summaryrefslogtreecommitdiff
path: root/openEMS/FDTD/operator.h
diff options
context:
space:
mode:
Diffstat (limited to 'openEMS/FDTD/operator.h')
-rw-r--r--openEMS/FDTD/operator.h287
1 files changed, 287 insertions, 0 deletions
diff --git a/openEMS/FDTD/operator.h b/openEMS/FDTD/operator.h
new file mode 100644
index 0000000..8fc0409
--- /dev/null
+++ b/openEMS/FDTD/operator.h
@@ -0,0 +1,287 @@
+/*
+* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
+*
+* This program is free software: you can redistribute it and/or modify
+* it under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* This program is distributed in the hope that it will be useful,
+* but WITHOUT ANY WARRANTY; without even the implied warranty of
+* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+* GNU General Public License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with this program. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#ifndef OPERATOR_H
+#define OPERATOR_H
+
+#include "tools/AdrOp.h"
+#include "tools/constants.h"
+#include "excitation.h"
+#include "Common/operator_base.h"
+
+class Operator_Extension;
+class Operator_Ext_Excitation;
+class Engine;
+class TiXmlElement;
+
+//! Basic FDTD-operator
+class Operator : public Operator_Base
+{
+ friend class Engine;
+ friend class Engine_Interface_FDTD;
+ friend class Operator_Ext_LorentzMaterial; //we need to find a way around this... friend class Operator_Extension only would be nice
+ friend class Operator_Ext_ConductingSheet; //we need to find a way around this... friend class Operator_Extension only would be nice
+ friend class Operator_Ext_PML_SF_Plane;
+ friend class Operator_Ext_Excitation;
+ friend class Operator_Ext_UPML;
+ friend class Operator_Ext_Cylinder;
+public:
+ enum DebugFlags {None=0,debugMaterial=1,debugOperator=2,debugPEC=4};
+
+ enum MatAverageMethods {QuarterCell=0, CentralCell=1};
+
+ //! Create a new operator
+ static Operator* New();
+ virtual ~Operator();
+
+ virtual Engine* CreateEngine();
+ virtual Engine* GetEngine() const {return m_Engine;}
+
+ virtual bool SetGeometryCSX(ContinuousStructure* geo);
+
+ virtual int CalcECOperator( DebugFlags debugFlags = None );
+
+ // the next four functions need to be reimplemented in a derived class
+ inline virtual FDTD_FLOAT GetVV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return vv[n][x][y][z]; }
+ inline virtual FDTD_FLOAT GetVI( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return vi[n][x][y][z]; }
+ inline virtual FDTD_FLOAT GetII( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return ii[n][x][y][z]; }
+ inline virtual FDTD_FLOAT GetIV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return iv[n][x][y][z]; }
+
+ // convenient access functions
+ inline virtual FDTD_FLOAT GetVV( unsigned int n, unsigned int pos[3] ) const { return GetVV(n,pos[0],pos[1],pos[2]); }
+ inline virtual FDTD_FLOAT GetVI( unsigned int n, unsigned int pos[3] ) const { return GetVI(n,pos[0],pos[1],pos[2]); }
+ inline virtual FDTD_FLOAT GetII( unsigned int n, unsigned int pos[3] ) const { return GetII(n,pos[0],pos[1],pos[2]); }
+ inline virtual FDTD_FLOAT GetIV( unsigned int n, unsigned int pos[3] ) const { return GetIV(n,pos[0],pos[1],pos[2]); }
+
+ // the next four functions need to be reimplemented in a derived class
+ inline virtual void SetVV( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value ) { vv[n][x][y][z] = value; }
+ inline virtual void SetVI( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value ) { vi[n][x][y][z] = value; }
+ inline virtual void SetII( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value ) { ii[n][x][y][z] = value; }
+ inline virtual void SetIV( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value ) { iv[n][x][y][z] = value; }
+
+ virtual void ApplyElectricBC(bool* dirs); //applied by default to all boundaries
+ virtual void ApplyMagneticBC(bool* dirs);
+
+ virtual void SetBCSize(int dir, int size) {m_BC_Size[dir]=size;}
+ virtual int GetBCSize(int dir) {return m_BC_Size[dir];}
+
+ //! Set a forced timestep to use by the operator
+ virtual void SetTimestep(double ts) {dT = ts;}
+ virtual void SetTimestepFactor(double factor);
+ bool GetTimestepValid() const {return !m_InvaildTimestep;}
+
+ //! Choose a time step method (0=auto, 1=CFL, 3=Rennings)
+ void SetTimeStepMethod(int var) {m_TimeStepVar=var;}
+
+ //! Set the material averaging method /sa MatAverageMethods
+ void SetMaterialAvgMethod(MatAverageMethods method);
+
+ //! Set material averaging method to the advanced quarter cell material interpolation (default)
+ void SetQuarterCellMaterialAvg() {m_MatAverageMethod=QuarterCell;}
+
+ //! Set operator to assume a constant material inside a cell (material probing in the cell center)
+ void SetCellConstantMaterial() {m_MatAverageMethod=CentralCell;}
+
+ virtual double GetNumberCells() const;
+
+ virtual unsigned int GetNumberOfNyquistTimesteps() const {return m_Exc->GetNyquistNum();}
+
+ virtual unsigned int GetNumberOfLines(int ny, bool full=false) const {UNUSED(full);return numLines[ny];}
+
+ virtual void ShowStat() const;
+ virtual void ShowExtStat() const;
+
+ virtual double GetGridDelta() const {return gridDelta;}
+
+ //! Get the disc line in \a n direction (in drawing units)
+ virtual double GetDiscLine(int n, unsigned int pos, bool dualMesh=false) const;
+
+ //! Get the disc line delta in \a n direction (in drawing units)
+ virtual double GetDiscDelta(int n, unsigned int pos, bool dualMesh=false) const;
+
+ //! Get the coordinates for a given node index and component, according to the yee-algorithm. Returns true if inside the FDTD domain.
+ virtual bool GetYeeCoords(int ny, unsigned int pos[3], double* coords, bool dualMesh) const;
+
+ virtual bool GetNodeCoords(const unsigned int pos[3], double* coords, bool dualMesh=false, CoordinateSystem c_system=UNDEFINED_CS) const;
+
+ //! Get the node width for a given direction \a n and a given mesh position \a pos
+ virtual double GetNodeWidth(int ny, const unsigned int pos[3], bool dualMesh = false) const {return GetEdgeLength(ny,pos,!dualMesh);}
+ //! Get the node width for a given direction \a n and a given mesh position \a pos
+ virtual double GetNodeWidth(int ny, const int pos[3], bool dualMesh = false) const;
+
+ //! Get the node area for a given direction \a n and a given mesh position \a pos
+ virtual double GetNodeArea(int ny, const unsigned int pos[3], bool dualMesh = false) const;
+ //! Get the node area for a given direction \a n and a given mesh position \a pos
+ virtual double GetNodeArea(int ny, const int pos[3], bool dualMesh = false) const;
+
+ //! Get the length of an FDTD edge (unit is meter).
+ virtual double GetEdgeLength(int ny, const unsigned int pos[3], bool dualMesh = false) const;
+
+ //! Get the volume of an FDTD cell
+ virtual double GetCellVolume(const unsigned int pos[3], bool dualMesh = false) const;
+
+ //! Get the area around an edge for a given direction \a n and a given mesh posisition \a pos
+ /*!
+ This will return the area around an edge with a given direction, measured at the middle of the edge.
+ In a cartesian mesh this is equal to the NodeArea, may be different in other coordinate systems.
+ */
+ virtual double GetEdgeArea(int ny, const unsigned int pos[3], bool dualMesh = false) const {return GetNodeArea(ny,pos,dualMesh);}
+
+ virtual unsigned int SnapToMeshLine(int ny, double coord, bool &inside, bool dualMesh=false, bool fullMesh=false) const;
+
+ //! Snap the given coodinates to mesh indices
+ virtual bool SnapToMesh(const double* coord, unsigned int* uicoord, bool dualMesh=false, bool fullMesh=false, bool* inside=NULL) const;
+
+ //! Snap a given box to the FDTD mesh
+ virtual int SnapBox2Mesh(const double* start, const double* stop, unsigned int* uiStart, unsigned int* uiStop, bool dualMesh=false, bool fullMesh=false, int SnapMethod=0, bool* bStartIn=NULL, bool* bStopIn=NULL) const;
+
+ //! Snap a given line to the operator mesh
+ /*!
+ \param[in] start coorindate of the line
+ \param[in] stop coorindate of the line
+ \param[out] uiStart the snapped line-start coorindate index
+ \param[out] uiStop the snapped line-stop coorindate index
+ \param[in] dualMesh snap to main or dual mesh (default is main mesh)
+ \return returns a status, 0 = success, 1 = start outside, 2 = stop outside, 3 = both outside
+ */
+ virtual int SnapLine2Mesh(const double* start, const double* stop, unsigned int* uiStart, unsigned int* uiStop, bool dualMesh=false, bool fullMesh=false) const;
+
+ virtual void AddExtension(Operator_Extension* op_ext);
+ virtual void DeleteExtension(Operator_Extension* op_ext);
+ virtual size_t GetNumberOfExtentions() const {return m_Op_exts.size();}
+ virtual Operator_Extension* GetExtension(size_t index) const {return m_Op_exts.at(index);}
+
+ virtual void CleanupMaterialStorage();
+
+ virtual double GetDiscMaterial(int type, int ny, const unsigned int pos[3]) const;
+
+ //! Get the cell center coordinate usable for material averaging (Warning, may not be the yee cell center)
+ virtual bool GetCellCenterMaterialAvgCoord(const int pos[3], double coord[3]) const;
+
+ virtual void SetExcitationSignal(Excitation* exc);
+ virtual Excitation* GetExcitationSignal() const {return m_Exc;}
+
+ Operator_Ext_Excitation* GetExcitationExtension() const;
+
+ virtual double CalcNumericPhaseVelocity(unsigned int start[3], unsigned int stop[3], double propDir[3], float freq) const;
+
+ virtual vector<CSPrimitives*> GetPrimitivesBoundBox(int posX, int posY, int posZ, CSProperties::PropertyType type=CSProperties::ANY) const;
+
+protected:
+ //! use New() for creating a new Operator
+ Operator();
+
+ virtual void Init();
+ void Delete();
+ virtual void Reset();
+ virtual void InitOperator();
+ virtual void InitDataStorage();
+
+ virtual bool SetupCSXGrid(CSRectGrid* grid);
+
+ virtual Grid_Path FindPath(double start[], double stop[]);
+
+ // debug
+ virtual void DumpOperator2File(string filename);
+ virtual void DumpMaterial2File(string filename);
+ virtual void DumpPEC2File( string filename, unsigned int *range = NULL );
+
+ unsigned int m_Nr_PEC[3]; //count PEC edges
+ virtual bool CalcPEC();
+ virtual void CalcPEC_Range(unsigned int startX, unsigned int stopX, unsigned int* counter); //internal to CalcPEC
+ virtual void CalcPEC_Curves(); //internal to CalcPEC
+
+ //Calc timestep only internal use
+ int m_TimeStepVar;
+ double m_TimeStepFactor;
+ virtual double CalcTimestep();
+ double opt_dT;
+ bool m_InvaildTimestep;
+ string m_Used_TS_Name;
+
+ double CalcTimestep_Var1();
+ double CalcTimestep_Var3();
+
+ //! Calculate the FDTD equivalent circuit parameter for the given position and direction ny. \sa Calc_EffMat_Pos
+ virtual bool Calc_ECPos(int ny, const unsigned int* pos, double* EC, vector<CSPrimitives *> vPrims) const;
+
+ //! Get the FDTD raw disc delta, needed by Calc_EffMatPos() \sa Calc_EffMatPos
+ /*!
+ Get the raw disc delta for a given position and direction.
+ The result will be positive if a disc delta inside the simulation domain is requested.
+ The result will be the negative value of the first or last disc delta respectivly if the position is outside the field domain.
+ */
+ virtual double GetRawDiscDelta(int ny, const int pos) const;
+
+ //! Get the material at a given coordinate, direction and type from CSX (internal use only)
+ virtual double GetMaterial(int ny, const double coords[3], int MatType, vector<CSPrimitives*> vPrims, bool markAsUsed=true) const;
+
+ MatAverageMethods m_MatAverageMethod;
+
+ //! Calculate the effective/averaged material properties at the given position and direction ny.
+ virtual bool Calc_EffMatPos(int ny, const unsigned int* pos, double* EffMat, vector<CSPrimitives*> vPrims) const;
+
+ virtual bool AverageMatCellCenter(int ny, const unsigned int* pos, double* EffMat, vector<CSPrimitives*> vPrims) const;
+ virtual bool AverageMatQuarterCell(int ny, const unsigned int* pos, double* EffMat, vector<CSPrimitives*> vPrims) const;
+
+ //! Calc operator at certain \a pos
+ virtual void Calc_ECOperatorPos(int n, unsigned int* pos);
+
+ //! Calculate and setup lumped elements
+ virtual bool Calc_LumpedElements();
+
+ //! Store the size of the applied boundary conditions
+ int m_BC_Size[6];
+
+ //store material properties for post-processing
+ float**** m_epsR;
+ float**** m_kappa;
+ float**** m_mueR;
+ float**** m_sigma;
+
+ //EC elements, internal only!
+ virtual void Init_EC();
+ virtual bool Calc_EC();
+ virtual void Calc_EC_Range(unsigned int xStart, unsigned int xStop);
+ FDTD_FLOAT* EC_C[3];
+ FDTD_FLOAT* EC_G[3];
+ FDTD_FLOAT* EC_L[3];
+ FDTD_FLOAT* EC_R[3];
+
+ AdrOp* MainOp;
+
+ vector<Operator_Extension*> m_Op_exts;
+
+ Engine* m_Engine;
+
+ // excitation classes
+ Excitation* m_Exc; // excitation time signal class
+// Operator_Ext_Excitation* m_Op_Ext_Exc; // excitation extension
+
+ // engine/post-proc needs access
+public:
+ //EC operator
+ FDTD_FLOAT**** vv; //calc new voltage from old voltage
+ FDTD_FLOAT**** vi; //calc new voltage from old current
+ FDTD_FLOAT**** ii; //calc new current from old current
+ FDTD_FLOAT**** iv; //calc new current from old voltage
+};
+
+inline Operator::DebugFlags operator|( Operator::DebugFlags a, Operator::DebugFlags b ) { return static_cast<Operator::DebugFlags>(static_cast<int>(a) | static_cast<int>(b)); }
+inline Operator::DebugFlags& operator|=( Operator::DebugFlags& a, const Operator::DebugFlags& b ) { return a = a | b; }
+
+#endif // OPERATOR_H