(1.0-deltaRel) + (double)GetRawDualField(n, iPos, type)*deltaRel;
--iPos[n];
}
break;
@@ -201,6 +227,8 @@ double Engine_Interface_FDTD::GetRawField(unsigned int n, const unsigned int* po
return value/delta;
if ((type==1) && (m_Op->m_kappa) && (delta))
return value*m_Op->m_kappa[n][pos[0]][pos[1]][pos[2]]/delta;
+ if ((type==3) && (m_Op->m_epsR) && (delta))
+ return value*m_Op->m_epsR[n][pos[0]][pos[1]][pos[2]]/delta;
if (type==2) //calc rot(H)
{
int nP = (n+1)%3;
diff --git a/openEMS/FDTD/engine_interface_fdtd.h b/openEMS/FDTD/engine_interface_fdtd.h
index 4e824ac..83281be 100644
--- a/openEMS/FDTD/engine_interface_fdtd.h
+++ b/openEMS/FDTD/engine_interface_fdtd.h
@@ -44,6 +44,8 @@ public:
virtual double* GetHField(const unsigned int* pos, double* out) const;
virtual double* GetJField(const unsigned int* pos, double* out) const;
virtual double* GetRotHField(const unsigned int* pos, double* out) const;
+ virtual double* GetDField(const unsigned int* pos, double* out) const;
+ virtual double* GetBField(const unsigned int* pos, double* out) const;
virtual double CalcVoltageIntegral(const unsigned int* start, const unsigned int* stop) const;
@@ -56,10 +58,15 @@ protected:
Operator* m_Op;
Engine* m_Eng;
- //! Internal method to get an interpolated field of a given type. (0: E, 1: J, 2: rotH)
+ //! Internal method to get an interpolated field of a given type. (0: E, 1: J, 2: rotH, 3: D)
virtual double* GetRawInterpolatedField(const unsigned int* pos, double* out, int type) const;
- //! Internal method to get a raw field of a given type. (0: E, 1: J, 2: rotH)
+ //! Internal method to get a raw field of a given type. (0: E, 1: J, 2: rotH, 3: D)
virtual double GetRawField(unsigned int n, const unsigned int* pos, int type) const;
+
+ //! Internal method to get an interpolated dual field of a given type. (0: H, 1: B)
+ virtual double* GetRawInterpolatedDualField(const unsigned int* pos, double* out, int type) const;
+ //! Internal method to get a raw dual field of a given type. (0: H, 1: B)
+ virtual double GetRawDualField(unsigned int n, const unsigned int* pos, int type) const;
};
#endif // ENGINE_INTERFACE_FDTD_H
diff --git a/openEMS/FDTD/engine_multithread.cpp b/openEMS/FDTD/engine_multithread.cpp
index 7370198..7ebe0d7 100644
--- a/openEMS/FDTD/engine_multithread.cpp
+++ b/openEMS/FDTD/engine_multithread.cpp
@@ -32,7 +32,10 @@
#include "boost/date_time/posix_time/posix_time.hpp"
#include "boost/date_time/gregorian/gregorian.hpp"
#include <iomanip>
+
+#ifndef SSE_CORRECT_DENORMALS
#include <xmmintrin.h>
+#endif
//! \brief construct an Engine_Multithread instance
//! it's the responsibility of the caller to free the returned pointer
diff --git a/openEMS/FDTD/engine_sse.cpp b/openEMS/FDTD/engine_sse.cpp
index 660e6d6..2e06685 100644
--- a/openEMS/FDTD/engine_sse.cpp
+++ b/openEMS/FDTD/engine_sse.cpp
@@ -15,7 +15,10 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
+#ifndef SSE_CORRECT_DENORMALS
#include <xmmintrin.h>
+#endif
+
#include "engine_sse.h"
//! \brief construct an Engine_sse instance
diff --git a/openEMS/FDTD/excitation.cpp b/openEMS/FDTD/excitation.cpp
index 4e1ba85..b750c91 100644
--- a/openEMS/FDTD/excitation.cpp
+++ b/openEMS/FDTD/excitation.cpp
@@ -53,7 +53,7 @@ void Excitation::Reset( double timestep )
m_foi = 0;
}
-bool Excitation::SetupGaussianPulse(double f0, double fc)
+void Excitation::SetupGaussianPulse(double f0, double fc)
{
m_Excit_Type = Excitation::GaissianPulse;
m_f0 = f0;
@@ -62,7 +62,7 @@ bool Excitation::SetupGaussianPulse(double f0, double fc)
m_SignalPeriod = 0;
}
-bool Excitation::SetupSinusoidal(double f0)
+void Excitation::SetupSinusoidal(double f0)
{
m_Excit_Type = Excitation::Sinusoidal;
m_f0 = f0;
@@ -70,21 +70,21 @@ bool Excitation::SetupSinusoidal(double f0)
m_SignalPeriod = 1/f0;
}
-bool Excitation::SetupDiracPulse(double fmax)
+void Excitation::SetupDiracPulse(double fmax)
{
m_Excit_Type = Excitation::DiracPulse;
m_SignalPeriod = 0;
m_f_max = fmax;
}
-bool Excitation::SetupStepExcite(double fmax)
+void Excitation::SetupStepExcite(double fmax)
{
m_Excit_Type = Excitation::Step;
m_SignalPeriod = 0;
m_f_max = fmax;
}
-bool Excitation::SetupCustomExcite(string str, double f0, double fmax)
+void Excitation::SetupCustomExcite(string str, double f0, double fmax)
{
m_Excit_Type = Excitation::CustomExcite;
m_CustomExc_Str = str;
diff --git a/openEMS/FDTD/excitation.h b/openEMS/FDTD/excitation.h
index 8ae3a5b..b43ad28 100644
--- a/openEMS/FDTD/excitation.h
+++ b/openEMS/FDTD/excitation.h
@@ -31,11 +31,11 @@ public:
virtual void Reset( double timestep );
- bool SetupGaussianPulse(double f0, double fc);
- bool SetupSinusoidal(double f0);
- bool SetupDiracPulse(double fmax);
- bool SetupStepExcite(double fmax);
- bool SetupCustomExcite(std::string str, double f0, double fmax);
+ void SetupGaussianPulse(double f0, double fc);
+ void SetupSinusoidal(double f0);
+ void SetupDiracPulse(double fmax);
+ void SetupStepExcite(double fmax);
+ void SetupCustomExcite(std::string str, double f0, double fmax);
double GetCenterFreq() {return m_f0;}
double GetCutOffFreq() {return m_fc;}
diff --git a/openEMS/FDTD/extensions/operator_ext_lorentzmaterial.cpp b/openEMS/FDTD/extensions/operator_ext_lorentzmaterial.cpp
index 9f386fc..21ad184 100644
--- a/openEMS/FDTD/extensions/operator_ext_lorentzmaterial.cpp
+++ b/openEMS/FDTD/extensions/operator_ext_lorentzmaterial.cpp
@@ -225,6 +225,9 @@ bool Operator_Ext_LorentzMaterial::BuildExtension()
// CSProperties* prop = m_Op->GetGeometryCSX()->GetPropertyByCoordPriority(coord,(CSProperties::PropertyType)(CSProperties::METAL | CSProperties::MATERIAL), true);
CSProperties* prop = m_Op->GetGeometryCSX()->GetPropertyByCoordPriority(coord, vPrims, true);
+
+ if (prop==NULL) continue;
+
if ((mat = prop->ToLorentzMaterial()))
{
w_plasma = mat->GetEpsPlasmaFreqWeighted(order,n,coord) * 2 * PI;
@@ -277,6 +280,9 @@ bool Operator_Ext_LorentzMaterial::BuildExtension()
// CSProperties* prop = m_Op->GetGeometryCSX()->GetPropertyByCoordPriority(coord,(CSProperties::PropertyType)(CSProperties::METAL | CSProperties::MATERIAL), true);
CSProperties* prop = m_Op->GetGeometryCSX()->GetPropertyByCoordPriority(coord, vPrims, true);
+
+ if (prop==NULL) continue;
+
if ((mat = prop->ToLorentzMaterial()))
{
w_plasma = mat->GetMuePlasmaFreqWeighted(order,n,coord) * 2 * PI;
diff --git a/openEMS/FDTD/extensions/operator_ext_tfsf.cpp b/openEMS/FDTD/extensions/operator_ext_tfsf.cpp
index 663dc1f..62fd580 100644
--- a/openEMS/FDTD/extensions/operator_ext_tfsf.cpp
+++ b/openEMS/FDTD/extensions/operator_ext_tfsf.cpp
@@ -159,7 +159,7 @@ bool Operator_Ext_TFSF::BuildExtension()
else
m_PhVel=m_Op->CalcNumericPhaseVelocity(m_Start,m_Stop,m_PropDir,m_Frequency);
- if ((m_PhVel<0) || (m_PhVel>__C0__/ref_index) || isnan(m_PhVel))
+ if ((m_PhVel<0) || (m_PhVel>__C0__/ref_index) || std::isnan(m_PhVel))
{
cerr << "Operator_Ext_TFSF::BuildExtension: Warning, invalid phase velocity found, resetting to c0! " << endl;
m_PhVel = __C0__/ref_index;
diff --git a/openEMS/FDTD/operator.cpp b/openEMS/FDTD/operator.cpp
index a7582aa..259b1fb 100644
--- a/openEMS/FDTD/operator.cpp
+++ b/openEMS/FDTD/operator.cpp
@@ -1395,7 +1395,7 @@ bool Operator::AverageMatCellCenter(int ny, const unsigned int* pos, double* Eff
if (EffMat[3]) EffMat[3]=length / EffMat[3];
for (int n=0; n<4; ++n)
- if (isnan(EffMat[n]) || isinf(EffMat[n]))
+ if (std::isnan(EffMat[n]) || std::isinf(EffMat[n]))
{
cerr << "Operator::" << __func__ << ": Error, an effective material parameter is not a valid result, this should NOT have happend... exit..." << endl;
cerr << ny << "@" << n << " : " << pos[0] << "," << pos[1] << "," << pos[2] << endl;
@@ -1508,7 +1508,7 @@ bool Operator::AverageMatQuarterCell(int ny, const unsigned int* pos, double* Ef
if (EffMat[3]) EffMat[3]=length / EffMat[3];
for (int n=0; n<4; ++n)
- if (isnan(EffMat[n]) || isinf(EffMat[n]))
+ if (std::isnan(EffMat[n]) || std::isinf(EffMat[n]))
{
cerr << "Operator::" << __func__ << ": Error, An effective material parameter is not a valid result, this should NOT have happend... exit..." << endl;
cerr << ny << "@" << n << " : " << pos[0] << "," << pos[1] << "," << pos[2] << endl;
@@ -1555,7 +1555,7 @@ bool Operator::Calc_LumpedElements()
if (R<0)
R = NAN;
- if ((isnan(R)) && (isnan(C)))
+ if ((std::isnan(R)) && (std::isnan(C)))
{
cerr << "Operator::Calc_LumpedElements(): Warning: Lumped Element R or C not specified! skipping. "
<< " ID: " << prims.at(bn)->GetID() << " @ Property: " << PLE->GetName() << endl;
diff --git a/openEMS/FDTD/operator_sse.cpp b/openEMS/FDTD/operator_sse.cpp
index 8a1b21b..214bf3a 100644
--- a/openEMS/FDTD/operator_sse.cpp
+++ b/openEMS/FDTD/operator_sse.cpp
@@ -41,11 +41,11 @@ Operator_sse::~Operator_sse()
Delete();
}
-Engine* Operator_sse::CreateEngine() const
+Engine* Operator_sse::CreateEngine()
{
//! create a special sse-engine
- Engine_sse* eng = Engine_sse::New(this);
- return eng;
+ m_Engine = Engine_sse::New(this);
+ return m_Engine;
}
void Operator_sse::Init()
diff --git a/openEMS/FDTD/operator_sse.h b/openEMS/FDTD/operator_sse.h
index 317ea72..c0a698a 100644
--- a/openEMS/FDTD/operator_sse.h
+++ b/openEMS/FDTD/operator_sse.h
@@ -29,7 +29,7 @@ public:
static Operator_sse* New();
virtual ~Operator_sse();
- virtual Engine* CreateEngine() const;
+ virtual Engine* CreateEngine();
inline virtual FDTD_FLOAT GetVV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return f4_vv[n][x][y][z%numVectors].f[z/numVectors]; }
inline virtual FDTD_FLOAT GetVI( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return f4_vi[n][x][y][z%numVectors].f[z/numVectors]; }
diff --git a/openEMS/FDTD/operator_sse_compressed.cpp b/openEMS/FDTD/operator_sse_compressed.cpp
index 5214892..ce3e8e3 100644
--- a/openEMS/FDTD/operator_sse_compressed.cpp
+++ b/openEMS/FDTD/operator_sse_compressed.cpp
@@ -42,16 +42,14 @@ Operator_SSE_Compressed::~Operator_SSE_Compressed()
Delete();
}
-Engine* Operator_SSE_Compressed::CreateEngine() const
+Engine* Operator_SSE_Compressed::CreateEngine()
{
if (!m_Use_Compression)
- {
//! create a default sse-engine
- Engine_sse* eng = Engine_sse::New(this);
- return eng;
- }
- Engine_SSE_Compressed* eng = Engine_SSE_Compressed::New(this);
- return eng;
+ m_Engine = Engine_sse::New(this);
+ else
+ m_Engine = Engine_SSE_Compressed::New(this);
+ return m_Engine;
}
int Operator_SSE_Compressed::CalcECOperator( DebugFlags debugFlags )
diff --git a/openEMS/FDTD/operator_sse_compressed.h b/openEMS/FDTD/operator_sse_compressed.h
index 5d3454f..f9b12a2 100644
--- a/openEMS/FDTD/operator_sse_compressed.h
+++ b/openEMS/FDTD/operator_sse_compressed.h
@@ -43,7 +43,7 @@ public:
static Operator_SSE_Compressed* New();
virtual ~Operator_SSE_Compressed();
- virtual Engine* CreateEngine() const;
+ virtual Engine* CreateEngine();
inline virtual FDTD_FLOAT GetVV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { if (m_Use_Compression) return f4_vv_Compressed[n][m_Op_index[x][y][z%numVectors]].f[z/numVectors]; else return Operator_sse::GetVV(n,x,y,z);}
inline virtual FDTD_FLOAT GetVI( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { if (m_Use_Compression) return f4_vi_Compressed[n][m_Op_index[x][y][z%numVectors]].f[z/numVectors]; else return Operator_sse::GetVI(n,x,y,z);}
diff --git a/openEMS/matlab/DelayFidelity.m b/openEMS/matlab/DelayFidelity.m
index 3cc0ae2..48d5975 100644
--- a/openEMS/matlab/DelayFidelity.m
+++ b/openEMS/matlab/DelayFidelity.m
@@ -1,5 +1,5 @@
function [delay, fidelity, nf2ff_out] = DelayFidelity(nf2ff, port, path, weight_theta, weight_phi, theta, phi, f_0, f_c, varargin)
-% [delay, fidelity] = DelayFidelity(nf2ff, port, path, theta, phi, f_lo, f_hi, varargin)
+% [delay, fidelity] = DelayFidelity(nf2ff, port, path, weight_theta, weight_phi, theta, phi, f_lo, f_hi, varargin)
%
%
% This function calculates the time delay from the source port to the phase center of the antenna and the fidelity.
@@ -11,8 +11,8 @@ function [delay, fidelity, nf2ff_out] = DelayFidelity(nf2ff, port, path, weight_
% nf2ff: return value of CreateNF2FFBox.
% port: return value of AddLumpedPort
% path: path of the simulation results.
-% weight_theta: weight if the E_theta component
-% weight_phi: eight of the E_phi component
+% weight_theta: weight of the E_theta component
+% weight_phi: weight of the E_phi component
% -> with both (possibly complex) parameters any polarization can be examined
% theta: theta values to be simulated
% phi: phi values to be simulated
@@ -27,7 +27,8 @@ function [delay, fidelity, nf2ff_out] = DelayFidelity(nf2ff, port, path, weight_
% example:
% theta = [-180:10:180] * pi / 180;
% phi = [0, 90] * pi / 180;
-% [delay, fidelity] = DelayFidelity2(nf2ff, port, Sim_Path, sin(tilt), cos(tilt), theta, phi, f_0, f_c, 'Mode', 1);
+% % use circular right handed polarization
+% [delay, fidelity] = DelayFidelity2(nf2ff, port, Sim_Path, -1i, 1, theta, phi, f_0, f_c, 'Mode', 1);
% figure
% polar(theta.', delay(:,1) * 3e11); % delay in mm
% figure
diff --git a/openEMS/matlab/RunOpenEMS.m b/openEMS/matlab/RunOpenEMS.m
index 3894adc..21a9876 100644
--- a/openEMS/matlab/RunOpenEMS.m
+++ b/openEMS/matlab/RunOpenEMS.m
@@ -170,11 +170,11 @@ if (enable_ssh)
warning('openEMS:RunOpenEMS','remote cleanup failed!');
end
else
- args = [Sim_File ' ' opts];
+ args = ['"' Sim_File '" ' opts]
if isfield(Settings,'LogFile') && isfield(Settings,'Silent')
- invoke_openEMS(args,Settings.LogFile,Settings.Silent);
+ invoke_openEMS(args,['"' Settings.LogFile '"'],Settings.Silent);
elseif isfield(Settings,'LogFile')
- invoke_openEMS(args,Settings.LogFile);
+ invoke_openEMS(args,['"' Settings.LogFile '"']);
elseif isfield(Settings,'Silent')
invoke_openEMS(args,[],Settings.Silent);
else
diff --git a/openEMS/matlab/plotRefl.m b/openEMS/matlab/plotRefl.m
index 5f88631..441c336 100644
--- a/openEMS/matlab/plotRefl.m
+++ b/openEMS/matlab/plotRefl.m
@@ -18,9 +18,11 @@ function h = plotRefl(port, varargin)
% for the frequency (always in MHz), default is 0
% 'threshold': - Threshold value (in dB) for the upper and lower
% cutoff frequency, default is -3
+% 'fmarkers': - set lower and upper frequency marker in Hz manually,
+% like so: [4e9, 6.5e9]
% example:
% myport = calcPort(myport, Sim_Path, linspace(f_0-f_c, f_0+f_c, 200));
-% plotRefl(myport);
+% plotRefl(myport, 'fmarkers', [4e9, 6.5e9]);
%
% See also calcPort
%
@@ -31,14 +33,16 @@ function h = plotRefl(port, varargin)
%defaults
precision = 0;
threshold = -3;
-
+fmarkers = [];
for n=1:2:numel(varargin)
if (strcmp(varargin{n},'precision')==1);
precision = varargin{n+1};
elseif (strcmp(varargin{n},'threshold')==1);
threshold = varargin{n+1};
- else
+ elseif (strcmp(varargin{n},'fmarkers')==1);
+ fmarkers = varargin{n+1};
+ else
warning('openEMS:polarFF',['unknown argument key: ''' varargin{n} '''']);
end
end
@@ -111,8 +115,14 @@ text (real (rho), imag (rho), '0');
s11dB = 20*log10(abs(s11));
+if(isempty(fmarkers))
upperind = s11dB(1:end-1) < threshold & s11dB(2:end) > threshold;
lowerind = s11dB(1:end-1) > threshold & s11dB(2:end) < threshold;
+else
+upperind = [nthargout(2, @min, abs(fmarkers(2)-port.f))];
+lowerind = [nthargout(2, @min, abs(fmarkers(1)-port.f))];
+end
+
minind = nthargout(2, @min, s11dB);
handle1 = plot(s11(lowerind),['<','b']);
handle2 = plot(s11(upperind),['>','b']);
@@ -120,6 +130,7 @@ handle3 = plot(s11(minind),['*', 'b']);
llegend = num2str(port.f(lowerind)(1)/1e6, ffmt);
ulegend = num2str(port.f(upperind)(1)/1e6, ffmt);
+
if nnz(lowerind) > 1
for i= 2:nnz(lowerind)
llegend = strjoin({llegend, num2str(port.f(lowerind)(i)/1e6, ffmt)}, ', ');
@@ -142,4 +153,4 @@ if (nargout == 0)
clear h;
end
-end \ No newline at end of file
+end
diff --git a/openEMS/matlab/setup.m b/openEMS/matlab/setup.m
index e208ad4..fc13ded 100644
--- a/openEMS/matlab/setup.m
+++ b/openEMS/matlab/setup.m
@@ -19,14 +19,14 @@ if isOctave()
fflush(stdout);
if isunix
[res, fn_so] = unix('find /usr/lib -name libhdf5.so');
- [res, fn_h] = unix('find /usr/include -name hdf5.h');
+ [res, fn_h] = unix('find /usr/include -name hdf5.h | head -1');
if length(fn_so)>0 && length(fn_h)>0
- [hdf5lib_dir, hdf5lib_fn] = fileparts(fn_so);
+ [hdf5lib_dir, hdf5lib_fn, ext] = fileparts(fn_so);
disp(["HDF5 library path found at: " hdf5lib_dir])
- [hdf5inc_dir, hdf5inc_fn] = fileparts(fn_h);
+ [hdf5inc_dir, hdf5inc_fn, ext] = fileparts(fn_h);
disp(["HDF5 include path found at: " hdf5inc_dir])
- mkoctfile(["-L" hdf5lib_dir " -I" hdf5inc_dir],"-lhdf5", "h5readatt_octave.cc")
+ mkoctfile("h5readatt_octave.cc", ["-L" hdf5lib_dir], ["-I" hdf5inc_dir], "-L hdf5")
else
mkoctfile -lhdf5 h5readatt_octave.cc
end
diff --git a/openEMS/nf2ff/nf2ff_calc.cpp b/openEMS/nf2ff/nf2ff_calc.cpp
index 335dd9a..9c2aa4f 100644
--- a/openEMS/nf2ff/nf2ff_calc.cpp
+++ b/openEMS/nf2ff/nf2ff_calc.cpp
@@ -313,6 +313,10 @@ bool nf2ff_calc::AddPlane(float **lines, unsigned int* numLines, complex<float>*
if ((m_MirrorType[n]!=MIRROR_OFF) && (m_MirrorType[nP]==MIRROR_OFF) && (m_MirrorType[nPP]==MIRROR_OFF))
{
this->AddMirrorPlane(n, lines, numLines, E_field, H_field, MeshType);
+
+ for (unsigned int i=0;i<numLines[n];++i)
+ lines[n][i] = 2.0*m_MirrorPos[n] - lines[n][i];
+
break;
}
//check if two planes are on
@@ -321,6 +325,10 @@ bool nf2ff_calc::AddPlane(float **lines, unsigned int* numLines, complex<float>*
this->AddMirrorPlane(nP, lines, numLines, E_field, H_field, MeshType);
this->AddMirrorPlane(nPP, lines, numLines, E_field, H_field, MeshType);
this->AddMirrorPlane(nP, lines, numLines, E_field, H_field, MeshType);
+
+ for (unsigned int i=0;i<numLines[nPP];++i)
+ lines[nPP][i] = 2.0*m_MirrorPos[nPP] - lines[nPP][i];
+
break;
}
}
@@ -334,6 +342,10 @@ bool nf2ff_calc::AddPlane(float **lines, unsigned int* numLines, complex<float>*
this->AddMirrorPlane(0, lines, numLines, E_field, H_field, MeshType);
this->AddMirrorPlane(1, lines, numLines, E_field, H_field, MeshType);
this->AddMirrorPlane(0, lines, numLines, E_field, H_field, MeshType);
+
+ for (unsigned int i=0;i<numLines[2];++i)
+ lines[2][i] = 2.0*m_MirrorPos[2] - lines[2][i];
+
}
//cleanup E- & H-Fields
@@ -496,7 +508,7 @@ bool nf2ff_calc::AddSinglePlane(float **lines, unsigned int* numLines, complex<f
m_H_theta[tn][pn] += factor*(Np[tn][pn] - Lt[tn][pn]/Z0);
m_H_phi[tn][pn] -= factor*(Nt[tn][pn] + Lp[tn][pn]/Z0);
- m_P_rad[tn][pn] = m_radius*m_radius/(2*fZ0) * abs((m_E_theta[tn][pn]*conj(m_E_theta[tn][pn])+m_E_phi[tn][pn]*conj(m_E_phi[tn][pn])));
+ m_P_rad[tn][pn] = abs((m_E_theta[tn][pn]*conj(m_E_theta[tn][pn])+m_E_phi[tn][pn]*conj(m_E_phi[tn][pn])))/(2*fZ0);
if (m_P_rad[tn][pn]>P_max)
P_max = m_P_rad[tn][pn];
}
diff --git a/openEMS/openems.cpp b/openEMS/openems.cpp
index 1d08ef7..4e32bf8 100644
--- a/openEMS/openems.cpp
+++ b/openEMS/openems.cpp
@@ -182,13 +182,13 @@ bool openEMS::parseCommandLineArgument( const char *argv )
else if (strcmp(argv,"--debug-PEC")==0)
{
cout << "openEMS - dumping PEC info to 'PEC_dump.vtk'" << endl;
- m_debugPEC = true;
+ DebugPEC();
return true;
}
else if (strcmp(argv,"--debug-CSX")==0)
{
cout << "openEMS - dumping CSX geometry to 'debugCSX.xml'" << endl;
- m_debugCSX = true;
+ DebugCSX();
return true;
}
else if (strcmp(argv,"--engine=basic")==0)
@@ -217,7 +217,7 @@ bool openEMS::parseCommandLineArgument( const char *argv )
}
else if (strncmp(argv,"--numThreads=",13)==0)
{
- m_engine_numThreads = atoi(argv+13);
+ this->SetNumberOfThreads(atoi(argv+13));
cout << "openEMS - fixed number of threads: " << m_engine_numThreads << endl;
return true;
}
@@ -284,7 +284,7 @@ void openEMS::WelcomeScreen()
cout << " ---------------------------------------------------------------------- " << endl;
cout << " | openEMS " << bits << " -- version " GIT_VERSION << endl;
- cout << " | (C) 2010-2016 Thorsten Liebig <thorsten.liebig@gmx.de> GPL license" << endl;
+ cout << " | (C) 2010-2018 Thorsten Liebig <thorsten.liebig@gmx.de> GPL license" << endl;
cout << " ---------------------------------------------------------------------- " << endl;
cout << openEMS::GetExtLibsInfo("\t") << endl;
}
@@ -472,9 +472,9 @@ bool openEMS::SetupProcessing()
CSPropDumpBox* db = DumpProps.at(i)->ToDumpBox();
if (db)
{
- if ((db->GetDumpType()>=0) && (db->GetDumpType()<=3))
+ if ((db->GetDumpType()>=0) && (db->GetDumpType()<=5))
ProcField = new ProcessFieldsTD(NewEngineInterface(db->GetMultiGridLevel()));
- else if ((db->GetDumpType()>=10) && (db->GetDumpType()<=13))
+ else if ((db->GetDumpType()>=10) && (db->GetDumpType()<=15))
ProcField = new ProcessFieldsFD(NewEngineInterface(db->GetMultiGridLevel()));
else if ( ((db->GetDumpType()>=20) && (db->GetDumpType()<=22)) || (db->GetDumpType()==29) )
{
@@ -518,8 +518,12 @@ bool openEMS::SetupProcessing()
ProcField->SetDumpType(ProcessFields::SAR_RAW_DATA);
//SetupMaterialStorages() has previewed storage needs... refresh here to prevent cleanup!!!
- if ( ProcField->NeedConductivity() && Enable_Dumps )
+ if ( ProcField->NeedPermittivity() && Enable_Dumps)
+ FDTD_Op->SetMaterialStoreFlags(0,true);
+ if ( ProcField->NeedConductivity() && Enable_Dumps)
FDTD_Op->SetMaterialStoreFlags(1,true);
+ if ( ProcField->NeedPermeability() && Enable_Dumps)
+ FDTD_Op->SetMaterialStoreFlags(2,true);
ProcField->SetDumpMode((Engine_Interface_Base::InterpolationType)db->GetDumpMode());
ProcField->SetFileType((ProcessFields::FileType)db->GetFileType());
@@ -567,6 +571,10 @@ bool openEMS::SetupMaterialStorages()
(db->GetDumpType()==20) || (db->GetDumpType()==21) || (db->GetDumpType()==22)) && // SAR dump types
Enable_Dumps )
FDTD_Op->SetMaterialStoreFlags(1,true); //tell operator to store kappa material data
+ if ( ((db->GetDumpType()==4) || (db->GetDumpType()==14)) || Enable_Dumps) // electric flux density storage
+ FDTD_Op->SetMaterialStoreFlags(0,true); //tell operator to store epsR material data
+ if ( ((db->GetDumpType()==5) || (db->GetDumpType()==15)) || Enable_Dumps) // magnetic flux density storage
+ FDTD_Op->SetMaterialStoreFlags(2,true); //tell operator to store mueR material data
}
return true;
}
diff --git a/openEMS/openems.h b/openEMS/openems.h
index d194050..6600e06 100644
--- a/openEMS/openems.h
+++ b/openEMS/openems.h
@@ -70,9 +70,13 @@ public:
void SetTimeStepFactor(double val) {m_TS_fac=val;}
void SetMaxTime(double val) {m_maxTime=val;}
+ void SetNumberOfThreads(unsigned int val) {m_engine_numThreads = val;}
+
void DebugMaterial() {DebugMat=true;}
void DebugOperator() {DebugOp=true;}
void DebugBox() {m_debugBox=true;}
+ void DebugPEC() {m_debugPEC=true;}
+ void DebugCSX() {m_debugCSX=true;}
void Set_BC_Type(int idx, int type);
int Get_BC_Type(int idx);
diff --git a/openEMS/python/README.md b/openEMS/python/README.md
new file mode 100644
index 0000000..887e9da
--- /dev/null
+++ b/openEMS/python/README.md
@@ -0,0 +1,14 @@
+# openEMS python interface
+
+## Install
+* Simple version:
+```python
+python setup.py install
+```
+
+* Extended options, e.g. for custom install path at */opt/openEMS*:
+```python
+python setup.py build_ext -I/opt/openEMS/include -L/opt/openEMS/lib -R/opt/openEMS/lib"
+python setup.py install
+```
+**Note:** The install command may require root on Linux, or add --user to install to ~/.local
diff --git a/openEMS/python/Tutorials/Bent_Patch_Antenna.py b/openEMS/python/Tutorials/Bent_Patch_Antenna.py
new file mode 100644
index 0000000..ef2cb0e
--- /dev/null
+++ b/openEMS/python/Tutorials/Bent_Patch_Antenna.py
@@ -0,0 +1,198 @@
+# -*- coding: utf-8 -*-
+"""
+ Bent Patch Antenna Tutorial
+
+ Tested with
+ - python 3.4
+ - openEMS v0.0.33+
+
+ (C) 2016 Thorsten Liebig <thorsten.liebig@gmx.de>
+
+"""
+
+### Import Libraries
+import os, tempfile
+from pylab import *
+from mpl_toolkits.mplot3d import Axes3D
+
+from CSXCAD import CSXCAD
+
+from openEMS.openEMS import openEMS
+from openEMS.physical_constants import *
+
+
+### Setup the simulation
+Sim_Path = os.path.join(tempfile.gettempdir(), 'Bent_Patch')
+
+post_proc_only = False
+
+unit = 1e-3 # all length in mm
+
+f0 = 2.4e9 # center frequency, frequency of interest!
+lambda0 = round(C0/f0/unit) # wavelength in mm
+fc = 0.5e9 # 20 dB corner frequency
+
+# patch width in alpha-direction
+patch_width = 32 # resonant length in alpha-direction
+patch_radius = 50 # radius
+patch_length = 40 # patch length in z-direction
+
+#substrate setup
+substrate_epsR = 3.38
+substrate_kappa = 1e-3 * 2*pi*2.45e9 * EPS0*substrate_epsR
+substrate_width = 80
+substrate_length = 90
+substrate_thickness = 1.524
+substrate_cells = 4
+
+#setup feeding
+feed_pos = -5.5 #feeding position in x-direction
+feed_width = 2 #feeding port width
+feed_R = 50 #feed resistance
+
+# size of the simulation box
+SimBox_rad = 2*100
+SimBox_height = 1.5*200
+
+### Setup FDTD parameter & excitation function
+FDTD = openEMS(CoordSystem=1) # init a cylindrical FDTD
+f0 = 2e9 # center frequency
+fc = 1e9 # 20 dB corner frequency
+FDTD.SetGaussExcite(f0, fc)
+FDTD.SetBoundaryCond(['MUR', 'MUR', 'MUR', 'MUR', 'MUR', 'MUR']) # boundary conditions
+
+### Setup the Geometry & Mesh
+# init a cylindrical mesh
+CSX = CSXCAD.ContinuousStructure(CoordSystem=1)
+FDTD.SetCSX(CSX)
+mesh = CSX.GetGrid()
+mesh.SetDeltaUnit(unit)
+
+### Setup the geometry using cylindrical coordinates
+# calculate some width as an angle in radiant
+patch_ang_width = patch_width/(patch_radius+substrate_thickness)
+substr_ang_width = substrate_width/patch_radius
+feed_angle = feed_pos/patch_radius
+
+# create patch
+patch = CSX.AddMetal('patch') # create a perfect electric conductor (PEC)
+start = [patch_radius+substrate_thickness, -patch_ang_width/2, -patch_length/2 ]
+stop = [patch_radius+substrate_thickness, patch_ang_width/2, patch_length/2 ]
+CSX.AddBox(patch, priority=10, start=start, stop=stop, edges2grid='all') # add a box-primitive to the metal property 'patch'
+
+# create substrate
+substrate = CSX.AddMaterial('substrate', epsilon=substrate_epsR, kappa=substrate_kappa )
+start = [patch_radius , -substr_ang_width/2, -substrate_length/2]
+stop = [patch_radius+substrate_thickness, substr_ang_width/2, substrate_length/2]
+substrate.AddBox(start=start, stop=stop, edges2grid='all')
+
+# save current density oon the patch
+jt_patch = CSX.AddDump('Jt_patch', dump_type=3, file_type=1)
+start = [patch_radius+substrate_thickness, -substr_ang_width/2, -substrate_length/2]
+stop = [patch_radius+substrate_thickness, +substr_ang_width/2, substrate_length/2]
+jt_patch.AddBox(start=start, stop=stop)
+
+# create ground
+gnd = CSX.AddMetal('gnd') # create a perfect electric conductor (PEC)
+start = [patch_radius, -substr_ang_width/2, -substrate_length/2]
+stop = [patch_radius, +substr_ang_width/2, +substrate_length/2]
+gnd.AddBox(priority=10, start=start, stop=stop, edges2grid='all')
+
+# apply the excitation & resist as a current source
+start = [patch_radius , feed_angle, 0]
+stop = [patch_radius+substrate_thickness, feed_angle, 0]
+port = FDTD.AddLumpedPort(1 ,feed_R, start, stop, 'r', 1.0, priority=50, edges2grid='all')
+
+### Finalize the Mesh
+# add the simulation domain size
+mesh.AddLine('r', patch_radius+np.array([-20, SimBox_rad]))
+mesh.AddLine('a', [-0.75*pi, 0.75*pi])
+mesh.AddLine('z', [-SimBox_height/2, SimBox_height/2])
+
+# add some lines for the substrate
+mesh.AddLine('r', patch_radius+np.linspace(0,substrate_thickness,substrate_cells))
+
+# generate a smooth mesh with max. cell size: lambda_min / 20
+max_res = C0 / (f0+fc) / unit / 20
+max_ang = max_res/(SimBox_rad+patch_radius) # max res in radiant
+mesh.SmoothMeshLines(0, max_res, 1.4)
+mesh.SmoothMeshLines(1, max_ang, 1.4)
+mesh.SmoothMeshLines(2, max_res, 1.4)
+
+## Add the nf2ff recording box
+nf2ff = FDTD.CreateNF2FFBox()
+
+### Run the simulation
+if 0: # debugging only
+ CSX_file = os.path.join(Sim_Path, 'bent_patch.xml')
+ if not os.path.exists(Sim_Path):
+ os.mkdir(Sim_Path)
+ CSX.Write2XML(CSX_file)
+ os.system(r'AppCSXCAD "{}"'.format(CSX_file))
+
+
+if not post_proc_only:
+ FDTD.Run(Sim_Path, verbose=3, cleanup=True)
+
+### Postprocessing & plotting
+f = np.linspace(max(1e9,f0-fc),f0+fc,401)
+port.CalcPort(Sim_Path, f)
+Zin = port.uf_tot / port.if_tot
+s11 = port.uf_ref/port.uf_inc
+s11_dB = 20.0*np.log10(np.abs(s11))
+
+figure()
+plot(f/1e9, s11_dB)
+grid()
+ylabel('s11 (dB)')
+xlabel('frequency (GHz)')
+
+P_in = 0.5*np.real(port.uf_tot * np.conj(port.if_tot)) # antenna feed power
+
+# plot feed point impedance
+figure()
+plot( f/1e6, real(Zin), 'k-', linewidth=2, label=r'$\Re(Z_{in})$' )
+grid()
+plot( f/1e6, imag(Zin), 'r--', linewidth=2, label=r'$\Im(Z_{in})$' )
+title( 'feed point impedance' )
+xlabel( 'frequency (MHz)' )
+ylabel( 'impedance ($\Omega$)' )
+legend( )
+
+
+idx = np.where((s11_dB<-10) & (s11_dB==np.min(s11_dB)))[0]
+if not len(idx)==1:
+ print('No resonance frequency found for far-field calulation')
+else:
+ f_res = f[idx[0]]
+ theta = np.arange(-180.0, 180.0, 2.0)
+ print("Calculate NF2FF")
+ nf2ff_res_phi0 = nf2ff.CalcNF2FF(Sim_Path, f_res, theta, 0, center=np.array([patch_radius+substrate_thickness, 0, 0])*unit, read_cached=True, outfile='nf2ff_xz.h5')
+
+ figure(figsize=(15, 7))
+ ax = subplot(121, polar=True)
+ E_norm = 20.0*np.log10(nf2ff_res_phi0.E_norm/np.max(nf2ff_res_phi0.E_norm)) + nf2ff_res_phi0.Dmax
+ ax.plot(np.deg2rad(theta), 10**(np.squeeze(E_norm)/20), linewidth=2, label='xz-plane')
+ ax.grid(True)
+ ax.set_xlabel('theta (deg)')
+ ax.set_theta_zero_location('N')
+ ax.set_theta_direction(-1)
+ ax.legend(loc=3)
+
+ phi = theta
+ nf2ff_res_theta90 = nf2ff.CalcNF2FF(Sim_Path, f_res, 90, phi, center=np.array([patch_radius+substrate_thickness, 0, 0])*unit, read_cached=True, outfile='nf2ff_xy.h5')
+
+ ax = subplot(122, polar=True)
+ E_norm = 20.0*np.log10(nf2ff_res_theta90.E_norm/np.max(nf2ff_res_theta90.E_norm)) + nf2ff_res_theta90.Dmax
+ ax.plot(np.deg2rad(phi), 10**(np.squeeze(E_norm)/20), linewidth=2, label='xy-plane')
+ ax.grid(True)
+ ax.set_xlabel('phi (deg)')
+ suptitle('Bent Patch Anteanna Pattern\nFrequency: {} GHz'.format(f_res/1e9), fontsize=14)
+ ax.legend(loc=3)
+
+ print( 'radiated power: Prad = {:.2e} Watt'.format(nf2ff_res_theta90.Prad[0]))
+ print( 'directivity: Dmax = {:.1f} ({:.1f} dBi)'.format(nf2ff_res_theta90.Dmax[0], 10*np.log10(nf2ff_res_theta90.Dmax[0])))
+ print( 'efficiency: nu_rad = {:.1f} %'.format(100*nf2ff_res_theta90.Prad[0]/real(P_in[idx[0]])))
+
+show()
+
diff --git a/openEMS/python/Tutorials/CRLH_Extraction.py b/openEMS/python/Tutorials/CRLH_Extraction.py
new file mode 100644
index 0000000..4e1850e
--- /dev/null
+++ b/openEMS/python/Tutorials/CRLH_Extraction.py
@@ -0,0 +1,239 @@
+# -*- coding: utf-8 -*-
+"""
+ Tutorials / CRLH_Extraction
+
+ Describtion at:
+ http://openems.de/index.php/Tutorial:_CRLH_Extraction
+
+ Tested with
+ - python 3.4
+ - openEMS v0.0.34+
+
+ (C) 2016 Thorsten Liebig <thorsten.liebig@gmx.de>
+"""
+
+
+### Import Libraries
+import os, tempfile
+from pylab import *
+
+from CSXCAD import ContinuousStructure
+from openEMS import openEMS
+from openEMS.physical_constants import *
+
+### Class to represent single CRLH unit cells
+class CRLH_Cells:
+ def __init__(self, LL, LW, Top, Bot, GLT, GLB, SL, SW, VR):
+ self.LL = LL # Line length
+ self.LW = LW # Line width
+ self.Top = Top # top signal height
+ self.Bot = Bot # bottom signal height
+ self.GLT = GLT # gap length top
+ self.GLB = GLB # gap length bottom
+ self.SL = SL # stub length
+ self.SW = SW # stub width
+ self.VR = VR # via radius
+ self.props = dict() # property dictionary
+ self.edge_resolution = None
+
+ def createProperties(self, CSX):
+ for p in ['metal_top', 'metal_bot', 'via']:
+ self.props[p] = CSX.AddMetal(p)
+
+ def setEdgeResolution(self, res):
+ self.edge_resolution = res
+
+ def createCell(self, translate = [0,0,0]):
+ def append_mesh(mesh1, mesh2):
+ for n in range(3):
+ if mesh1[n] is None:
+ mesh1[n] = mesh2[n]
+ elif mesh2[n] is None:
+ continue
+ else:
+ mesh1[n] += mesh2[n]
+ return mesh1
+ translate = array(translate)
+ start = [-self.LL/2 , -self.LW/2, self.Top] + translate
+ stop = [-self.GLT/2, self.LW/2, self.Top] + translate
+ box = self.props['metal_top'].AddBox(start, stop, priority=10)
+ mesh = box.GetGridHint('x', metal_edge_res=self.edge_resolution, down_dir=False)
+ append_mesh(mesh, box.GetGridHint('y', metal_edge_res=self.edge_resolution) )
+
+ start = [+self.LL/2 , -self.LW/2, self.Top] + translate
+ stop = [+self.GLT/2, self.LW/2, self.Top] + translate
+ box = self.props['metal_top'].AddBox(start, stop, priority=10)
+ append_mesh(mesh, box.GetGridHint('x', metal_edge_res=self.edge_resolution, up_dir=False) )
+
+ start = [-(self.LL-self.GLB)/2, -self.LW/2, self.Bot] + translate
+ stop = [+(self.LL-self.GLB)/2, self.LW/2, self.Bot] + translate
+ box = self.props['metal_bot'].AddBox(start, stop, priority=10)
+ append_mesh(mesh, box.GetGridHint('x', metal_edge_res=self.edge_resolution) )
+
+ start = [-self.SW/2, -self.LW/2-self.SL, self.Bot] + translate
+ stop = [+self.SW/2, self.LW/2+self.SL, self.Bot] + translate
+ box = self.props['metal_bot'].AddBox(start, stop, priority=10)
+ append_mesh(mesh, box.GetGridHint('xy', metal_edge_res=self.edge_resolution) )
+
+ start = [0, -self.LW/2-self.SL+self.SW/2, 0 ] + translate
+ stop = [0, -self.LW/2-self.SL+self.SW/2, self.Bot] + translate
+
+ self.props['via'].AddCylinder(start, stop, radius=self.VR, priority=10)
+
+ start[1] *= -1
+ stop [1] *= -1
+ self.props['via'].AddCylinder(start, stop, radius=self.VR, priority=10)
+
+ return mesh
+
+
+if __name__ == '__main__':
+ ### Setup the simulation
+ Sim_Path = os.path.join(tempfile.gettempdir(), 'CRLH_Extraction')
+ post_proc_only = False
+
+ unit = 1e-6 # specify everything in um
+
+ feed_length = 30000
+
+ substrate_thickness = [1524, 101 , 254 ]
+ substrate_epsr = [3.48, 3.48, 3.48]
+
+ CRLH = CRLH_Cells(LL = 14e3, LW = 4e3, GLB = 1950, GLT = 4700, SL = 7800, SW = 1000, VR = 250 , \
+ Top = sum(substrate_thickness), \
+ Bot = sum(substrate_thickness[:-1]))
+
+ # frequency range of interest
+ f_start = 0.8e9
+ f_stop = 6e9
+
+ ### Setup FDTD parameters & excitation function
+ CSX = ContinuousStructure()
+ FDTD = openEMS(EndCriteria=1e-5)
+ FDTD.SetCSX(CSX)
+ mesh = CSX.GetGrid()
+ mesh.SetDeltaUnit(unit)
+
+ CRLH.createProperties(CSX)
+
+ FDTD.SetGaussExcite((f_start+f_stop)/2, (f_stop-f_start)/2 )
+ BC = {'PML_8' 'PML_8' 'MUR' 'MUR' 'PEC' 'PML_8'}
+ FDTD.SetBoundaryCond( ['PML_8', 'PML_8', 'MUR', 'MUR', 'PEC', 'PML_8'] )
+
+ ### Setup a basic mesh and create the CRLH unit cell
+ resolution = C0/(f_stop*sqrt(max(substrate_epsr)))/unit /30 # resolution of lambda/30
+ CRLH.setEdgeResolution(resolution/4)
+
+ mesh.SetLines('x', [-feed_length-CRLH.LL/2, 0, feed_length+CRLH.LL/2])
+ mesh.SetLines('y', [-30000, 0, 30000])
+
+ substratelines = cumsum(substrate_thickness)
+ mesh.SetLines('z', [0, 20000])
+ mesh.AddLine('z', cumsum(substrate_thickness))
+ mesh.AddLine('z', linspace(substratelines[-2],substratelines[-1],4))
+
+ # create the CRLH unit cell (will define additional fixed mesh lines)
+ mesh_hint = CRLH.createCell()
+ mesh.AddLine('x', mesh_hint[0])
+ mesh.AddLine('y', mesh_hint[1])
+
+ # Smooth the given mesh
+ mesh.SmoothMeshLines('all', resolution, 1.2)
+
+ ### Setup the substrate layer
+ substratelines = [0] + substratelines.tolist()
+ start, stop = mesh.GetSimArea()
+
+ for n in range(len(substrate_thickness)):
+ sub = CSX.AddMaterial( 'substrate_{}'.format(n), epsilon=substrate_epsr[n] )
+ start[2] = substratelines[n]
+ stop [2] = substratelines[n+1]
+
+ sub.AddBox( start, stop )
+
+ ### Add the feeding MSL ports
+ pec = CSX.AddMetal( 'PEC' )
+ port = [None, None]
+ x_lines = mesh.GetLines('x')
+ portstart = [ x_lines[0], -CRLH.LW/2, substratelines[-1]]
+ portstop = [ -CRLH.LL/2, CRLH.LW/2, 0]
+ port[0] = FDTD.AddMSLPort( 1, pec, portstart, portstop, 'x', 'z', excite=-1, FeedShift=10*resolution, MeasPlaneShift=feed_length/2, priority=10)
+
+
+ portstart = [ x_lines[-1], -CRLH.LW/2, substratelines[-1]]
+ portstop = [ +CRLH.LL/2 , CRLH.LW/2, 0]
+ port[1] = FDTD.AddMSLPort( 2, pec, portstart, portstop, 'x', 'z', MeasPlaneShift=feed_length/2, priority=10)
+
+ ### Run the simulation
+ if 1: # debugging only
+ CSX_file = os.path.join(Sim_Path, 'CRLH_Extraction.xml')
+ if not os.path.exists(Sim_Path):
+ os.mkdir(Sim_Path)
+ CSX.Write2XML(CSX_file)
+ os.system(r'AppCSXCAD "{}"'.format(CSX_file))
+
+ if not post_proc_only:
+ FDTD.Run(Sim_Path, verbose=3, cleanup=True)
+
+ ### Post-Processing
+ f = linspace( f_start, f_stop, 1601 )
+ for p in port:
+ p.CalcPort( Sim_Path, f, ref_impedance = 50, ref_plane_shift = feed_length)
+
+ # calculate and plot scattering parameter
+ s11 = port[0].uf_ref / port[0].uf_inc
+ s21 = port[1].uf_ref / port[0].uf_inc
+
+ plot(f/1e9,20*log10(abs(s11)),'k-' , linewidth=2, label='$S_{11}$')
+ plot(f/1e9,20*log10(abs(s21)),'r--', linewidth=2, label='$S_{21}$')
+ grid()
+ legend(loc=3)
+ ylabel('S-Parameter (dB)')
+ xlabel('frequency (GHz)')
+ ylim([-40, 2])
+
+ ### Extract CRLH parameter form ABCD matrix
+ A = ((1+s11)*(1-s11) + s21*s21)/(2*s21)
+ C = ((1-s11)*(1-s11) - s21*s21)/(2*s21) / port[1].Z_ref
+
+ Y = C
+ Z = 2*(A-1)/C
+
+ iZ = imag(Z)
+ iY = imag(Y)
+
+ fse = interp(0, iZ, f)
+ fsh = interp(0, iY, f)
+
+ df = f[1]-f[0]
+ fse_idx = np.where(f>fse)[0][0]
+ fsh_idx = np.where(f>fsh)[0][0]
+
+ LR = 0.5*(iZ[fse_idx]-iZ[fse_idx-1])/(2*pi*df)
+ CL = 1/(2*pi*fse)**2/LR
+
+ CR = 0.5*(iY[fsh_idx]-iY[fsh_idx-1])/(2*pi*df)
+ LL = 1/(2*pi*fsh)**2/CR
+
+ print(' Series tank: CL = {:.2f} pF, LR = {:.2f} nH -> f_se = {:.2f} GHz '.format(CL*1e12, LR*1e9, fse*1e-9))
+ print(' Shunt tank: CR = {:.2f} pF, LL = {:.2f} nH -> f_sh = {:.2f} GHz '.format(CR*1e12, LL*1e9, fsh*1e-9))
+
+ ### Calculate analytical wave-number of an inf-array of cells
+ w = 2*pi*f
+ wse = 2*pi*fse
+ wsh = 2*pi*fsh
+ beta_calc = real(arccos(1-(w**2-wse**2)*(w**2-wsh**2)/(2*w**2/CR/LR)))
+
+ # plot
+ figure()
+ beta = -angle(s21)/CRLH.LL/unit
+ plot(abs(beta)*CRLH.LL*unit/pi,f*1e-9,'k-', linewidth=2, label=r'$\beta_{CRLH,\ 1\ cell}$' )
+ grid()
+ plot(beta_calc/pi,f*1e-9,'c--', linewidth=2, label=r'$\beta_{CRLH,\ \infty\ cells}$')
+ plot(real(port[1].beta)*CRLH.LL*unit/pi,f*1e-9,'g-', linewidth=2, label=r'$\beta_{MSL}$')
+ ylim([1, 6])
+ xlabel(r'$|\beta| p / \pi$')
+ ylabel('frequency (GHz)')
+ legend(loc=2)
+
+ show() \ No newline at end of file
diff --git a/openEMS/python/Tutorials/Helical_Antenna.py b/openEMS/python/Tutorials/Helical_Antenna.py
new file mode 100644
index 0000000..3211ec8
--- /dev/null
+++ b/openEMS/python/Tutorials/Helical_Antenna.py
@@ -0,0 +1,191 @@
+# -*- coding: utf-8 -*-
+"""
+ Helical Antenna Tutorial
+
+ Tested with
+ - python 3.4
+ - openEMS v0.0.33+
+
+ (C) 2015-2016 Thorsten Liebig <thorsten.liebig@gmx.de>
+
+"""
+
+### Import Libraries
+import os, tempfile
+from pylab import *
+
+from CSXCAD import CSXCAD
+
+from openEMS import openEMS
+from openEMS.physical_constants import *
+
+
+### Setup the simulation
+Sim_Path = os.path.join(tempfile.gettempdir(), 'Helical_Ant')
+post_proc_only = False
+
+unit = 1e-3 # all length in mm
+
+f0 = 2.4e9 # center frequency, frequency of interest!
+lambda0 = round(C0/f0/unit) # wavelength in mm
+fc = 0.5e9 # 20 dB corner frequency
+
+Helix_radius = 20 # --> diameter is ~ lambda/pi
+Helix_turns = 10 # --> expected gain is G ~ 4 * 10 = 40 (16dBi)
+Helix_pitch = 30 # --> pitch is ~ lambda/4
+Helix_mesh_res = 3
+
+gnd_radius = lambda0/2
+
+# feeding
+feed_heigth = 3
+feed_R = 120 #feed impedance
+
+# size of the simulation box
+SimBox = array([1, 1, 1.5])*2.0*lambda0
+
+### Setup FDTD parameter & excitation function
+FDTD = openEMS(EndCriteria=1e-4)
+FDTD.SetGaussExcite( f0, fc )
+FDTD.SetBoundaryCond( ['MUR', 'MUR', 'MUR', 'MUR', 'MUR', 'PML_8'] )
+
+### Setup Geometry & Mesh
+CSX = CSXCAD.ContinuousStructure()
+FDTD.SetCSX(CSX)
+mesh = CSX.GetGrid()
+mesh.SetDeltaUnit(unit)
+
+max_res = floor(C0 / (f0+fc) / unit / 20) # cell size: lambda/20
+
+# create helix mesh
+mesh.AddLine('x', [-Helix_radius, 0, Helix_radius])
+mesh.SmoothMeshLines('x', Helix_mesh_res)
+# add the air-box
+mesh.AddLine('x', [-SimBox[0]/2-gnd_radius, SimBox[0]/2+gnd_radius])
+# create a smooth mesh between specified fixed mesh lines
+mesh.SmoothMeshLines('x', max_res, ratio=1.4)
+
+# copy x-mesh to y-direction
+mesh.SetLines('y', mesh.GetLines('x'))
+
+# create helix mesh in z-direction
+mesh.AddLine('z', [0, feed_heigth, Helix_turns*Helix_pitch+feed_heigth])
+mesh.SmoothMeshLines('z', Helix_mesh_res)
+
+# add the air-box
+mesh.AddLine('z', [-SimBox[2]/2, max(mesh.GetLines('z'))+SimBox[2]/2 ])
+# create a smooth mesh between specified fixed mesh lines
+mesh.SmoothMeshLines('z', max_res, ratio=1.4)
+
+### Create the Geometry
+## * Create the metal helix using the wire primitive.
+## * Create a metal gorund plane as cylinder.
+# create a perfect electric conductor (PEC)
+helix_metal = CSX.AddMetal('helix' )
+
+ang = linspace(0,2*pi,21)
+coil_x = Helix_radius*cos(ang)
+coil_y = Helix_radius*sin(ang)
+coil_z = ang/2/pi*Helix_pitch
+
+Helix_x=np.array([])
+Helix_y=np.array([])
+Helix_z=np.array([])
+zpos = feed_heigth
+for n in range(Helix_turns-1):
+ Helix_x = r_[Helix_x, coil_x]
+ Helix_y = r_[Helix_y, coil_y]
+ Helix_z = r_[Helix_z ,coil_z+zpos]
+ zpos = zpos + Helix_pitch
+
+p = np.array([Helix_x, Helix_y, Helix_z])
+helix_metal.AddCurve(p)
+
+# create ground circular ground
+gnd = CSX.AddMetal( 'gnd' ) # create a perfect electric conductor (PEC)
+
+# add a box using cylindrical coordinates
+start = [0, 0, -0.1]
+stop = [0, 0, 0.1]
+gnd.AddCylinder(start, stop, radius=gnd_radius)
+
+# apply the excitation & resist as a current source
+start = [Helix_radius, 0, 0]
+stop = [Helix_radius, 0, feed_heigth]
+port = FDTD.AddLumpedPort(1 ,feed_R, start, stop, 'z', 1.0, priority=5)
+
+# nf2ff calc
+nf2ff = FDTD.CreateNF2FFBox(opt_resolution=[lambda0/15]*3)
+
+### Run the simulation
+if 0: # debugging only
+ CSX_file = os.path.join(Sim_Path, 'helix.xml')
+ if not os.path.exists(Sim_Path):
+ os.mkdir(Sim_Path)
+ CSX.Write2XML(CSX_file)
+ os.system(r'AppCSXCAD "{}"'.format(CSX_file))
+
+if not post_proc_only:
+ FDTD.Run(Sim_Path, verbose=3, cleanup=True)
+
+### Postprocessing & plotting
+freq = linspace( f0-fc, f0+fc, 501 )
+port.CalcPort(Sim_Path, freq)
+
+Zin = port.uf_tot / port.if_tot
+s11 = port.uf_ref / port.uf_inc
+
+## Plot the feed point impedance
+figure()
+plot( freq/1e6, real(Zin), 'k-', linewidth=2, label=r'$\Re(Z_{in})$' )
+grid()
+plot( freq/1e6, imag(Zin), 'r--', linewidth=2, label=r'$\Im(Z_{in})$' )
+title( 'feed point impedance' )
+xlabel( 'frequency (MHz)' )
+ylabel( 'impedance ($\Omega$)' )
+legend( )
+
+## Plot reflection coefficient S11
+figure()
+plot( freq/1e6, 20*log10(abs(s11)), 'k-', linewidth=2 )
+grid()
+title( 'reflection coefficient $S_{11}$' )
+xlabel( 'frequency (MHz)' )
+ylabel( 'reflection coefficient $|S_{11}|$' )
+
+### Create the NFFF contour
+## * calculate the far field at phi=0 degrees and at phi=90 degrees
+theta = arange(0.,180.,1.)
+phi = arange(-180,180,2)
+disp( 'calculating the 3D far field...' )
+
+nf2ff_res = nf2ff.CalcNF2FF(Sim_Path, f0, theta, phi, read_cached=True, verbose=True )
+
+Dmax_dB = 10*log10(nf2ff_res.Dmax[0])
+E_norm = 20.0*log10(nf2ff_res.E_norm[0]/np.max(nf2ff_res.E_norm[0])) + 10*log10(nf2ff_res.Dmax[0])
+
+theta_HPBW = theta[ np.where(squeeze(E_norm[:,phi==0])<Dmax_dB-3)[0][0] ]
+
+## * Display power and directivity
+print('radiated power: Prad = {} W'.format(nf2ff_res.Prad[0]))
+print('directivity: Dmax = {} dBi'.format(Dmax_dB))
+print('efficiency: nu_rad = {} %'.format(100*nf2ff_res.Prad[0]/interp(f0, freq, port.P_acc)))
+print('theta_HPBW = {} °'.format(theta_HPBW))
+
+E_norm = 20.0*log10(nf2ff_res.E_norm[0]/np.max(nf2ff_res.E_norm[0])) + 10*log10(nf2ff_res.Dmax[0])
+E_CPRH = 20.0*log10(np.abs(nf2ff_res.E_cprh[0])/np.max(nf2ff_res.E_norm[0])) + 10*log10(nf2ff_res.Dmax[0])
+E_CPLH = 20.0*log10(np.abs(nf2ff_res.E_cplh[0])/np.max(nf2ff_res.E_norm[0])) + 10*log10(nf2ff_res.Dmax[0])
+
+## * Plot the pattern
+figure()
+plot(theta, E_norm[:,phi==0],'k-' , linewidth=2, label='$|E|$')
+plot(theta, E_CPRH[:,phi==0],'g--', linewidth=2, label='$|E_{CPRH}|$')
+plot(theta, E_CPLH[:,phi==0],'r-.', linewidth=2, label='$|E_{CPLH}|$')
+grid()
+xlabel('theta (deg)')
+ylabel('directivity (dBi)')
+title('Frequency: {} GHz'.format(nf2ff_res.freq[0]/1e9))
+legend()
+
+show()
+
diff --git a/openEMS/python/Tutorials/MSL_NotchFilter.py b/openEMS/python/Tutorials/MSL_NotchFilter.py
new file mode 100644
index 0000000..f036e0f
--- /dev/null
+++ b/openEMS/python/Tutorials/MSL_NotchFilter.py
@@ -0,0 +1,123 @@
+# -*- coding: utf-8 -*-
+"""
+ Microstrip Notch Filter Tutorial
+
+ Describtion at:
+ http://openems.de/doc/openEMS/Tutorials.html#microstrip-notch-filter
+
+ Tested with
+ - python 3.4
+ - openEMS v0.0.34+
+
+ (C) 2016 Thorsten Liebig <thorsten.liebig@gmx.de>
+
+"""
+
+### Import Libraries
+import os, tempfile
+from pylab import *
+
+from CSXCAD import ContinuousStructure
+from openEMS import openEMS
+from openEMS.physical_constants import *
+
+
+### Setup the simulation
+Sim_Path = os.path.join(tempfile.gettempdir(), 'NotchFilter')
+post_proc_only = False
+
+unit = 1e-6 # specify everything in um
+MSL_length = 50000
+MSL_width = 600
+substrate_thickness = 254
+substrate_epr = 3.66
+stub_length = 12e3
+f_max = 7e9
+
+### Setup FDTD parameters & excitation function
+FDTD = openEMS()
+FDTD.SetGaussExcite( f_max/2, f_max/2 )
+FDTD.SetBoundaryCond( ['PML_8', 'PML_8', 'MUR', 'MUR', 'PEC', 'MUR'] )
+
+### Setup Geometry & Mesh
+CSX = ContinuousStructure()
+FDTD.SetCSX(CSX)
+mesh = CSX.GetGrid()
+mesh.SetDeltaUnit(unit)
+
+resolution = C0/(f_max*sqrt(substrate_epr))/unit/50 # resolution of lambda/50
+third_mesh = array([2*resolution/3, -resolution/3])/4
+
+## Do manual meshing
+mesh.AddLine('x', 0)
+mesh.AddLine('x', MSL_width/2+third_mesh)
+mesh.AddLine('x', -MSL_width/2-third_mesh)
+mesh.SmoothMeshLines('x', resolution/4)
+
+mesh.AddLine('x', [-MSL_length, MSL_length])
+mesh.SmoothMeshLines('x', resolution)
+
+mesh.AddLine('y', 0)
+mesh.AddLine('y', MSL_width/2+third_mesh)
+mesh.AddLine('y', -MSL_width/2-third_mesh)
+mesh.SmoothMeshLines('y', resolution/4)
+
+mesh.AddLine('y', [-15*MSL_width, 15*MSL_width+stub_length])
+mesh.AddLine('y', (MSL_width/2+stub_length)+third_mesh)
+mesh.SmoothMeshLines('y', resolution)
+
+mesh.AddLine('z', linspace(0,substrate_thickness,5))
+mesh.AddLine('z', 3000)
+mesh.SmoothMeshLines('z', resolution)
+
+## Add the substrate
+substrate = CSX.AddMaterial( 'RO4350B', epsilon=substrate_epr)
+start = [-MSL_length, -15*MSL_width, 0]
+stop = [+MSL_length, +15*MSL_width+stub_length, substrate_thickness]
+substrate.AddBox(start, stop )
+
+## MSL port setup
+port = [None, None]
+pec = CSX.AddMetal( 'PEC' )
+portstart = [ -MSL_length, -MSL_width/2, substrate_thickness]
+portstop = [ 0, MSL_width/2, 0]
+port[0] = FDTD.AddMSLPort( 1, pec, portstart, portstop, 'x', 'z', excite=-1, FeedShift=10*resolution, MeasPlaneShift=MSL_length/3, priority=10)
+
+portstart = [MSL_length, -MSL_width/2, substrate_thickness]
+portstop = [0 , MSL_width/2, 0]
+port[1] = FDTD.AddMSLPort( 2, pec, portstart, portstop, 'x', 'z', MeasPlaneShift=MSL_length/3, priority=10 )
+
+## Filter-Stub Definition
+start = [-MSL_width/2, MSL_width/2, substrate_thickness]
+stop = [ MSL_width/2, MSL_width/2+stub_length, substrate_thickness]
+pec.AddBox(start, stop, priority=10 )
+
+### Run the simulation
+if 0: # debugging only
+ CSX_file = os.path.join(Sim_Path, 'notch.xml')
+ if not os.path.exists(Sim_Path):
+ os.mkdir(Sim_Path)
+ CSX.Write2XML(CSX_file)
+ os.system(r'AppCSXCAD "{}"'.format(CSX_file))
+
+
+if not post_proc_only:
+ FDTD.Run(Sim_Path, verbose=3, cleanup=True)
+
+### Post-processing and plotting
+f = linspace( 1e6, f_max, 1601 )
+for p in port:
+ p.CalcPort( Sim_Path, f, ref_impedance = 50)
+
+s11 = port[0].uf_ref / port[0].uf_inc
+s21 = port[1].uf_ref / port[0].uf_inc
+
+plot(f/1e9,20*log10(abs(s11)),'k-',linewidth=2 , label='$S_{11}$')
+grid()
+plot(f/1e9,20*log10(abs(s21)),'r--',linewidth=2 , label='$S_{21}$')
+legend()
+ylabel('S-Parameter (dB)')
+xlabel('frequency (GHz)')
+ylim([-40, 2])
+
+show()
diff --git a/openEMS/python/Tutorials/RCS_Sphere.py b/openEMS/python/Tutorials/RCS_Sphere.py
new file mode 100644
index 0000000..df801ce
--- /dev/null
+++ b/openEMS/python/Tutorials/RCS_Sphere.py
@@ -0,0 +1,126 @@
+# -*- coding: utf-8 -*-
+"""
+ Tutorials / radar cross section of a metal sphere
+
+ Tested with
+ - python 3.4
+ - openEMS v0.0.34+
+
+ (C) 2016 Thorsten Liebig <thorsten.liebig@gmx.de>
+"""
+
+### Import Libraries
+import os, tempfile
+from pylab import *
+
+from CSXCAD import ContinuousStructure
+from openEMS import openEMS
+from openEMS.physical_constants import *
+from openEMS.ports import UI_data
+
+### Setup the simulation
+Sim_Path = os.path.join(tempfile.gettempdir(), 'RCS_Sphere')
+post_proc_only = False
+
+unit = 1e-3 # all length in mm
+
+sphere_rad = 200
+
+inc_angle = 0 #incident angle (to x-axis) in deg
+
+# size of the simulation box
+SimBox = 1200
+PW_Box = 750
+
+### Setup FDTD parameters & excitation function
+FDTD = openEMS(EndCriteria=1e-5)
+
+f_start = 50e6 # start frequency
+f_stop = 1000e6 # stop frequency
+f0 = 500e6
+FDTD.SetGaussExcite( 0.5*(f_start+f_stop), 0.5*(f_stop-f_start) )
+
+FDTD.SetBoundaryCond( ['PML_8', 'PML_8', 'PML_8', 'PML_8', 'PML_8', 'PML_8'] )
+
+### Setup Geometry & Mesh
+CSX = ContinuousStructure()
+FDTD.SetCSX(CSX)
+mesh = CSX.GetGrid()
+mesh.SetDeltaUnit(unit)
+
+#create mesh
+mesh.SetLines('x', [-SimBox/2, 0, SimBox/2])
+mesh.SmoothMeshLines('x', C0 / f_stop / unit / 20) # cell size: lambda/20
+mesh.SetLines('y', mesh.GetLines('x'))
+mesh.SetLines('z', mesh.GetLines('x'))
+
+### Create a metal sphere and plane wave source
+sphere_metal = CSX.AddMetal( 'sphere' ) # create a perfect electric conductor (PEC)
+sphere_metal.AddSphere(priority=10, center=[0, 0, 0], radius=sphere_rad)
+
+# plane wave excitation
+k_dir = [cos(inc_angle), sin(inc_angle), 0] # plane wave direction
+E_dir = [0, 0, 1] # plane wave polarization --> E_z
+
+pw_exc = CSX.AddExcitation('plane_wave', exc_type=10, exc_val=E_dir)
+pw_exc.SetPropagationDir(k_dir)
+pw_exc.SetFrequency(f0)
+
+start = np.array([-PW_Box/2, -PW_Box/2, -PW_Box/2])
+stop = -start
+pw_exc.AddBox(start, stop)
+
+# nf2ff calc
+nf2ff = FDTD.CreateNF2FFBox()
+
+### Run the simulation
+if 0: # debugging only
+ CSX_file = os.path.join(Sim_Path, 'RCS_Sphere.xml')
+ if not os.path.exists(Sim_Path):
+ os.mkdir(Sim_Path)
+ CSX.Write2XML(CSX_file)
+ os.system(r'AppCSXCAD "{}"'.format(CSX_file))
+
+
+if not post_proc_only:
+ FDTD.Run(Sim_Path, verbose=3, cleanup=True)
+
+### Postprocessing & plotting
+# get Gaussian pulse stength at frequency f0
+ef = UI_data('et', Sim_Path, freq=f0)
+
+Pin = 0.5*norm(E_dir)**2/Z0 * abs(ef.ui_f_val[0])**2
+#
+nf2ff_res = nf2ff.CalcNF2FF(Sim_Path, f0, 90, arange(-180, 180.1, 2))
+RCS = 4*pi/Pin[0]*nf2ff_res.P_rad[0]
+
+fig = figure()
+ax = fig.add_subplot(111, polar=True)
+ax.plot( nf2ff_res.phi, RCS[0], 'k-', linewidth=2 )
+ax.grid(True)
+
+# calculate RCS over frequency
+freq = linspace(f_start,f_stop,100)
+ef = UI_data( 'et', Sim_Path, freq ) # time domain/freq domain voltage
+Pin = 0.5*norm(E_dir)**2/Z0 * abs(np.array(ef.ui_f_val[0]))**2
+
+nf2ff_res = nf2ff.CalcNF2FF(Sim_Path, freq, 90, 180+inc_angle, outfile='back_nf2ff.h5')
+
+back_scat = np.array([4*pi/Pin[fn]*nf2ff_res.P_rad[fn][0][0] for fn in range(len(freq))])
+
+figure()
+plot(freq/1e6,back_scat, linewidth=2)
+grid()
+xlabel('frequency (MHz)')
+ylabel('RCS ($m^2$)')
+title('radar cross section')
+
+figure()
+semilogy(sphere_rad*unit/C0*freq,back_scat/(pi*sphere_rad*unit*sphere_rad*unit), linewidth=2)
+ylim([10^-2, 10^1])
+grid()
+xlabel('sphere radius / wavelength')
+ylabel('RCS / ($\pi a^2$)')
+title('normalized radar cross section')
+
+show() \ No newline at end of file
diff --git a/openEMS/python/Tutorials/Rect_Waveguide.py b/openEMS/python/Tutorials/Rect_Waveguide.py
new file mode 100644
index 0000000..5d38115
--- /dev/null
+++ b/openEMS/python/Tutorials/Rect_Waveguide.py
@@ -0,0 +1,125 @@
+# -*- coding: utf-8 -*-
+"""
+ Rectangular Waveguide Tutorial
+
+ Describtion at:
+ http://openems.de/doc/openEMS/Tutorials.html#rectangular-waveguide
+
+ Tested with
+ - python 3.4
+ - openEMS v0.0.34+
+
+ (C) 2015-2016 Thorsten Liebig <thorsten.liebig@gmx.de>
+
+"""
+
+### Import Libraries
+import os, tempfile
+from pylab import *
+
+from CSXCAD import ContinuousStructure
+from openEMS import openEMS
+from openEMS.physical_constants import *
+
+### Setup the simulation
+Sim_Path = os.path.join(tempfile.gettempdir(), 'Rect_WG')
+
+post_proc_only = False
+unit = 1e-6; #drawing unit in um
+
+# waveguide dimensions
+# WR42
+a = 10700; #waveguide width
+b = 4300; #waveguide heigth
+length = 50000;
+
+# frequency range of interest
+f_start = 20e9;
+f_0 = 24e9;
+f_stop = 26e9;
+lambda0 = C0/f_0/unit;
+
+#waveguide TE-mode definition
+TE_mode = 'TE10';
+
+#targeted mesh resolution
+mesh_res = lambda0/30
+
+### Setup FDTD parameter & excitation function
+FDTD = openEMS(NrTS=1e4);
+FDTD.SetGaussExcite(0.5*(f_start+f_stop),0.5*(f_stop-f_start));
+
+# boundary conditions
+FDTD.SetBoundaryCond([0, 0, 0, 0, 3, 3]);
+
+### Setup geometry & mesh
+CSX = ContinuousStructure()
+FDTD.SetCSX(CSX)
+mesh = CSX.GetGrid()
+mesh.SetDeltaUnit(unit)
+
+mesh.AddLine('x', [0, a])
+mesh.AddLine('y', [0, b])
+mesh.AddLine('z', [0, length])
+
+## Apply the waveguide port
+ports = []
+start=[0, 0, 10*mesh_res];
+stop =[a, b, 15*mesh_res];
+mesh.AddLine('z', [start[2], stop[2]])
+ports.append(FDTD.AddRectWaveGuidePort( 0, start, stop, 'z', a*unit, b*unit, TE_mode, 1))
+
+start=[0, 0, length-10*mesh_res];
+stop =[a, b, length-15*mesh_res];
+mesh.AddLine('z', [start[2], stop[2]])
+ports.append(FDTD.AddRectWaveGuidePort( 1, start, stop, 'z', a*unit, b*unit, TE_mode))
+
+mesh.SmoothMeshLines('all', mesh_res, ratio=1.4)
+
+### Define dump box...
+Et = CSX.AddDump('Et', file_type=0, sub_sampling=[2,2,2])
+start = [0, 0, 0];
+stop = [a, b, length];
+Et.AddBox(start, stop);
+
+### Run the simulation
+if 0: # debugging only
+ CSX_file = os.path.join(Sim_Path, 'rect_wg.xml')
+ if not os.path.exists(Sim_Path):
+ os.mkdir(Sim_Path)
+ CSX.Write2XML(CSX_file)
+ os.system(r'AppCSXCAD "{}"'.format(CSX_file))
+
+if not post_proc_only:
+ FDTD.Run(Sim_Path, verbose=3, cleanup=True)
+
+### Postprocessing & plotting
+freq = linspace(f_start,f_stop,201)
+for port in ports:
+ port.CalcPort(Sim_Path, freq)
+
+s11 = ports[0].uf_ref / ports[0].uf_inc
+s21 = ports[1].uf_ref / ports[0].uf_inc
+ZL = ports[0].uf_tot / ports[0].if_tot
+ZL_a = ports[0].ZL # analytic waveguide impedance
+
+## Plot s-parameter
+figure()
+plot(freq*1e-6,20*log10(abs(s11)),'k-',linewidth=2, label='$S_{11}$')
+grid()
+plot(freq*1e-6,20*log10(abs(s21)),'r--',linewidth=2, label='$S_{21}$')
+legend();
+ylabel('S-Parameter (dB)')
+xlabel(r'frequency (MHz) $\rightarrow$')
+
+## Compare analytic and numerical wave-impedance
+figure()
+plot(freq*1e-6,real(ZL), linewidth=2, label='$\Re\{Z_L\}$')
+grid()
+plot(freq*1e-6,imag(ZL),'r--', linewidth=2, label='$\Im\{Z_L\}$')
+plot(freq*1e-6,ZL_a,'g-.',linewidth=2, label='$Z_{L, analytic}$')
+ylabel('ZL $(\Omega)$')
+xlabel(r'frequency (MHz) $\rightarrow$')
+legend()
+
+show()
diff --git a/openEMS/python/Tutorials/Simple_Patch_Antenna.py b/openEMS/python/Tutorials/Simple_Patch_Antenna.py
new file mode 100644
index 0000000..cd80f78
--- /dev/null
+++ b/openEMS/python/Tutorials/Simple_Patch_Antenna.py
@@ -0,0 +1,151 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Dec 18 20:56:53 2015
+
+@author: thorsten
+"""
+
+### Import Libraries
+import os, tempfile
+from pylab import *
+
+from CSXCAD import ContinuousStructure
+from openEMS import openEMS
+from openEMS.physical_constants import *
+
+### General parameter setup
+Sim_Path = os.path.join(tempfile.gettempdir(), 'Simp_Patch')
+
+post_proc_only = False
+
+# patch width (resonant length) in x-direction
+patch_width = 32 #
+# patch length in y-direction
+patch_length = 40
+
+#substrate setup
+substrate_epsR = 3.38
+substrate_kappa = 1e-3 * 2*pi*2.45e9 * EPS0*substrate_epsR
+substrate_width = 60
+substrate_length = 60
+substrate_thickness = 1.524
+substrate_cells = 4
+
+#setup feeding
+feed_pos = -6 #feeding position in x-direction
+feed_R = 50 #feed resistance
+
+# size of the simulation box
+SimBox = np.array([200, 200, 150])
+
+# setup FDTD parameter & excitation function
+f0 = 2e9 # center frequency
+fc = 1e9 # 20 dB corner frequency
+
+### FDTD setup
+## * Limit the simulation to 30k timesteps
+## * Define a reduced end criteria of -40dB
+FDTD = openEMS(NrTS=30000, EndCriteria=1e-4)
+FDTD.SetGaussExcite( f0, fc )
+FDTD.SetBoundaryCond( ['MUR', 'MUR', 'MUR', 'MUR', 'MUR', 'MUR'] )
+
+
+CSX = ContinuousStructure()
+FDTD.SetCSX(CSX)
+mesh = CSX.GetGrid()
+mesh.SetDeltaUnit(1e-3)
+mesh_res = C0/(f0+fc)/1e-3/20
+
+### Generate properties, primitives and mesh-grid
+#initialize the mesh with the "air-box" dimensions
+mesh.AddLine('x', [-SimBox[0]/2, SimBox[0]/2])
+mesh.AddLine('y', [-SimBox[1]/2, SimBox[1]/2] )
+mesh.AddLine('z', [-SimBox[2]/3, SimBox[2]*2/3] )
+
+# create patch
+patch = CSX.AddMetal( 'patch' ) # create a perfect electric conductor (PEC)
+start = [-patch_width/2, -patch_length/2, substrate_thickness]
+stop = [ patch_width/2 , patch_length/2, substrate_thickness]
+patch.AddBox(priority=10, start=start, stop=stop) # add a box-primitive to the metal property 'patch'
+FDTD.AddEdges2Grid(dirs='xy', properties=patch, metal_edge_res=mesh_res/2)
+
+# create substrate
+substrate = CSX.AddMaterial( 'substrate', epsilon=substrate_epsR, kappa=substrate_kappa)
+start = [-substrate_width/2, -substrate_length/2, 0]
+stop = [ substrate_width/2, substrate_length/2, substrate_thickness]
+substrate.AddBox( priority=0, start=start, stop=stop )
+
+# add extra cells to discretize the substrate thickness
+mesh.AddLine('z', linspace(0,substrate_thickness,substrate_cells+1))
+
+# create ground (same size as substrate)
+gnd = CSX.AddMetal( 'gnd' ) # create a perfect electric conductor (PEC)
+start[2]=0
+stop[2] =0
+gnd.AddBox(start, stop, priority=10)
+
+FDTD.AddEdges2Grid(dirs='xy', properties=gnd)
+
+# apply the excitation & resist as a current source
+start = [feed_pos, 0, 0]
+stop = [feed_pos, 0, substrate_thickness]
+port = FDTD.AddLumpedPort(1, feed_R, start, stop, 'z', 1.0, priority=5, edges2grid='xy')
+
+mesh.SmoothMeshLines('all', mesh_res, 1.4)
+
+# Add the nf2ff recording box
+nf2ff = FDTD.CreateNF2FFBox()
+
+### Run the simulation
+if 0: # debugging only
+ CSX_file = os.path.join(Sim_Path, 'simp_patch.xml')
+ if not os.path.exists(Sim_Path):
+ os.mkdir(Sim_Path)
+ CSX.Write2XML(CSX_file)
+ os.system(r'AppCSXCAD "{}"'.format(CSX_file))
+
+if not post_proc_only:
+ FDTD.Run(Sim_Path, verbose=3, cleanup=True)
+
+
+### Post-processing and plotting
+f = np.linspace(max(1e9,f0-fc),f0+fc,401)
+port.CalcPort(Sim_Path, f)
+s11 = port.uf_ref/port.uf_inc
+s11_dB = 20.0*np.log10(np.abs(s11))
+figure()
+plot(f/1e9, s11_dB, 'k-', linewidth=2, label='$S_{11}$')
+grid()
+legend()
+ylabel('S-Parameter (dB)')
+xlabel('Frequency (GHz)')
+
+idx = np.where((s11_dB<-10) & (s11_dB==np.min(s11_dB)))[0]
+if not len(idx)==1:
+ print('No resonance frequency found for far-field calulation')
+else:
+ f_res = f[idx[0]]
+ theta = np.arange(-180.0, 180.0, 2.0)
+ phi = [0., 90.]
+ nf2ff_res = nf2ff.CalcNF2FF(Sim_Path, f_res, theta, phi, center=[0,0,1e-3])
+
+ figure()
+ E_norm = 20.0*np.log10(nf2ff_res.E_norm[0]/np.max(nf2ff_res.E_norm[0])) + nf2ff_res.Dmax[0]
+ plot(theta, np.squeeze(E_norm[:,0]), 'k-', linewidth=2, label='xz-plane')
+ plot(theta, np.squeeze(E_norm[:,1]), 'r--', linewidth=2, label='yz-plane')
+ grid()
+ ylabel('Directivity (dBi)')
+ xlabel('Theta (deg)')
+ title('Frequency: {} GHz'.format(f_res/1e9))
+ legend()
+
+Zin = port.uf_tot/port.if_tot
+figure()
+plot(f/1e9, np.real(Zin), 'k-', linewidth=2, label='$\Re\{Z_{in}\}$')
+plot(f/1e9, np.imag(Zin), 'r--', linewidth=2, label='$\Im\{Z_{in}\}$')
+grid()
+legend()
+ylabel('Zin (Ohm)')
+xlabel('Frequency (GHz)')
+
+show()
diff --git a/openEMS/python/doc/Tutorials/Antenna_Tutorials.rst b/openEMS/python/doc/Tutorials/Antenna_Tutorials.rst
new file mode 100644
index 0000000..4a5927a
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/Antenna_Tutorials.rst
@@ -0,0 +1,9 @@
+Antennas
+--------
+
+.. toctree::
+ :maxdepth: 1
+
+ Simple_Patch_Antenna
+ Helical_Antenna
+ Bent_Patch_Antenna
diff --git a/openEMS/python/doc/Tutorials/Bent_Patch_Antenna.rst b/openEMS/python/doc/Tutorials/Bent_Patch_Antenna.rst
new file mode 100644
index 0000000..9582563
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/Bent_Patch_Antenna.rst
@@ -0,0 +1,35 @@
+Bent Patch Antenna
+==================
+
+* Setup & Simulate a bent patch antenna using a cylindrical mesh
+
+Introduction
+-------------
+**This tutorial covers:**
+
+* Setup of a Bent Patch Antenna (see for comparison: :ref:`simple_patch_antenna`)
+* setup of a *cylindrical FDTD mesh*.
+* Calculate the S-Parameter and input impedance
+* Calculate far-field pattern 2D/3D
+
+
+Python Script
+-------------
+Get the latest version `from git <http://www.openems.de/gitweb/?p=openEMS.git;a=blob_plain;f=matlab/Tutorials/Bent_Patch_Antenna.m;hb=refs/heads/master>`_.
+
+.. include:: ./__Bent_Patch_Antenna.txt
+
+Images
+-------------
+.. figure:: images/Bent_Patch.png
+ :width: 49%
+ :alt: alternate text
+
+ 3D view of the Bent Patch Antenna (AppCSXCAD)
+
+.. figure:: images/Bent_Patch_Pattern.png
+ :width: 80%
+ :alt: Farfield pattern
+
+ Farfield pattern on an xy- and xz-plane
+
diff --git a/openEMS/python/doc/Tutorials/CRLH_Extraction.rst b/openEMS/python/doc/Tutorials/CRLH_Extraction.rst
new file mode 100644
index 0000000..156cf73
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/CRLH_Extraction.rst
@@ -0,0 +1,40 @@
+CRLH Parameter Extraction
+=========================
+
+* Setup a composite-right/left-handed (CRLH) unit cell and extract the equivalent circuit parameter.
+
+Introduction
+-------------
+**This tutorial covers:**
+
+* Setup a feeding mircostrip line & port
+* Apply an inhomogeneous mesh used for improved accuracy and simulation speed
+* Use an internal clss to setup a CRLH unit cell
+* Use the port voltages and currents to extract the unit cell equivalent circuit parameter
+
+.. figure:: images/CRLH_cell.png
+ :width: 80%
+ :alt: CRLH unit cell with feeding MSL.
+
+ CRLH unit cell with feeding MSL.
+
+Python Script
+-------------
+Get the latest version `from git <http://www.openems.de/gitweb/?p=openEMS.git;a=blob_plain;f=matlab/Tutorials/Bent_Patch_Antenna.m;hb=refs/heads/master>`_.
+
+.. include:: ./__CRLH_Extraction.txt
+
+Images
+-------------
+
+.. figure:: images/CRLH_Spara.png
+ :width: 80%
+ :alt: CRLH cell S-parameter
+
+ CRLH cell S-parameter
+
+.. figure:: images/CRLH_dispersion.png
+ :width: 80%
+ :alt: CRLH unit cell dispersion diagram
+
+ CRLH unit cell dispersion diagram
diff --git a/openEMS/python/doc/Tutorials/Helical_Antenna.rst b/openEMS/python/doc/Tutorials/Helical_Antenna.rst
new file mode 100644
index 0000000..6a94081
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/Helical_Antenna.rst
@@ -0,0 +1,32 @@
+Helical Antenna
+===============
+
+Introduction
+-------------
+**This tutorial covers:**
+
+* setup of a helix using the wire primitive
+* setup a lumped feeding port (R_in = 120 Ohms)
+* adding a near-field to far-field (nf2ff) box using an efficient subsampling
+* calculate the S-Parameter of the antenna
+* calculate and plot the far-field pattern
+
+Python Script
+-------------
+Get the latest version `from git <http://www.openems.de/gitweb/?p=openEMS.git;a=blob_plain;f=matlab/Tutorials/Helical_Antenna.m;hb=refs/heads/master>`_.
+
+.. include:: ./__Helical_Antenna.txt
+
+Images
+-------------
+.. figure:: images/Helix_Ant.png
+ :width: 49%
+ :alt: alternate text
+
+ 3D view of the Helical Antenna (AppCSXCAD)
+
+.. figure:: images/Helix_Ant_Pattern.png
+ :width: 49%
+ :alt: alternate text
+
+ Far-Field pattern showing a right-handed circular polarization.
diff --git a/openEMS/python/doc/Tutorials/Intro_Tutorials.rst b/openEMS/python/doc/Tutorials/Intro_Tutorials.rst
new file mode 100644
index 0000000..8126f33
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/Intro_Tutorials.rst
@@ -0,0 +1,10 @@
+.. _intro_tutorials:
+
+Introductional Tutorials
+------------------------
+
+
+.. toctree::
+
+ Rect_Waveguide
+ RCS_Sphere
diff --git a/openEMS/python/doc/Tutorials/MSL_NotchFilter.rst b/openEMS/python/doc/Tutorials/MSL_NotchFilter.rst
new file mode 100644
index 0000000..c84883e
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/MSL_NotchFilter.rst
@@ -0,0 +1,27 @@
+Microstrip Notch Filter
+=======================
+
+ * A straight MSL line with a open-ended stub to create a simple microwave filter.
+
+Introduction
+-------------
+**This tutorial covers:**
+
+
+* Setup a mircostrip line (MSL) and MSL port
+* Apply an inhomogeneous mesh used for improved accuracy and simulation speed
+* Calculate the S-Parameter of the filter
+
+Python Script
+-------------
+Get the latest version `from git <http://openems.de/gitweb/?p=openEMS.git;a=blob_plain;f=matlab/Tutorials/MSL_NotchFilter.m;hb=HEAD>`_.
+
+.. include:: ./__MSL_NotchFilter.txt
+
+Images
+-------------
+.. figure:: images/Notch_Filter_SPara.png
+ :width: 49%
+ :alt: S-Parameter over Frequency
+
+ S-Parameter over Frequency
diff --git a/openEMS/python/doc/Tutorials/MicroWave_Tutorials.rst b/openEMS/python/doc/Tutorials/MicroWave_Tutorials.rst
new file mode 100644
index 0000000..92fc0ce
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/MicroWave_Tutorials.rst
@@ -0,0 +1,10 @@
+.. _microwave_tutorials:
+
+Micro Wave Tutorials
+--------------------
+
+
+.. toctree::
+
+ MSL_NotchFilter
+ CRLH_Extraction
diff --git a/openEMS/python/doc/Tutorials/RCS_Sphere.rst b/openEMS/python/doc/Tutorials/RCS_Sphere.rst
new file mode 100644
index 0000000..1cbced8
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/RCS_Sphere.rst
@@ -0,0 +1,32 @@
+Metal Sphere Radar Cross Section
+================================
+
+ * A 3D simulation demonstrating a the total-field/scattered-field approach on a metallic sphere with a RCS (radar cross section) calculation.
+
+Introduction
+-------------
+**This tutorial covers:**
+
+
+* The total-field/scattered-field approach
+* Calculation of a radar cross section (RCS)
+
+Python Script
+-------------
+Get the latest version `from git <https://raw.githubusercontent.com/thliebig/openEMS/master/python/Tutorials/RCS_Sphere.py>`_.
+
+.. include:: ./__RCS_Sphere.txt
+
+Images
+-------------
+.. figure:: images/RCS_pattern.png
+ :width: 49%
+ :alt: Radar cross section pattern
+
+ Radar cross section pattern
+
+.. figure:: images/RCS_norm.png
+ :width: 49%
+ :alt: normalized radar cross section
+
+ Normalized radar cross Section over normalized wavelength
diff --git a/openEMS/python/doc/Tutorials/Rect_Waveguide.rst b/openEMS/python/doc/Tutorials/Rect_Waveguide.rst
new file mode 100644
index 0000000..8b955ac
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/Rect_Waveguide.rst
@@ -0,0 +1,27 @@
+Rectangular Waveguide
+=====================
+
+ * A simple rectangular waveguide, showing the openEMS mode profile capabilities.
+
+Introduction
+-------------
+**This tutorial covers:**
+
+* Setup a mode profile excitation
+* Create voltage and current probes using the mode profile
+* Calculate the waveguide impedance and S-Parameter
+
+
+Python Script
+-------------
+Get the latest version `from git <http://openems.de/gitweb/?p=openEMS.git;a=blob_plain;f=matlab/Tutorials/Rect_Waveguide.m;hb=HEAD>`_.
+
+.. include:: ./__Rect_Waveguide.txt
+
+Images
+-------------
+.. figure:: images/Rect_WG_SPara.png
+ :width: 49%
+ :alt: S-Parameter over Frequency
+
+ S-Parameter over Frequency
diff --git a/openEMS/python/doc/Tutorials/Simple_Patch_Antenna.rst b/openEMS/python/doc/Tutorials/Simple_Patch_Antenna.rst
new file mode 100644
index 0000000..4345c56
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/Simple_Patch_Antenna.rst
@@ -0,0 +1,42 @@
+.. _simple_patch_antenna:
+
+Simple Patch Antenna
+====================
+
+Introduction
+------------
+A simple patch antenna for 2.4 GHz.
+
+**This tutorial covers:**
+
+* Setup a patch, substrate and ground.
+* Setup of a lumped feeding port.
+* Adding a near-field to far-field (nf2ff) recording box.
+* Calculate the S-Parameter of the antenna.
+* Calculate and plot the far-field pattern
+
+Python Script
+-------------
+Get the latest version `from git <http://www.openems.de/gitweb/?p=openEMS.git;a=blob_plain;f=matlab/Tutorials/Simple_Patch_Antenna.m;hb=refs/heads/master>`_.
+
+.. include:: ./__Simple_Patch_Antenna.txt
+
+Images
+------
+.. figure:: images/Simp_Patch_S11.png
+ :width: 49%
+ :alt: S11 over Frequency
+
+ S-Parameter over Frequency
+
+.. figure:: images/Simp_Patch_Zin.png
+ :width: 49%
+ :alt: Input Impedance
+
+ Antenna Input Impedance
+
+.. figure:: images/Simp_Patch_Pattern.png
+ :width: 49%
+ :alt: Farfield pattern
+
+ Farfield pattern for the xy- and yz-plane.
diff --git a/openEMS/python/doc/Tutorials/images/Bent_Patch.png b/openEMS/python/doc/Tutorials/images/Bent_Patch.png
new file mode 100644
index 0000000..0beddf9
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/images/Bent_Patch.png
Binary files differ
diff --git a/openEMS/python/doc/Tutorials/images/Bent_Patch_Pattern.png b/openEMS/python/doc/Tutorials/images/Bent_Patch_Pattern.png
new file mode 100644
index 0000000..4fc3211
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/images/Bent_Patch_Pattern.png
Binary files differ
diff --git a/openEMS/python/doc/Tutorials/images/Bent_Patch_SPara.png b/openEMS/python/doc/Tutorials/images/Bent_Patch_SPara.png
new file mode 100644
index 0000000..d3970fb
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/images/Bent_Patch_SPara.png
Binary files differ
diff --git a/openEMS/python/doc/Tutorials/images/CRLH_Spara.png b/openEMS/python/doc/Tutorials/images/CRLH_Spara.png
new file mode 100644
index 0000000..d0f4a3b
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/images/CRLH_Spara.png
Binary files differ
diff --git a/openEMS/python/doc/Tutorials/images/CRLH_cell.png b/openEMS/python/doc/Tutorials/images/CRLH_cell.png
new file mode 100644
index 0000000..85ae9b7
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/images/CRLH_cell.png
Binary files differ
diff --git a/openEMS/python/doc/Tutorials/images/CRLH_dispersion.png b/openEMS/python/doc/Tutorials/images/CRLH_dispersion.png
new file mode 100644
index 0000000..65fc163
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/images/CRLH_dispersion.png
Binary files differ
diff --git a/openEMS/python/doc/Tutorials/images/Helix_Ant.png b/openEMS/python/doc/Tutorials/images/Helix_Ant.png
new file mode 100644
index 0000000..16c532c
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/images/Helix_Ant.png
Binary files differ
diff --git a/openEMS/python/doc/Tutorials/images/Helix_Ant_Pattern.png b/openEMS/python/doc/Tutorials/images/Helix_Ant_Pattern.png
new file mode 100644
index 0000000..020aae1
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/images/Helix_Ant_Pattern.png
Binary files differ
diff --git a/openEMS/python/doc/Tutorials/images/Notch_Filter_SPara.png b/openEMS/python/doc/Tutorials/images/Notch_Filter_SPara.png
new file mode 100644
index 0000000..9d1d7be
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/images/Notch_Filter_SPara.png
Binary files differ
diff --git a/openEMS/python/doc/Tutorials/images/RCS_norm.png b/openEMS/python/doc/Tutorials/images/RCS_norm.png
new file mode 100644
index 0000000..57712ba
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/images/RCS_norm.png
Binary files differ
diff --git a/openEMS/python/doc/Tutorials/images/RCS_pattern.png b/openEMS/python/doc/Tutorials/images/RCS_pattern.png
new file mode 100644
index 0000000..b3d9d23
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/images/RCS_pattern.png
Binary files differ
diff --git a/openEMS/python/doc/Tutorials/images/Rect_WG_SPara.png b/openEMS/python/doc/Tutorials/images/Rect_WG_SPara.png
new file mode 100644
index 0000000..0c0ff27
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/images/Rect_WG_SPara.png
Binary files differ
diff --git a/openEMS/python/doc/Tutorials/images/Simp_Patch_Pattern.png b/openEMS/python/doc/Tutorials/images/Simp_Patch_Pattern.png
new file mode 100644
index 0000000..2cd90d4
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/images/Simp_Patch_Pattern.png
Binary files differ
diff --git a/openEMS/python/doc/Tutorials/images/Simp_Patch_S11.png b/openEMS/python/doc/Tutorials/images/Simp_Patch_S11.png
new file mode 100644
index 0000000..381bb3c
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/images/Simp_Patch_S11.png
Binary files differ
diff --git a/openEMS/python/doc/Tutorials/images/Simp_Patch_Zin.png b/openEMS/python/doc/Tutorials/images/Simp_Patch_Zin.png
new file mode 100644
index 0000000..bbabe54
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/images/Simp_Patch_Zin.png
Binary files differ
diff --git a/openEMS/python/doc/Tutorials/index.rst b/openEMS/python/doc/Tutorials/index.rst
new file mode 100644
index 0000000..fd5c5dc
--- /dev/null
+++ b/openEMS/python/doc/Tutorials/index.rst
@@ -0,0 +1,12 @@
+.. _tutorials:
+
+#########
+Tutorials
+#########
+
+.. toctree::
+ :maxdepth: 2
+
+ Intro_Tutorials
+ MicroWave_Tutorials
+ Antenna_Tutorials
diff --git a/openEMS/python/doc/conf.py b/openEMS/python/doc/conf.py
new file mode 100644
index 0000000..b5c7b76
--- /dev/null
+++ b/openEMS/python/doc/conf.py
@@ -0,0 +1,297 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+#
+# openEMS documentation build configuration file, created by
+# sphinx-quickstart on Thu Sep 8 20:42:18 2016.
+#
+# This file is execfile()d with the current directory set to its
+# containing dir.
+#
+# Note that not all possible configuration values are present in this
+# autogenerated file.
+#
+# All configuration values have a default; values that are commented out
+# serve to show the default.
+
+import sys
+import os
+import sphinx_rtd_theme
+
+# If extensions (or modules to document with autodoc) are in another directory,
+# add these directories to sys.path here. If the directory is relative to the
+# documentation root, use os.path.abspath to make it absolute, like shown here.
+#sys.path.insert(0, os.path.abspath('.'))
+
+# -- General configuration ------------------------------------------------
+
+# If your documentation needs a minimal Sphinx version, state it here.
+#needs_sphinx = '1.0'
+
+# Add any Sphinx extension module names here, as strings. They can be
+# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
+# ones.
+extensions = [
+ 'sphinx.ext.autodoc',
+ 'sphinx.ext.intersphinx',
+ 'sphinx.ext.todo',
+ 'sphinx.ext.mathjax',
+ 'numpydoc',
+ 'sphinx.ext.autosummary',
+]
+
+# Add any paths that contain templates here, relative to this directory.
+templates_path = ['_templates']
+
+# The suffix(es) of source filenames.
+# You can specify multiple suffix as a list of string:
+# source_suffix = ['.rst', '.md']
+source_suffix = '.rst'
+
+# The encoding of source files.
+#source_encoding = 'utf-8-sig'
+
+# The master toctree document.
+master_doc = 'index'
+
+# General information about the project.
+project = 'openEMS'
+copyright = '2016, Thorsten Liebig'
+author = 'Thorsten Liebig'
+
+# The version info for the project you're documenting, acts as replacement for
+# |version| and |release|, also used in various other places throughout the
+# built documents.
+#
+# The short X.Y version.
+version = '0.0.34'
+# The full version, including alpha/beta/rc tags.
+release = '0.0.34'
+
+# The language for content autogenerated by Sphinx. Refer to documentation
+# for a list of supported languages.
+#
+# This is also used if you do content translation via gettext catalogs.
+# Usually you set "language" from the command line for these cases.
+language = None
+
+# There are two options for replacing |today|: either, you set today to some
+# non-false value, then it is used:
+#today = ''
+# Else, today_fmt is used as the format for a strftime call.
+#today_fmt = '%B %d, %Y'
+
+# List of patterns, relative to source directory, that match files and
+# directories to ignore when looking for source files.
+exclude_patterns = ['_build']
+
+# The reST default role (used for this markup: `text`) to use for all
+# documents.
+#default_role = None
+
+# If true, '()' will be appended to :func: etc. cross-reference text.
+#add_function_parentheses = True
+
+# If true, the current module name will be prepended to all description
+# unit titles (such as .. function::).
+#add_module_names = True
+
+# If true, sectionauthor and moduleauthor directives will be shown in the
+# output. They are ignored by default.
+#show_authors = False
+
+# The name of the Pygments (syntax highlighting) style to use.
+pygments_style = 'sphinx'
+
+# A list of ignored prefixes for module index sorting.
+#modindex_common_prefix = []
+
+# If true, keep warnings as "system message" paragraphs in the built documents.
+#keep_warnings = False
+
+# If true, `todo` and `todoList` produce output, else they produce nothing.
+todo_include_todos = True
+
+
+# -- Options for HTML output ----------------------------------------------
+
+# The theme to use for HTML and HTML Help pages. See the documentation for
+# a list of builtin themes.
+html_theme = 'sphinx_rtd_theme'
+
+# Theme options are theme-specific and customize the look and feel of a theme
+# further. For a list of options available for each theme, see the
+# documentation.
+#html_theme_options = {}
+
+# Add any paths that contain custom themes here, relative to this directory.
+#html_theme_path = []
+
+# The name for this set of Sphinx documents. If None, it defaults to
+# "<project> v<release> documentation".
+#html_title = None
+
+# A shorter title for the navigation bar. Default is the same as html_title.
+#html_short_title = None
+
+# The name of an image file (relative to this directory) to place at the top
+# of the sidebar.
+#html_logo = None
+
+# The name of an image file (relative to this directory) to use as a favicon of
+# the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
+# pixels large.
+#html_favicon = None
+
+# Add any paths that contain custom static files (such as style sheets) here,
+# relative to this directory. They are copied after the builtin static files,
+# so a file named "default.css" will overwrite the builtin "default.css".
+html_static_path = ['_static']
+
+# Add any extra paths that contain custom files (such as robots.txt or
+# .htaccess) here, relative to this directory. These files are copied
+# directly to the root of the documentation.
+#html_extra_path = []
+
+# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
+# using the given strftime format.
+#html_last_updated_fmt = '%b %d, %Y'
+
+# If true, SmartyPants will be used to convert quotes and dashes to
+# typographically correct entities.
+#html_use_smartypants = True
+
+# Custom sidebar templates, maps document names to template names.
+#html_sidebars = {}
+
+# Additional templates that should be rendered to pages, maps page names to
+# template names.
+#html_additional_pages = {}
+
+# If false, no module index is generated.
+#html_domain_indices = True
+
+# If false, no index is generated.
+#html_use_index = True
+
+# If true, the index is split into individual pages for each letter.
+#html_split_index = False
+
+# If true, links to the reST sources are added to the pages.
+#html_show_sourcelink = True
+
+# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
+#html_show_sphinx = True
+
+# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
+#html_show_copyright = True
+
+# If true, an OpenSearch description file will be output, and all pages will
+# contain a <link> tag referring to it. The value of this option must be the
+# base URL from which the finished HTML is served.
+#html_use_opensearch = ''
+
+# This is the file name suffix for HTML files (e.g. ".xhtml").
+#html_file_suffix = None
+
+# Language to be used for generating the HTML full-text search index.
+# Sphinx supports the following languages:
+# 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja'
+# 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr'
+#html_search_language = 'en'
+
+# A dictionary with options for the search language support, empty by default.
+# Now only 'ja' uses this config value
+#html_search_options = {'type': 'default'}
+
+# The name of a javascript file (relative to the configuration directory) that
+# implements a search results scorer. If empty, the default will be used.
+#html_search_scorer = 'scorer.js'
+
+# Output file base name for HTML help builder.
+htmlhelp_basename = 'openEMSdoc'
+
+# -- Options for LaTeX output ---------------------------------------------
+
+latex_elements = {
+# The paper size ('letterpaper' or 'a4paper').
+#'papersize': 'letterpaper',
+
+# The font size ('10pt', '11pt' or '12pt').
+#'pointsize': '10pt',
+
+# Additional stuff for the LaTeX preamble.
+#'preamble': '',
+
+# Latex figure (float) alignment
+#'figure_align': 'htbp',
+}
+
+# Grouping the document tree into LaTeX files. List of tuples
+# (source start file, target name, title,
+# author, documentclass [howto, manual, or own class]).
+latex_documents = [
+ (master_doc, 'openEMS.tex', 'openEMS Documentation',
+ 'Thorsten Liebig', 'manual'),
+]
+
+# The name of an image file (relative to this directory) to place at the top of
+# the title page.
+#latex_logo = None
+
+# For "manual" documents, if this is true, then toplevel headings are parts,
+# not chapters.
+#latex_use_parts = False
+
+# If true, show page references after internal links.
+#latex_show_pagerefs = False
+
+# If true, show URL addresses after external links.
+#latex_show_urls = False
+
+# Documents to append as an appendix to all manuals.
+#latex_appendices = []
+
+# If false, no module index is generated.
+#latex_domain_indices = True
+
+
+# -- Options for manual page output ---------------------------------------
+
+# One entry per manual page. List of tuples
+# (source start file, name, description, authors, manual section).
+man_pages = [
+ (master_doc, 'openems', 'openEMS Documentation',
+ [author], 1)
+]
+
+# If true, show URL addresses after external links.
+#man_show_urls = False
+
+
+# -- Options for Texinfo output -------------------------------------------
+
+# Grouping the document tree into Texinfo files. List of tuples
+# (source start file, target name, title, author,
+# dir menu entry, description, category)
+texinfo_documents = [
+ (master_doc, 'openEMS', 'openEMS Documentation',
+ author, 'openEMS', 'One line description of project.',
+ 'Miscellaneous'),
+]
+
+# Documents to append as an appendix to all manuals.
+#texinfo_appendices = []
+
+# If false, no module index is generated.
+#texinfo_domain_indices = True
+
+# How to display URL addresses: 'footnote', 'no', or 'inline'.
+#texinfo_show_urls = 'footnote'
+
+# If true, do not generate a @detailmenu in the "Top" node's menu.
+#texinfo_no_detailmenu = False
+
+numpydoc_show_class_members = False
+
+# Example configuration for intersphinx: refer to the Python standard library.
+intersphinx_mapping = {'CSXCAD': ('http://openems.de/doc/CSXCAD/', None)}
diff --git a/openEMS/python/doc/convert_tutorials.py b/openEMS/python/doc/convert_tutorials.py
new file mode 100755
index 0000000..009937b
--- /dev/null
+++ b/openEMS/python/doc/convert_tutorials.py
@@ -0,0 +1,63 @@
+#!/usr/bin/python3
+# -*- coding: utf-8 -*-
+"""
+Created on Sat Sep 10 17:12:53 2016
+
+@author: thorsten
+"""
+
+import os
+import glob
+
+DOC_DIR = os.path.dirname(__file__)
+ROOT_DIR = os.path.join(DOC_DIR, '..')
+
+def main():
+ in_path = os.path.join(ROOT_DIR, 'Tutorials')
+
+ fns = glob.glob(os.path.join(in_path, '*.py'))
+
+ for fn in fns:
+ bn = os.path.basename(fn)
+ out_fn = os.path.join(DOC_DIR, 'Tutorials', '__' + bn.replace('.py', '.txt'))
+
+ in_code_block = False
+ in_ignore_block = False
+ out_fh = open(out_fn, 'w')
+ for line in open(fn, 'r'):
+ if in_ignore_block==False and line.startswith('"""'):
+ in_ignore_block = True
+ in_code_block = False
+ continue
+ elif in_ignore_block==True and line.startswith('"""'):
+ in_ignore_block = False
+ in_code_block = False
+ continue
+ elif in_ignore_block==True:
+ in_code_block = False
+ continue
+ elif line.startswith('# -*-'):
+ continue
+ elif not line.startswith('##'):
+ if not in_code_block:
+ if len(line.strip())==0:
+ continue
+ out_fh.write('\n.. code-block:: python\n\n')
+ in_code_block = True
+ out_fh.write(' ' + line)
+ elif line.startswith('###'):
+ if in_code_block:
+ out_fh.write('\n')
+ in_code_block = False
+ line = line.replace('#','').strip()
+ out_fh.write('**' + line + '**\n\n')
+# out_fh.write('"'*len(line) + '\n')
+ elif line.startswith('##'):
+ if in_code_block:
+ out_fh.write('\n')
+ in_code_block = False
+ out_fh.write(line.replace('#','').strip() + '\n')
+ out_fh.close()
+
+if __name__ == '__main__':
+ main()
diff --git a/openEMS/python/doc/index.rst b/openEMS/python/doc/index.rst
new file mode 100644
index 0000000..f4cb9ea
--- /dev/null
+++ b/openEMS/python/doc/index.rst
@@ -0,0 +1,24 @@
+.. openEMS documentation master file, created by
+ sphinx-quickstart on Thu Sep 8 20:42:18 2016.
+ You can adapt this file completely to your liking, but it should at least
+ contain the root `toctree` directive.
+
+Welcome to openEMS's documentation!
+===================================
+
+Contents:
+
+.. toctree::
+ :maxdepth: 3
+
+ Tutorials/index
+ openEMS_API
+
+
+Indices and tables
+==================
+
+* :ref:`genindex`
+* :ref:`modindex`
+* :ref:`search`
+
diff --git a/openEMS/python/doc/nf2ff.rst b/openEMS/python/doc/nf2ff.rst
new file mode 100644
index 0000000..c4fbb01
--- /dev/null
+++ b/openEMS/python/doc/nf2ff.rst
@@ -0,0 +1,16 @@
+.. _nf2ff:
+
+NF2FF
+-----
+
+.. automodule:: openEMS.nf2ff
+
+ NF2FF
+ -----
+ .. autoclass:: nf2ff
+ :members:
+
+ NF2FF Results
+ -----------------
+ .. autoclass:: nf2ff_results
+ :members:
diff --git a/openEMS/python/doc/openEMS.rst b/openEMS/python/doc/openEMS.rst
new file mode 100644
index 0000000..c73dece
--- /dev/null
+++ b/openEMS/python/doc/openEMS.rst
@@ -0,0 +1,8 @@
+.. _openems:
+
+openEMS
+-------
+
+.. automodule:: openEMS
+ :members: openEMS
+ :undoc-members:
diff --git a/openEMS/python/doc/openEMS_API.rst b/openEMS/python/doc/openEMS_API.rst
new file mode 100644
index 0000000..ae7e381
--- /dev/null
+++ b/openEMS/python/doc/openEMS_API.rst
@@ -0,0 +1,11 @@
+.. _openems_api:
+
+openEMS Python Interface
+========================
+
+.. toctree::
+
+ openEMS
+ ports
+ nf2ff
+
diff --git a/openEMS/python/doc/ports.rst b/openEMS/python/doc/ports.rst
new file mode 100644
index 0000000..79971e6
--- /dev/null
+++ b/openEMS/python/doc/ports.rst
@@ -0,0 +1,37 @@
+.. _ports:
+
+Ports
+-----
+
+.. automodule:: openEMS.ports
+
+ Port (Base Class)
+ -----------------
+ .. autoclass:: Port
+ :members:
+ :show-inheritance:
+
+ Lumped Port
+ -----------
+ .. autoclass:: LumpedPort
+ :members:
+ :show-inheritance:
+
+ MSL Port
+ --------
+ .. autoclass:: MSLPort
+ :members:
+ :show-inheritance:
+
+ Waveguide Port
+ --------------
+ .. autoclass:: WaveguidePort
+ :members:
+ :show-inheritance:
+
+ Rect Waveguide Port
+ -------------------
+ .. autoclass:: RectWGPort
+ :members:
+ :show-inheritance:
+
diff --git a/openEMS/python/openEMS/__init__.py b/openEMS/python/openEMS/__init__.py
new file mode 100644
index 0000000..fb1ddb9
--- /dev/null
+++ b/openEMS/python/openEMS/__init__.py
@@ -0,0 +1,4 @@
+# -*- coding: utf-8 -*-
+#
+# Shortcut openEMS import
+from openEMS.openEMS import openEMS
diff --git a/openEMS/python/openEMS/_nf2ff.pxd b/openEMS/python/openEMS/_nf2ff.pxd
new file mode 100644
index 0000000..7e1b764
--- /dev/null
+++ b/openEMS/python/openEMS/_nf2ff.pxd
@@ -0,0 +1,49 @@
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+#
+
+from libcpp.string cimport string
+from libcpp.vector cimport vector
+from libcpp.complex cimport complex
+from libcpp cimport bool
+cimport cython.numeric
+
+cdef extern from "openEMS/nf2ff.h":
+ cdef cppclass cpp_nf2ff "nf2ff":
+ cpp_nf2ff(vector[float] freq, vector[float] theta, vector[float] phi, vector[float] center, unsigned int numThreads) except +
+
+ bool AnalyseFile(string E_Field_file, string H_Field_file)
+
+ void SetRadius(float radius)
+ void SetPermittivity(vector[float] permittivity);
+ void SetPermeability(vector[float] permeability);
+
+ void SetMirror(int _type, int _dir, float pos);
+
+ double GetTotalRadPower(size_t f_idx)
+ double GetMaxDirectivity(size_t f_idx)
+
+ complex[double]** GetETheta(size_t f_idx)
+ complex[double]** GetEPhi(size_t f_idx)
+ double** GetRadPower(size_t f_idx)
+
+ bool Write2HDF5(string filename)
+
+ void SetVerboseLevel(int level)
+
+cdef class _nf2ff:
+ cdef cpp_nf2ff *thisptr
diff --git a/openEMS/python/openEMS/_nf2ff.pyx b/openEMS/python/openEMS/_nf2ff.pyx
new file mode 100644
index 0000000..8016694
--- /dev/null
+++ b/openEMS/python/openEMS/_nf2ff.pyx
@@ -0,0 +1,59 @@
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+#
+
+cimport _nf2ff
+import numpy as np
+import os
+from CSXCAD.Utilities import CheckNyDir
+
+cdef class _nf2ff:
+ def __cinit__(self, freq, theta, phi, center, numThreads=0, **kw):
+ if type(freq) in [float, int]:
+ freq = list(float(freq))
+ if type(theta) in [float, int]:
+ theta = list(float(theta))
+ if type(phi) in [float, int]:
+ phi = list(float(phi))
+ self.thisptr = new cpp_nf2ff(freq, theta, phi, center, numThreads)
+
+ if 'verbose' in kw:
+ self.SetVerboseLevel(kw['verbose'])
+ del kw['verbose']
+
+ assert len(kw)==0, 'Unknown keyword(s): {}'.format(kw)
+
+ def AnalyseFile(self, e_file, h_file):
+ assert os.path.exists(e_file)
+ assert os.path.exists(h_file)
+ return self.thisptr.AnalyseFile(e_file.encode('UTF-8'), h_file.encode('UTF-8'))
+
+ def SetMirror(self, mirr_type, ny, pos):
+ if mirr_type<=0:
+ return
+ assert mirr_type<3
+ ny = CheckNyDir(ny)
+ self.thisptr.SetMirror(mirr_type, ny, pos)
+
+ def SetRadius(self, radius):
+ self.thisptr.SetRadius(radius)
+
+ def Write2HDF5(self, filename):
+ return self.thisptr.Write2HDF5(filename.encode('UTF-8'))
+
+ def SetVerboseLevel(self, level):
+ self.thisptr.SetVerboseLevel(level)
diff --git a/openEMS/python/openEMS/automesh.py b/openEMS/python/openEMS/automesh.py
new file mode 100644
index 0000000..93472fa
--- /dev/null
+++ b/openEMS/python/openEMS/automesh.py
@@ -0,0 +1,77 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Sun Feb 19 20:29:25 2017
+
+@author: thorsten
+"""
+
+import sys
+import numpy as np
+
+from CSXCAD import CSPrimitives
+from CSXCAD.Utilities import CheckNyDir, GetMultiDirs
+
+def mesh_hint_from_primitive(primitive, dirs, **kw):
+ if primitive.GetType() is CSPrimitives.POINT:
+ return mesh_hint_from_point(primitive, dirs, **kw)
+ if primitive.GetType() is CSPrimitives.BOX:
+ return mesh_hint_from_box(primitive, dirs, **kw)
+ else:
+ return None
+
+def mesh_hint_from_point(point, dirs, **kw):
+ """ mesh_hint_from_point(point, dirs)
+
+ Get a grid hint for the coordinates of the point.
+
+ :param dirs: str -- 'x','y','z' or 'xy', 'yz' or 'xyz' or 'all'
+ :returns: (3,) list of mesh hints
+ """
+ hint = [None, None, None]
+ coord = point.GetCoord()
+ for ny in GetMultiDirs(dirs):
+ hint[ny] = [coord[ny],]
+ return hint
+
+def mesh_hint_from_box(box, dirs, **kw):
+ """ mesh_hint_from_box(box, dirs, metal_edge_res=None, **kw)
+
+ Get a grid hint for the edges of the given box with an an optional 2D metal
+ edge resolution.
+
+ :param dirs: str -- 'x','y','z' or 'xy', 'yz' or 'xyz' or 'all'
+ :param metal_edge_res: float -- 2D flat edge resolution
+ :returns: (3,) list of mesh hints
+ """
+ metal_edge_res = kw.get('metal_edge_res', None)
+ up_dir = kw.get('up_dir' , True)
+ down_dir = kw.get('down_dir', True)
+
+ if metal_edge_res is None:
+ mer = 0
+ else:
+ mer = np.array([-1.0, 2.0])/3 * metal_edge_res
+ if box.HasTransform():
+ sys.stderr.write('FDTD::automesh: Warning, cannot add edges to grid with transformations enabled\n')
+ return
+ hint = [None, None, None]
+ start = np.fmin(box.GetStart(), box.GetStop())
+ stop = np.fmax(box.GetStart(), box.GetStop())
+ for ny in GetMultiDirs(dirs):
+ hint[ny] = []
+ if metal_edge_res is not None and stop[ny]-start[ny]>metal_edge_res:
+ if down_dir:
+ hint[ny].append(start[ny]-mer[0])
+ hint[ny].append(start[ny]-mer[1])
+ if up_dir:
+ hint[ny].append(stop[ny]+mer[0])
+ hint[ny].append(stop[ny]+mer[1])
+ elif stop[ny]-start[ny]:
+ if down_dir:
+ hint[ny].append(start[ny])
+ if up_dir:
+ hint[ny].append(stop[ny])
+ else:
+ hint[ny].append(start[ny])
+ return hint
+
diff --git a/openEMS/python/openEMS/nf2ff.py b/openEMS/python/openEMS/nf2ff.py
new file mode 100644
index 0000000..b6d38d0
--- /dev/null
+++ b/openEMS/python/openEMS/nf2ff.py
@@ -0,0 +1,210 @@
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+#
+
+import os
+import numpy as np
+import h5py
+from openEMS import _nf2ff
+from openEMS import utilities
+
+class nf2ff:
+ """
+ Create an nf2ff recording box. The nf2ff can either record in time-domain
+ or frequency-domain. Further more certain directions and boundary condition
+ mirroring can be enabled/disabled.
+
+ :param name: str -- Name for this recording box.
+ :param start/stop: (3,) array -- Box start/stop coordinates.
+ :param directions: (6,) bool array -- Enable/Disables directions.
+ :param mirror: (6,) int array -- 0 (Off), 1 (PEC) or 2 (PMC) boundary mirroring
+ :param frequency: array like -- List of frequencies (FD-domain recording)
+ """
+ def __init__(self, CSX, name, start, stop, **kw):
+ self.CSX = CSX
+ self.name = name
+ self.start = start
+ self.stop = stop
+
+ self.freq = None
+ self.theta = None
+ self.phi = None
+ self.center = None
+
+ self.directions = [True]*6 # all directions by default
+ if 'directions' in kw:
+ self.directions = kw['directions']
+ del kw['directions']
+ assert len(self.directions)==6
+
+ self.mirror = [0]*6
+ if 'mirror' in kw:
+ self.mirror = kw['mirror']
+ del kw['mirror']
+ assert len(self.mirror)==6
+
+ self.dump_type = 0 # default Et/Ht
+ self.dump_mode = 1 # default cell interpolated
+
+ self.freq = None # broadband recording by defualt
+ if 'frequency' in kw:
+ self.freq = kw['frequency']
+ del kw['frequency']
+ self.dump_type = 10 # Ef/Hf
+
+ if np.isscalar(self.freq):
+ self.freq = [self.freq]
+
+ self.e_file = '{}_E'.format(self.name)
+ self.h_file = '{}_H'.format(self.name)
+
+ self.e_dump = CSX.AddDump(self.e_file, dump_type=self.dump_type , dump_mode=self.dump_mode, file_type=1, **kw)
+ self.h_dump = CSX.AddDump(self.h_file, dump_type=self.dump_type+1, dump_mode=self.dump_mode, file_type=1, **kw)
+ if self.freq is not None:
+ self.e_dump.SetFrequency(self.freq)
+ self.h_dump.SetFrequency(self.freq)
+
+# print(self.directions)
+ for ny in range(3):
+ pos = 2*ny
+ if self.directions[pos]:
+ l_start = np.array(start)
+ l_stop = np.array(stop)
+ l_stop[ny] = l_start[ny]
+ self.e_dump.AddBox(l_start, l_stop)
+ self.h_dump.AddBox(l_start, l_stop)
+ if self.directions[pos+1]:
+ l_start = np.array(start)
+ l_stop = np.array(stop)
+ l_start[ny] = l_stop[ny]
+ self.e_dump.AddBox(l_start, l_stop)
+ self.h_dump.AddBox(l_start, l_stop)
+
+ def CalcNF2FF(self, sim_path, freq, theta, phi, radius=1, center=[0,0,0], outfile=None, read_cached=False, verbose=0):
+ """ CalcNF2FF(sim_path, freq, theta, phi, center=[0,0,0], outfile=None, read_cached=True, verbose=0):
+
+ Calculate the far-field after the simulation is done.
+
+ :param sim_path: str -- Simulation path
+ :param freq: array like -- list of frequency for transformation
+ :param theta/phi: array like -- Theta/Phi angles to calculate the far-field
+ :param radius: float -- Radius to calculate the far-field (default is 1m)
+ :param center: (3,) array -- phase center, must be inside the recording box
+ :param outfile: str -- File to save results in. (defaults to recording name)
+ :param read_cached: bool -- enable/disable read already existing results (default off)
+ :param verbose: int -- set verbose level (default 0)
+
+ :returns: nf2ff_results class instance
+ """
+ if np.isscalar(freq):
+ freq = [freq]
+ self.freq = freq
+ if np.isscalar(theta):
+ theta = [theta]
+ self.theta = theta
+ if np.isscalar(phi):
+ phi = [phi]
+ self.phi = phi
+ self.center = center
+
+ if outfile is None:
+ fn = os.path.join(sim_path, self.name + '.h5')
+ else:
+ fn = os.path.join(sim_path, outfile)
+ if not read_cached or not os.path.exists(fn):
+ nfc = _nf2ff._nf2ff(self.freq, np.deg2rad(theta), np.deg2rad(phi), center, verbose=verbose)
+
+ for ny in range(3):
+ nfc.SetMirror(self.mirror[2*ny] , ny, self.start[ny])
+ nfc.SetMirror(self.mirror[2*ny+1], ny, self.stop[ny])
+
+ nfc.SetRadius(radius)
+
+ for n in range(6):
+ fn_e = os.path.join(sim_path, self.e_file + '_{}.h5'.format(n))
+ fn_h = os.path.join(sim_path, self.h_file + '_{}.h5'.format(n))
+ if os.path.exists(fn_e) and os.path.exists(fn_h):
+ assert nfc.AnalyseFile(fn_e, fn_h)
+
+ nfc.Write2HDF5(fn)
+
+ result = nf2ff_results(fn)
+ if result.phi is not None:
+ assert np.abs((result.r-radius)/radius)<1e-6, 'Radius does not match. Did you read an invalid chached result? Try "read_cached=False"'
+ assert utilities.Check_Array_Equal(np.rad2deg(result.theta), self.theta, 1e-4), 'Theta array does not match. Did you read an invalid chached result? Try "read_cached=False"'
+ assert utilities.Check_Array_Equal(np.rad2deg(result.phi), self.phi, 1e-4), 'Phi array does not match. Did you read an invalid chached result? Try "read_cached=False"'
+ assert utilities.Check_Array_Equal(result.freq, self.freq, 1e-6, relative=True), 'Frequency array does not match. Did you read an invalid chached result? Try "read_cached=False"'
+ return result
+
+class nf2ff_results:
+ """
+ nf2ff result class containing all results obtained by the nf2ff calculation.
+ Usueally returned from nf2ff.CalcNF2FF
+
+ Available attributes:
+
+ * `fn` : file name
+ * `theta`: theta angles
+ * `phi` : phi angles
+ * `r` : radius
+ * `freq` : frequencies
+ * `Dmax` : directivity over frequency
+ * `Prad` : total radiated power over frequency
+
+ * `E_theta` : theta component of electric field over frequency/theta/phi
+ * `E_phi` : phi component of electric field over frequency/theta/phi
+ * `E_norm` : abs component of electric field over frequency/theta/phi
+ * `E_cprh` : theta component of electric field over frequency/theta/phi
+ * `E_cplh` : theta component of electric field over frequency/theta/phi
+ * `P_rad` : radiated power (S) over frequency/theta/phi
+ """
+ def __init__(self, fn):
+ self.fn = fn
+ h5_file = h5py.File(fn, 'r')
+ mesh_grp = h5_file['Mesh']
+ self.phi = np.array(mesh_grp['phi'])
+ self.theta = np.array(mesh_grp['theta'])
+ self.r = np.array(mesh_grp['r'])
+
+ data = h5_file['nf2ff']
+ self.freq = np.array(data.attrs['Frequency'])
+
+ self.Dmax = np.array(data.attrs['Dmax'])
+ self.Prad = np.array(data.attrs['Prad'])
+
+ THETA, PHI = np.meshgrid(self.theta, self.phi, indexing='ij')
+ cos_phi = np.cos(PHI)
+ sin_phi = np.sin(PHI)
+
+ self.E_theta = []
+ self.E_phi = []
+ self.P_rad = []
+ self.E_norm = []
+ self.E_cprh = []
+ self.E_cplh = []
+ for n in range(len(self.freq)):
+ E_theta = np.array(h5_file['/nf2ff/E_theta/FD/f{}_real'.format(n)]) + 1j*np.array(h5_file['/nf2ff/E_theta/FD/f{}_imag'.format(n)])
+ E_theta = np.swapaxes(E_theta, 0, 1)
+ E_phi = np.array(h5_file['/nf2ff/E_phi/FD/f{}_real'.format(n)]) + 1j*np.array(h5_file['/nf2ff/E_phi/FD/f{}_imag'.format(n)])
+ E_phi = np.swapaxes(E_phi, 0, 1)
+ self.P_rad .append(np.swapaxes(np.array(h5_file['/nf2ff/P_rad/FD/f{}'.format(n)]), 0, 1))
+
+ self.E_theta.append(E_theta)
+ self.E_phi .append(E_phi)
+ self.E_norm .append(np.sqrt(np.abs(E_theta)**2 + np.abs(E_phi)**2))
+ self.E_cprh .append((cos_phi+1j*sin_phi) * (E_theta+1j*E_phi)/np.sqrt(2.0))
+ self.E_cplh .append((cos_phi-1j*sin_phi) * (E_theta-1j*E_phi)/np.sqrt(2.0))
diff --git a/openEMS/python/openEMS/openEMS.pxd b/openEMS/python/openEMS/openEMS.pxd
new file mode 100644
index 0000000..a307152
--- /dev/null
+++ b/openEMS/python/openEMS/openEMS.pxd
@@ -0,0 +1,65 @@
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+#
+
+from libcpp.string cimport string
+from libcpp cimport bool
+
+from CSXCAD.CSXCAD cimport _ContinuousStructure, ContinuousStructure
+
+cdef extern from "openEMS/openems.h":
+ cdef cppclass _openEMS "openEMS":
+ _openEMS() except +
+ void SetNumberOfTimeSteps(unsigned int val)
+ void SetCSX(_ContinuousStructure* csx)
+
+ void SetEndCriteria(double val)
+ void SetOverSampling(int val)
+ void SetCellConstantMaterial(bool val)
+
+ void SetCylinderCoords(bool val)
+ void SetupCylinderMultiGrid(string val)
+
+ void SetTimeStepMethod(int val)
+ void SetTimeStep(double val)
+ void SetTimeStepFactor(double val)
+ void SetMaxTime(double val)
+
+ void SetNumberOfThreads(int val)
+
+ void Set_BC_Type(int idx, int _type)
+ int Get_BC_Type(int idx)
+ void Set_BC_PML(int idx, unsigned int size)
+ int Get_PML_Size(int idx)
+ void Set_Mur_PhaseVel(int idx, double val)
+
+ void SetGaussExcite(double f0, double fc)
+
+ void SetVerboseLevel(int level)
+ void DebugPEC()
+ void DebugMaterial()
+ void DebugCSX()
+
+ int SetupFDTD()
+ void RunFDTD()
+
+ @staticmethod
+ void WelcomeScreen()
+
+cdef class openEMS:
+ cdef _openEMS *thisptr
+ cdef readonly ContinuousStructure __CSX # hold a C++ instance which we're wrapping
diff --git a/openEMS/python/openEMS/openEMS.pyx b/openEMS/python/openEMS/openEMS.pyx
new file mode 100644
index 0000000..bb41bff
--- /dev/null
+++ b/openEMS/python/openEMS/openEMS.pyx
@@ -0,0 +1,447 @@
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+#
+
+import os, sys, shutil
+import numpy as np
+cimport openEMS
+from . import ports, nf2ff, automesh
+
+from CSXCAD.Utilities import GetMultiDirs
+
+cdef class openEMS:
+ """ openEMS
+
+ This class is the main control class for the FDTD options and setup and
+ to run the final simulation.
+
+ Examples
+ --------
+
+ >>> CSX = CSXCAD.ContinuousStructure()
+ >>>
+ >>> grid = CSX.GetGrid()
+ >>> grid.SetLines('x', np.arange(-50,50,1))
+ >>> grid.SetLines('y', np.arange(-50,50,1))
+ >>> grid.SetLines('z', np.arange(-2,2.1,1))
+ >>> grid.SetDeltaUnit(1e-3)
+ >>>
+ >>> FDTD = openEMS(NrTS=1e4, EndCriteria=1e-4)
+ >>>
+ >>> FDTD.SetCSX(CSX)
+ >>> FDTD.SetBoundaryCond(['PML_8', 'PML_8', 'PML_8', 'PML_8', 'PEC', 'PEC'])
+ >>> FDTD.SetGaussExcite(0, 10e9)
+ >>>
+ >>> FDTD.AddLumpedPort(port_nr=1, R=50, start=[10, 0, -2], stop=[10, 0, 2], p_dir='z', excite=1)
+ >>>
+ >>> FDTD.Run(sim_path='/tmp/test')
+
+ :param NrTS: max. number of timesteps to simulate (e.g. default=1e9)
+ :param EndCriteria: end criteria, e.g. 1e-5, simulations stops if energy has decayed by this value (<1e-4 is recommended, default=1e-5)
+ :param MaxTime: max. real time in seconds to simulate
+ :param OverSampling: nyquist oversampling of time domain dumps
+ :param CoordSystem: choose coordinate system (0 Cartesian, 1 Cylindrical)
+ :param MultiGrid: define a cylindrical sub-grid radius
+ :param TimeStep: force to use a given timestep (dangerous!)
+ :param TimeStepFactor: reduce the timestep by a given factor (>0 to <=1)
+ :param TimeStepMethod: 1 or 3 chose timestep method (1=CFL, 3=Rennigs (default))
+ :param CellConstantMaterial: set to 1 to assume a material is constant inside a cell (material probing in cell center)
+ """
+ @staticmethod
+ def WelcomeScreen():
+ """
+ Show the openEMS welcome screen.
+ """
+ _openEMS.WelcomeScreen()
+
+ def __cinit__(self, *args, **kw):
+ self.thisptr = new _openEMS()
+ self.__CSX = None
+
+ if 'NrTS' in kw:
+ self.SetNumberOfTimeSteps(kw['NrTS'])
+ del kw['NrTS']
+ else:
+ self.SetNumberOfTimeSteps(1e9)
+ if 'EndCriteria' in kw:
+ self.SetEndCriteria(kw['EndCriteria'])
+ del kw['EndCriteria']
+ if 'MaxTime' in kw:
+ self.SetMaxTime(kw['MaxTime'])
+ del kw['MaxTime']
+ if 'OverSampling' in kw:
+ self.SetOverSampling(kw['OverSampling'])
+ del kw['OverSampling']
+ if 'CoordSystem' in kw:
+ self.SetCoordSystem(kw['CoordSystem'])
+ del kw['CoordSystem']
+ if 'TimeStep' in kw:
+ self.SetTimeStep(kw['TimeStep'])
+ del kw['TimeStep']
+ if 'TimeStepFactor' in kw:
+ self.SetTimeStepFactor(kw['TimeStepFactor'])
+ del kw['TimeStepFactor']
+ if 'TimeStepMethod' in kw:
+ self.SetTimeStepMethod(kw['TimeStepMethod'])
+ del kw['TimeStepMethod']
+ if 'CellConstantMaterial' in kw:
+ self.SetCellConstantMaterial(kw['CellConstantMaterial'])
+ del kw['CellConstantMaterial']
+ if 'MultiGrid' in kw:
+ self.SetMultiGrid(kw['MultiGrid'])
+ del kw['MultiGrid']
+
+ assert len(kw)==0, 'Unknown keyword arguments: "{}"'.format(kw)
+
+ def __dealloc__(self):
+ del self.thisptr
+ if self.__CSX is not None:
+ self.__CSX.thisptr = NULL
+
+ def SetNumberOfTimeSteps(self, val):
+ """ SetNumberOfTimeSteps(val)
+
+ Set the number of timesteps. E.g. 5e4 (default is 1e9)
+ """
+ self.thisptr.SetNumberOfTimeSteps(val)
+
+ def SetEndCriteria(self, val):
+ """ SetEndCriteria(val)
+
+ Set the end critera value. E.g. 1e-6 for -60dB
+ """
+ self.thisptr.SetEndCriteria(val)
+
+ def SetOverSampling(self, val):
+ """ SetOverSampling(val)
+
+ Set the time domain signal oversampling as multiple of the Nyquist-rate.
+ """
+ self.thisptr.SetOverSampling(val)
+
+ def SetCellConstantMaterial(self, val):
+ """ SetCellConstantMaterial(val)
+
+ Set cell material averaging to assume constant material inside each primary cell. (Advanced option)
+
+ :param val: bool -- Enable or Disable (default disabled)
+ """
+ self.thisptr.SetCellConstantMaterial(val)
+
+ def SetCoordSystem(self, val):
+ """ SetCoordSystem(val)
+
+ Set the coordinate system. 0 --> Cartesian (default), 1 --> cylindrical
+ """
+ assert (val==0 or val==1), 'SetCoordSystem: Invalid coordinate system'
+ if val==0:
+ self.thisptr.SetCylinderCoords(False)
+ elif val==1:
+ self.thisptr.SetCylinderCoords(True)
+
+ def SetMultiGrid(self, radii):
+ """ SetMultiGrid(radii)
+
+ Define radii at which a cylindrical multi grid should be defined.
+
+ :param radii: array like, multigrid radii
+
+ See Also
+ --------
+ openEMS.SetCylinderCoords
+ """
+ assert len(radii)>0, 'SetMultiGrid: invalid multi grid definition'
+
+ grid_str = ','.join(['{}'.format(x) for x in radii])
+ self.thisptr.SetupCylinderMultiGrid(grid_str.encode('UTF-8'))
+
+ def SetCylinderCoords(self):
+ """ SetCylinderCoords()
+
+ Enable use of cylindircal coordinates.
+
+ See Also
+ --------
+ openEMS.SetMultiGrid
+ """
+ self.thisptr.SetCylinderCoords(True)
+
+ def SetTimeStepMethod(self, val):
+ """ SetTimeStepMethod(val)
+
+ Set the time step calculation method. (Advanced option)
+
+ Options:
+
+ * 1: CFL criteria
+ * 3: Advanced Rennings criteria (default)
+
+ :param val: int -- 1 or 3 (See above)
+ """
+ self.thisptr.SetTimeStepMethod(val)
+
+ def SetTimeStep(self, val):
+ """ SetTimeStep(val)
+
+ Set/force the timestep. (Advanced option)
+
+ It is highly recommended to not use this method! You may use the
+ SetTimeStepFactor instead to reduce the time step if necessary!
+ """
+ self.thisptr.SetTimeStep(val)
+
+ def SetTimeStepFactor(self, val):
+ """ SetTimeStepFactor(val)
+
+ Set a time step factor (>0..1) to increase FDTD stability.
+
+ :param val: float -- >0..1
+ """
+ self.thisptr.SetTimeStepFactor(val)
+
+ def SetMaxTime(self, val):
+ """ SetMaxTime(val)
+
+ Set max simulation time for a max. number of timesteps.
+ """
+ self.thisptr.SetMaxTime(val)
+
+ def SetGaussExcite(self, f0, fc):
+ """ SetGaussExcite(f0, fc)
+
+ Set a Gaussian pulse as excitation signal.
+
+ :param f0: float -- Center frequency in Hz.
+ :param fc: float -- -20dB bandwidth in Hz.
+ """
+ self.thisptr.SetGaussExcite(f0, fc)
+
+
+ def SetBoundaryCond(self, BC):
+ """ SetBoundaryCond(BC)
+
+ Set the boundary conditions for all six FDTD directions.
+
+ Options:
+
+ * 0 or 'PEC' : perfect electric conductor (default)
+ * 1 or 'PMC' : perfect magnetic conductor, useful for symmetries
+ * 2 or 'MUR' : simple MUR absorbing boundary conditions
+ * 3 or 'PML-8' : PML absorbing boundary conditions
+
+ :param BC: (8,) array or list -- see options above
+ """
+ assert len(BC)==6
+ for n in range(len(BC)):
+ if type(BC[n])==int:
+ self.thisptr.Set_BC_Type(n, BC[n])
+ continue
+ if BC[n] in ['PEC', 'PMC', 'MUR']:
+ self.thisptr.Set_BC_Type(n, ['PEC', 'PMC', 'MUR'].index(BC[n]))
+ continue
+ if BC[n].startswith('PML_'):
+ size = int(BC[n].strip('PML_'))
+ self.thisptr.Set_BC_PML(n, size)
+ continue
+ raise Exception('Unknown boundary condition')
+
+ def AddLumpedPort(self, port_nr, R, start, stop, p_dir, excite=0, **kw):
+ """ AddLumpedPort(port_nr, R, start, stop, p_dir, excite=0, **kw)
+
+ Add a lumped port wit the given values and location.
+
+ See Also
+ --------
+ openEMS.ports.LumpedPort
+ """
+ assert self.__CSX is not None, 'AddLumpedPort: CSX is not set!'
+ port = ports.LumpedPort(self.__CSX, port_nr, R, start, stop, p_dir, excite, **kw)
+ edges2grid = kw.get('edges2grid', None)
+ if edges2grid is not None:
+ grid = self.__CSX.GetGrid()
+ for n in GetMultiDirs(edges2grid):
+ grid.AddLine(n, start[n])
+ if start[n] != stop[n]:
+ grid.AddLine(n, stop[n])
+ return port
+
+ def AddWaveGuidePort(self, port_nr, start, stop, p_dir, E_func, H_func, kc, excite=0, **kw):
+ """ AddWaveGuidePort(self, port_nr, start, stop, p_dir, E_func, H_func, kc, excite=0, **kw)
+
+ Add a arbitrary waveguide port.
+
+ See Also
+ --------
+ openEMS.ports.WaveguidePort
+ """
+ assert self.__CSX is not None, 'AddWaveGuidePort: CSX is not set!'
+ return ports.WaveguidePort(self.__CSX, port_nr, start, stop, p_dir, E_func, H_func, kc, excite, **kw)
+
+ def AddRectWaveGuidePort(self, port_nr, start, stop, p_dir, a, b, mode_name, excite=0, **kw):
+ """ AddRectWaveGuidePort(port_nr, start, stop, p_dir, a, b, mode_name, excite=0, **kw)
+
+ Add a rectilinear waveguide port.
+
+ See Also
+ --------
+ openEMS.ports.RectWGPort
+ """
+ assert self.__CSX is not None, 'AddRectWaveGuidePort: CSX is not set!'
+ return ports.RectWGPort(self.__CSX, port_nr, start, stop, p_dir, a, b, mode_name, excite, **kw)
+
+ def AddMSLPort(self, port_nr, metal_prop, start, stop, prop_dir, exc_dir, excite=0, **kw):
+ """ AddMSLPort(port_nr, metal_prop, start, stop, prop_dir, exc_dir, excite=0, **kw)
+
+ Add a microstrip transmission line port.
+
+ See Also
+ --------
+ openEMS.ports.MSLPort
+ """
+ assert self.__CSX is not None, 'AddMSLPort: CSX is not set!'
+ return ports.MSLPort(self.__CSX, port_nr, metal_prop, start, stop, prop_dir, exc_dir, excite, **kw)
+
+ def CreateNF2FFBox(self, name='nf2ff', start=None, stop=None, **kw):
+ """ CreateNF2FFBox(name='nf2ff', start=None, stop=None, **kw)
+
+ Create a near-field to far-field box.
+
+ This method will automatically adept the recording box to the current
+ FDTD grid and boundary conditions.
+
+ Notes
+ -----
+ * Make sure the mesh grid and all boundary conditions are finially defined.
+
+ See Also
+ --------
+ openEMS.nf2ff.nf2ff
+ """
+ assert self.__CSX is not None, 'CreateNF2FFBox: CSX is not set!'
+ directions = [True]*6
+ mirror = [0]*6
+ BC_size = [0]*6
+ BC_type = [0]*6
+ for n in range(6):
+ BC_type[n] = self.thisptr.Get_BC_Type(n)
+ if BC_type[n]==0:
+ directions[n]= False
+ mirror[n] = 1 # PEC mirror
+ elif BC_type[n]==1:
+ directions[n]= False
+ mirror[n] = 2 # PMC mirror
+ elif BC_type[n]==2:
+ BC_size[n] = 2
+ elif BC_type[n]==3:
+ BC_size[n] = self.thisptr.Get_PML_Size(n)+1
+
+ if start is None or stop is None:
+ grid = self.__CSX.GetGrid()
+ assert grid.IsValid(), 'Error::CreateNF2FFBox: Grid is invalid'
+ start = np.zeros(3)
+ stop = np.zeros(3)
+ for n in range(3):
+ l = grid.GetLines(n)
+ BC_type = self.thisptr.Get_BC_Type(2*n)
+ assert len(l)>(BC_size[2*n]+BC_size[2*n+1]), 'Error::CreateNF2FFBox: not enough lines in some direction'
+ start[n] = l[BC_size[2*n]]
+ stop[n] = l[-1*BC_size[2*n+1]-1]
+ return nf2ff.nf2ff(self.__CSX, name, start, stop, directions=directions, mirror=mirror, **kw)
+
+ def SetCSX(self, ContinuousStructure CSX):
+ """ SetCSX(CSX)
+
+ Set the CSXCAD Continuous Structure for CAD data handling.
+
+ See Also
+ --------
+ CSXCAD.ContinuousStructure
+ """
+ self.__CSX = CSX
+ self.thisptr.SetCSX(CSX.thisptr)
+
+ def GetCSX(self):
+ return self.__CSX
+
+ def AddEdges2Grid(self, dirs, primitives=None, properties=None, **kw):
+ """ AddEdges2Grid(primitives, dirs, **kw)
+
+ Add the edges of the given primitives to the FDTD grid.
+
+ :param dirs: primitives -- one or more primitives
+ :param dirs: str -- 'x','y','z' or 'xy', 'yz' or 'xyz' or 'all'
+ """
+ csx = self.GetCSX()
+ if csx is None:
+ raise Exception('AddEdges2Grid: Unable to access CSX!')
+ prim_list = []
+ if primitives is not None and type(primitives) is not list:
+ prim_list.append(primitives)
+ elif primitives is not None:
+ prim_list += primitives
+
+ if properties is not None and type(properties) is not list:
+ prim_list += properties.GetAllPrimitives()
+ elif properties is not None:
+ for prop in properties:
+ prim_list += prop.GetAllPrimitives()
+
+ grid = csx.GetGrid()
+ for prim in prim_list:
+ hint = automesh.mesh_hint_from_primitive(prim, dirs, **kw)
+ if hint is None:
+ continue
+ for n in range(3):
+ if hint[n] is None:
+ continue
+ grid.AddLine(n, hint[n])
+
+ def Run(self, sim_path, cleanup=False, setup_only=False, debug_pec=False, verbose=None, **kw):
+ """ Run(sim_path, cleanup=False, setup_only=False, verbose=None)
+
+ Run the openEMS FDTD simulation.
+
+ :param sim_path: str -- path to run in and create result data
+ :param cleanup: bool -- remove exisiting sim_path to cleanup old results
+ :param setup_only: bool -- only perform FDTD setup, do not run simulation
+ :param verbose: int -- set the openEMS verbosity level 0..3
+
+ Additional keyword parameter:
+ :param numThreads: int -- set the number of threads (default 0 --> max)
+ """
+ if cleanup and os.path.exists(sim_path):
+ shutil.rmtree(sim_path)
+ os.mkdir(sim_path)
+ if not os.path.exists(sim_path):
+ os.mkdir(sim_path)
+ cwd = os.getcwd()
+ os.chdir(sim_path)
+ if verbose is not None:
+ self.thisptr.SetVerboseLevel(verbose)
+ if debug_pec:
+ self.thisptr.DebugPEC()
+ if 'numThreads' in kw:
+ self.thisptr.SetNumberOfThreads(int(kw['numThreads']))
+ assert os.getcwd() == sim_path
+ _openEMS.WelcomeScreen()
+ cdef int EC
+ EC = self.thisptr.SetupFDTD()
+ if EC!=0:
+ print('Run: Setup failed, error code: {}'.format(EC))
+ if setup_only or EC!=0:
+ return EC
+ self.thisptr.RunFDTD()
diff --git a/openEMS/python/openEMS/physical_constants.py b/openEMS/python/openEMS/physical_constants.py
new file mode 100644
index 0000000..8f014b5
--- /dev/null
+++ b/openEMS/python/openEMS/physical_constants.py
@@ -0,0 +1,26 @@
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+#
+
+import numpy as np
+
+C0 = 299792458 # m/s
+MUE0 = 4e-7*np.pi # N/A^2
+EPS0 = 1/(MUE0*C0**2) # F/m
+
+# free space wave impedance
+Z0 = np.sqrt(MUE0/EPS0) # Ohm
diff --git a/openEMS/python/openEMS/ports.py b/openEMS/python/openEMS/ports.py
new file mode 100644
index 0000000..1af1564
--- /dev/null
+++ b/openEMS/python/openEMS/ports.py
@@ -0,0 +1,433 @@
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+#
+
+import os
+import numpy as np
+from CSXCAD.Utilities import CheckNyDir
+from openEMS import utilities
+
+from openEMS.physical_constants import *
+
+class UI_data:
+ def __init__(self, fns, path, freq, signal_type='pulse', **kw):
+ self.path = path
+ if type(fns)==str:
+ fns = [fns]
+ self.fns = fns
+
+ if np.isscalar(freq):
+ freq = [freq]
+ self.freq = freq
+
+ self.ui_time = []
+ self.ui_val = []
+ self.ui_f_val = []
+
+ for fn in fns:
+ tmp = np.loadtxt(os.path.join(path, fn),comments='%')
+ self.ui_time.append(tmp[:,0])
+ self.ui_val.append(tmp[:,1])
+ self.ui_f_val.append(utilities.DFT_time2freq(tmp[:,0], tmp[:,1], freq, signal_type=signal_type))
+
+# Port Base-Class
+class Port:
+ """
+ The port base class.
+
+ :param CSX: Continuous Structure
+ :param port_nr: int -- port number
+ :param R: float -- port reference impedance, e.g. 50 (Ohms)
+ :param start, stop: (3,) array -- Start/Stop box coordinates
+ :param p_dir: int -- port direction
+ :param excite: float -- port excitation amplitude
+ :param priority: int -- priority of all contained primtives
+ :param PortNamePrefix: str -- a prefix for all ports-names
+ :param delay: float -- a positiv delay value to e.g. emulate a phase shift
+ """
+ def __init__(self, CSX, port_nr, start, stop, excite, **kw):
+ self.CSX = CSX
+ self.number = port_nr
+ self.excite = excite
+ self.start = np.array(start, np.float)
+ self.stop = np.array(stop, np.float)
+ self.Z_ref = None
+ self.U_filenames = kw.get('U_filenames', [])
+ self.I_filenames = kw.get('I_filenames', [])
+
+ self.priority = 0
+ if 'priority' in kw:
+ self.priority = kw['priority']
+
+ self.prefix = ''
+ if 'PortNamePrefix' in kw:
+ self.prefix = kw['PortNamePrefix']
+ self.delay = 0
+
+ if 'delay' in kw:
+ self.delay = kw['delay']
+
+ self.lbl_temp = self.prefix + 'port_{}' + '_{}'.format(self.number)
+
+ def ReadUIData(self, sim_path, freq, signal_type ='pulse'):
+ self.u_data = UI_data(self.U_filenames, sim_path, freq, signal_type )
+ self.uf_tot = 0
+ self.ut_tot = 0
+ for n in range(len(self.U_filenames)):
+ self.uf_tot += self.u_data.ui_f_val[n]
+ self.ut_tot += self.u_data.ui_val[n]
+
+ self.i_data = UI_data(self.I_filenames, sim_path, freq, signal_type )
+ self.if_tot = 0
+ self.it_tot = 0
+ for n in range(len(self.U_filenames)):
+ self.if_tot += self.i_data.ui_f_val[n]
+ self.it_tot += self.i_data.ui_val[n]
+
+
+ def CalcPort(self, sim_path, freq, ref_impedance=None, ref_plane_shift=None, signal_type='pulse'):
+ self.ReadUIData(sim_path, freq, signal_type)
+
+ if ref_impedance is not None:
+ self.Z_ref = ref_impedance
+ assert self.Z_ref is not None
+
+ if ref_plane_shift is not None:
+ assert hasattr(self, 'beta')
+ shift = ref_plane_shift
+ if self.measplane_shift:
+ shift -= self.measplane_shift
+ shift *= self.CSX.GetGrid().GetDeltaUnit()
+ phase = np.real(self.beta)*shift
+ uf_tot = self.uf_tot * np.cos(-phase) + 1j * self.if_tot * self.Z_ref * np.sin(-phase)
+ if_tot = self.if_tot * np.cos(-phase) + 1j * self.uf_tot / self.Z_ref * np.sin(-phase)
+ self.uf_tot = uf_tot
+ self.if_tot = if_tot
+
+ self.uf_inc = 0.5 * ( self.uf_tot + self.if_tot * self.Z_ref )
+ self.if_inc = 0.5 * ( self.if_tot + self.uf_tot / self.Z_ref )
+ self.uf_ref = self.uf_tot - self.uf_inc
+ self.if_ref = self.if_inc - self.if_tot
+
+ if type(self.Z_ref) == float:
+ self.ut_inc = 0.5 * ( self.ut_tot + self.it_tot * self.Z_ref )
+ self.it_inc = 0.5 * ( self.it_tot + self.ut_tot / self.Z_ref )
+ self.ut_ref = self.ut_tot - self.ut_inc
+ self.it_ref = self.it_inc - self.it_tot
+
+ # calc some more port parameter
+ # incoming power
+ self.P_inc = 0.5*np.real(self.uf_inc*np.conj(self.if_inc))
+ # reflected power
+ self.P_ref = 0.5*np.real(self.uf_ref*np.conj(self.if_ref))
+ # accepted power (incoming - reflected)
+ self.P_acc = 0.5*np.real(self.uf_tot*np.conj(self.if_tot))
+
+class LumpedPort(Port):
+ """
+ The lumped port.
+
+ See Also
+ --------
+ Port
+ """
+ def __init__(self, CSX, port_nr, R, start, stop, exc_dir, excite=0, **kw):
+ super(LumpedPort, self).__init__(CSX, port_nr=port_nr, start=start, stop=stop, excite=excite, **kw)
+ self.R = R
+ self.exc_ny = CheckNyDir(exc_dir)
+
+ self.direction = np.sign(self.stop[self.exc_ny]-self.start[self.exc_ny])
+ assert self.start[self.exc_ny]!=self.stop[self.exc_ny], 'LumpedPort: start and stop may not be identical in excitation direction'
+
+ if self.R > 0:
+ lumped_R = CSX.AddLumpedElement(self.lbl_temp.format('resist'), ny=self.exc_ny, caps=True, R=self.R)
+ elif self.R==0:
+ lumped_R = CSX.AddMetal(self.lbl_temp.format('resist'))
+
+ lumped_R.AddBox(self.start, self.stop, priority=self.priority)
+
+ if excite!=0:
+ exc_vec = np.zeros(3)
+ exc_vec[self.exc_ny] = -1*self.direction*excite
+ exc = CSX.AddExcitation(self.lbl_temp.format('excite'), exc_type=0, exc_val=exc_vec, delay=self.delay)
+ exc.AddBox(self.start, self.stop, priority=self.priority)
+
+ self.U_filenames = [self.lbl_temp.format('ut'), ]
+ u_start = 0.5*(self.start+self.stop)
+ u_start[self.exc_ny] = self.start[self.exc_ny]
+ u_stop = 0.5*(self.start+self.stop)
+ u_stop[self.exc_ny] = self.stop[self.exc_ny]
+ u_probe = CSX.AddProbe(self.U_filenames[0], p_type=0, weight=-1*self.direction)
+ u_probe.AddBox(u_start, u_stop)
+
+ self.I_filenames = [self.lbl_temp.format('it'), ]
+ i_start = np.array(self.start)
+ i_start[self.exc_ny] = 0.5*(self.start[self.exc_ny]+self.stop[self.exc_ny])
+ i_stop = np.array(self.stop)
+ i_stop[self.exc_ny] = 0.5*(self.start[self.exc_ny]+self.stop[self.exc_ny])
+ i_probe = CSX.AddProbe(self.I_filenames[0], p_type=1, weight=self.direction, norm_dir=self.exc_ny)
+ i_probe.AddBox(i_start, i_stop)
+
+ def CalcPort(self, sim_path, freq, ref_impedance=None, ref_plane_shift=None, signal_type='pulse'):
+ if ref_impedance is None:
+ self.Z_ref = self.R
+ if ref_plane_shift is not None:
+ Warning('A lumped port does not support a reference plane shift! Ignoring...')
+ super(LumpedPort, self).CalcPort(sim_path, freq, ref_impedance, ref_plane_shift, signal_type)
+
+class MSLPort(Port):
+ """
+ The microstrip transmission line port.
+
+ :param prop_dir: int/str -- direction of propagation
+
+ See Also
+ --------
+ Port
+ """
+ def __init__(self, CSX, port_nr, metal_prop, start, stop, prop_dir, exc_dir, excite=0, **kw):
+ super(MSLPort, self).__init__(CSX, port_nr=port_nr, start=start, stop=stop, excite=excite, **kw)
+ self.exc_ny = CheckNyDir(exc_dir)
+ self.prop_ny = CheckNyDir(prop_dir)
+ self.direction = np.sign(stop[self.prop_ny]-start[self.prop_ny])
+ self.upside_down = np.sign(stop[self.exc_ny] -start[self.exc_ny])
+ assert (self.start!=self.stop).all()
+# assert stop[self.prop_ny]!=start[self.prop_ny], 'port length in propergation direction may not be zero!'
+# assert stop[self.exc_ny] !=start[self.exc_ny], 'port length in propergation direction may not be zero!'
+ assert self.exc_ny!=self.prop_ny
+
+ self.feed_shift = 0
+ if 'FeedShift' in kw:
+ self.feed_shift = kw['FeedShift']
+ self.measplane_shift = 0.5*np.abs(self.start[self.prop_ny]-self.stop[self.prop_ny])
+ if 'MeasPlaneShift' in kw:
+ self.measplane_shift = kw['MeasPlaneShift']
+ self.measplane_pos = self.start[self.prop_ny] + self.measplane_shift*self.direction
+ self.feed_R = np.inf
+ if 'Feed_R' in kw:
+ self.feed_R = kw['Feed_R']
+
+ # add metal msl-plane
+ MSL_start = np.array(self.start)
+ MSL_stop = np.array(self.stop)
+ MSL_stop[self.exc_ny] = MSL_start[self.exc_ny]
+ metal_prop.AddBox(MSL_start, MSL_stop, priority=self.priority )
+
+ mesh = CSX.GetGrid()
+ prop_lines = mesh.GetLines(self.prop_ny)
+ assert len(prop_lines)>5, 'At least 5 lines in propagation direction required!'
+ meas_pos_idx = np.argmin(np.abs(prop_lines-self.measplane_pos))
+ if meas_pos_idx==0:
+ meas_pos_idx=1
+ if meas_pos_idx>=len(prop_lines)-1:
+ meas_pos_idx=len(prop_lines)-2
+ self.measplane_shift = np.abs(self.start[self.prop_ny]-prop_lines[meas_pos_idx])
+ prope_idx = np.array([meas_pos_idx-1, meas_pos_idx, meas_pos_idx+1], np.int)
+ if self.direction<0:
+ prope_idx = np.flipud(prope_idx)
+ u_prope_pos = prop_lines[prope_idx]
+ self.U_filenames = []
+ self.U_delta = np.diff(u_prope_pos)
+ suffix = ['A', 'B', 'C']
+ for n in range(len(prope_idx)):
+ u_start = 0.5*(self.start+self.stop)
+ u_stop = 0.5*(self.start+self.stop)
+ u_start[self.prop_ny] = u_prope_pos[n]
+ u_stop[self.prop_ny] = u_prope_pos[n]
+ u_start[self.exc_ny] = self.start[self.exc_ny]
+ u_stop[self.exc_ny] = self.stop [self.exc_ny]
+ u_name = self.lbl_temp.format('ut') + suffix[n]
+ self.U_filenames.append(u_name)
+ u_probe = CSX.AddProbe(u_name, p_type=0, weight=self.upside_down)
+ u_probe.AddBox(u_start, u_stop)
+
+ i_prope_pos = u_prope_pos[0:2] + np.diff(u_prope_pos)/2.0
+ self.I_filenames = []
+ self.I_delta = np.diff(i_prope_pos)
+ i_start = np.array(self.start)
+ i_stop = np.array(self.stop)
+ i_stop[self.exc_ny] = self.start[self.exc_ny]
+ for n in range(len(i_prope_pos)):
+ i_start[self.prop_ny] = i_prope_pos[n]
+ i_stop[self.prop_ny] = i_prope_pos[n]
+ i_name = self.lbl_temp.format('it') + suffix[n]
+ self.I_filenames.append(i_name)
+ i_probe = CSX.AddProbe(i_name, p_type=1, weight=self.direction, norm_dir=self.prop_ny)
+ i_probe.AddBox(i_start, i_stop)
+
+ if excite!=0:
+ excide_pos_idx = np.argmin(np.abs(prop_lines-(self.start[self.prop_ny] + self.feed_shift*self.direction)))
+ exc_start = np.array(self.start)
+ exc_stop = np.array(self.stop)
+ exc_start[self.prop_ny] = prop_lines[excide_pos_idx]
+ exc_stop [self.prop_ny] = prop_lines[excide_pos_idx]
+ exc_vec = np.zeros(3)
+ exc_vec[self.exc_ny] = -1*self.upside_down*excite
+ exc = CSX.AddExcitation(self.lbl_temp.format('excite'), exc_type=0, exc_val=exc_vec, delay=self.delay)
+ exc.AddBox(exc_start, exc_stop, priority=self.priority)
+
+ if self.feed_R>=0 and not np.isinf(self.feed_R):
+ R_start = np.array(self.start)
+ R_stop = np.array(self.stop)
+ R_stop [self.prop_ny] = R_start[self.prop_ny]
+ if self.feed_R==0:
+ metal_prop.AddBox(R_start, R_stop)
+ else:
+ lumped_R = CSX.AddLumpedElement(self.lbl_temp.format('resist'), ny=self.exc_ny, caps=True, R=self.feed_R)
+ lumped_R.AddBox(R_start, R_stop)
+
+ def ReadUIData(self, sim_path, freq, signal_type ='pulse'):
+ self.u_data = UI_data(self.U_filenames, sim_path, freq, signal_type )
+ self.uf_tot = self.u_data.ui_f_val[1]
+
+ self.i_data = UI_data(self.I_filenames, sim_path, freq, signal_type )
+ self.if_tot = 0.5*(self.i_data.ui_f_val[0]+self.i_data.ui_f_val[1])
+
+ unit = self.CSX.GetGrid().GetDeltaUnit()
+ Et = self.u_data.ui_f_val[1]
+ dEt = (self.u_data.ui_f_val[2] - self.u_data.ui_f_val[0]) / (np.sum(np.abs(self.U_delta)) * unit)
+ Ht = self.if_tot # space averaging: Ht is now defined at the same pos as Et
+ dHt = (self.i_data.ui_f_val[1] - self.i_data.ui_f_val[0]) / (np.abs(self.I_delta[0]) * unit)
+
+ beta = np.sqrt( - dEt * dHt / (Ht * Et) )
+ beta[np.real(beta) < 0] *= -1 # determine correct sign (unlike the paper)
+ self.beta = beta
+
+ # determine ZL
+ self.Z_ref = np.sqrt(Et * dEt / (Ht * dHt))
+
+class WaveguidePort(Port):
+ """
+ Base class for any waveguide port.
+
+ See Also
+ --------
+ Port, RectWGPort
+
+ """
+ def __init__(self, CSX, port_nr, start, stop, exc_dir, E_WG_func, H_WG_func, kc, excite=0, **kw):
+ super(WaveguidePort, self).__init__(CSX, port_nr=port_nr, start=start, stop=stop, excite=excite, **kw)
+ self.exc_ny = CheckNyDir(exc_dir)
+ self.ny_P = (self.exc_ny+1)%3
+ self.ny_PP = (self.exc_ny+2)%3
+ self.direction = np.sign(stop[self.exc_ny]-start[self.exc_ny])
+ self.ref_index = 1
+
+ assert not (self.excite!=0 and stop[self.exc_ny]==start[self.exc_ny]), 'port length in excitation direction may not be zero if port is excited!'
+
+ self.kc = kc
+ self.E_func = E_WG_func
+ self.H_func = H_WG_func
+
+ if excite!=0:
+ e_start = np.array(start)
+ e_stop = np.array(stop)
+ e_stop[self.exc_ny] = e_start[self.exc_ny]
+ e_vec = np.ones(3)
+ e_vec[self.exc_ny]=0
+ exc = CSX.AddExcitation(self.lbl_temp.format('excite'), exc_type=0, exc_val=e_vec, delay=self.delay)
+ exc.SetWeightFunction([str(x) for x in self.E_func])
+ exc.AddBox(e_start, e_stop, priority=self.priority)
+
+ # voltage/current planes
+ m_start = np.array(start)
+ m_stop = np.array(stop)
+ m_start[self.exc_ny] = m_stop[self.exc_ny]
+ self.measplane_shift = np.abs(stop[self.exc_ny] - start[self.exc_ny])
+
+ self.U_filenames = [self.lbl_temp.format('ut'), ]
+
+ u_probe = CSX.AddProbe(self.U_filenames[0], p_type=10, mode_function=self.E_func)
+ u_probe.AddBox(m_start, m_stop)
+
+ self.I_filenames = [self.lbl_temp.format('it'), ]
+ i_probe = CSX.AddProbe(self.I_filenames[0], p_type=11, weight=self.direction, mode_function=self.H_func)
+ i_probe.AddBox(m_start, m_stop)
+
+
+ def CalcPort(self, sim_path, freq, ref_impedance=None, ref_plane_shift=None, signal_type='pulse'):
+ k = 2.0*np.pi*freq/C0*self.ref_index
+ self.beta = np.sqrt(k**2 - self.kc**2)
+ self.ZL = k * Z0 / self.beta #analytic waveguide impedance
+ if ref_impedance is None:
+ self.Z_ref = self.ZL
+ super(WaveguidePort, self).CalcPort(sim_path, freq, ref_impedance, ref_plane_shift, signal_type)
+
+class RectWGPort(WaveguidePort):
+ """
+ Rectangular waveguide port.
+
+ :param a,b: float -- Width/Height of rectangular waveguide port
+
+ See Also
+ --------
+ Port, WaveguidePort
+
+ """
+ def __init__(self, CSX, port_nr, start, stop, exc_dir, a, b, mode_name, excite=0, **kw):
+ Port.__init__(self, CSX, port_nr, start, stop, excite=0, **kw)
+ self.exc_ny = CheckNyDir(exc_dir)
+ self.ny_P = (self.exc_ny+1)%3
+ self.ny_PP = (self.exc_ny+2)%3
+ self.WG_size = [a, b]
+
+ self.WG_mode = mode_name
+ assert len(self.WG_mode)==4, 'Invalid mode definition'
+ self.unit = self.CSX.GetGrid().GetDeltaUnit()
+ if self.WG_mode.startswith('TE'):
+ self.TE = True
+ self.TM = False
+ else:
+ self.TE = False
+ self.TM = True
+ self.M = float(self.WG_mode[2])
+ self.N = float(self.WG_mode[3])
+
+ assert self.TE, 'Currently only TE-modes are supported! Mode found: {}'.format(self.WG_mode)
+
+ # values by David M. Pozar, Microwave Engineering, third edition
+ a = self.WG_size[0]
+ b = self.WG_size[1]
+
+ xyz = 'xyz'
+ if self.start[self.ny_P]!=0:
+ name_P = '({}-{})'.format(xyz[self.ny_P], self.start[self.ny_P])
+ else:
+ name_P = xyz[self.ny_P]
+ if self.start[self.ny_PP]!=0:
+ name_PP = '({}-{})'.format(xyz[self.ny_P], self.start[self.ny_P])
+ else:
+ name_PP = xyz[self.ny_P]
+
+ kc = np.sqrt((self.M*np.pi/a)**2 + (self.N*np.pi/b)**2)
+
+ a /= self.unit
+ b /= self.unit
+ E_func = [0,0,0]
+ H_func = [0,0,0]
+ if self.N>0:
+ E_func[self.ny_P] = '{}*cos({}*{})*sin({}*{})'.format(self.N/b , self.M*np.pi/a, name_P, self.N*np.pi/b, name_PP)
+ if self.M>0:
+ E_func[self.ny_PP] = '{}*sin({}*{})*cos({}*{})'.format(-1*self.M/a, self.M*np.pi/a, name_P, self.N*np.pi/b, name_PP)
+
+ if self.M>0:
+ H_func[self.ny_P] = '{}*sin({}*{})*cos({}*{})'.format(self.M/a, self.M*np.pi/a, name_P, self.N*np.pi/b, name_PP)
+ if self.N>0:
+ H_func[self.ny_PP] = '{}*cos({}*{})*sin({}*{})'.format(self.N/b, self.M*np.pi/a, name_P, self.N*np.pi/b, name_PP)
+
+ super(RectWGPort, self).__init__(CSX, port_nr=port_nr, start=start, stop=stop, exc_dir=exc_dir, E_WG_func=E_func, H_WG_func=H_func, kc=kc, excite=excite, **kw)
+
diff --git a/openEMS/python/openEMS/utilities.py b/openEMS/python/openEMS/utilities.py
new file mode 100644
index 0000000..22bfbf6
--- /dev/null
+++ b/openEMS/python/openEMS/utilities.py
@@ -0,0 +1,66 @@
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published
+# by the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+#
+
+import numpy as np
+
+def DFT_time2freq( t, val, freq, signal_type='pulse'):
+ assert len(t)==len(val)
+ assert len(freq)>0
+ f_val = np.zeros(len(freq))*1j
+ for n_f in range(len(freq)):
+ f_val[n_f] = np.sum( val*np.exp( -1j*2*np.pi*freq[n_f] * t ) )
+
+ if signal_type == 'pulse':
+ f_val *= t[1]-t[0]
+ elif signal_type == 'periodic':
+ f_val /= len(t)
+ else:
+ raise Exception('Unknown signal type: "{}"'.format(signal_type))
+
+ return 2*f_val # single-sided spectrum
+
+def Check_Array_Equal(a,b, tol, relative=False):
+ a = np.array(a)
+ b = np.array(b)
+ if a.shape!=b.shape:
+ return False
+ if tol==0:
+ return (a==b).all()
+ if relative:
+ d = np.abs((a-b)/a)
+ else:
+ d = np.abs((a-b))
+ return np.max(d)<tol
+
+if __name__=="__main__":
+ import pylab as plt
+
+ t = np.linspace(0,2,201)
+
+ s = np.sin(2*np.pi*2*t)
+ plt.plot(t,s)
+
+ f = np.linspace(0,3,101)
+ sf = DFT_time2freq(t, s, f, 'periodic')
+
+ plt.figure()
+ plt.plot(f, np.abs(sf))
+
+ plt.show()
+
+
diff --git a/openEMS/python/setup.py b/openEMS/python/setup.py
new file mode 100644
index 0000000..ef06160
--- /dev/null
+++ b/openEMS/python/setup.py
@@ -0,0 +1,47 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Sun Dec 13 23:48:22 2015
+
+@author: thorsten
+"""
+
+from distutils.core import setup
+from distutils.extension import Extension
+from Cython.Build import cythonize
+
+import os, sys
+ROOT_DIR = os.path.dirname(__file__)
+
+sys.path.append(os.path.join(ROOT_DIR,'..','..','CSXCAD','python'))
+
+extensions = [
+ Extension("*", [os.path.join(os.path.dirname(__file__), "openEMS","*.pyx")],
+ language="c++", # generate C++ code
+ libraries = ['CSXCAD','openEMS', 'nf2ff']),
+]
+
+setup(
+ name="openEMS",
+ version = '0.0.33',
+ description = "Python interface for the openEMS FDTD library",
+ classifiers = [
+ 'Development Status :: 3 - Alpha',
+ 'Intended Audience :: Developers',
+ 'Intended Audience :: Information Technology',
+ 'Intended Audience :: Science/Research',
+ 'License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)',
+ 'Programming Language :: Python',
+ 'Topic :: Scientific/Engineering',
+ 'Topic :: Software Development :: Libraries :: Python Modules',
+ 'Operating System :: POSIX :: Linux',
+ 'Operating System :: Microsoft :: Windows',
+ ],
+ author = 'Thorsten Liebig',
+ author_email = 'Thorsten.Liebig@gmx.de',
+ maintainer = 'Thorsten Liebig',
+ maintainer_email = 'Thorsten.Liebig@gmx.de',
+ url = 'http://openEMS.de',
+ packages=["openEMS", ],
+ package_data={'openEMS': ['*.pxd']},
+ ext_modules = cythonize(extensions)
+ )
diff --git a/openEMS/tools/sar_calculation.cpp b/openEMS/tools/sar_calculation.cpp
index 343aa07..e135aca 100644
--- a/openEMS/tools/sar_calculation.cpp
+++ b/openEMS/tools/sar_calculation.cpp
@@ -292,7 +292,7 @@ int SAR_Calculation::FindFittingCubicalMass(unsigned int pos[3], float box_size,
bool SAR_Calculation::GetCubicalMass(unsigned int pos[3], double box_size, unsigned int start[3], unsigned int stop[3],
float partial_start[3], float partial_stop[3], double &mass, double &volume, double &bg_ratio, int disabledFace)
{
- if ((box_size<=0) || isnan(box_size) || isinf(box_size))
+ if ((box_size<=0) || std::isnan(box_size) || std::isinf(box_size))
{
cerr << "SAR_Calculation::GetCubicalMass: critical error: invalid averaging box size!! EXIT" << endl;
exit(-1);