summaryrefslogtreecommitdiff
path: root/openEMS/matlab/Tutorials/Helical_Antenna.m
diff options
context:
space:
mode:
Diffstat (limited to 'openEMS/matlab/Tutorials/Helical_Antenna.m')
-rw-r--r--openEMS/matlab/Tutorials/Helical_Antenna.m202
1 files changed, 202 insertions, 0 deletions
diff --git a/openEMS/matlab/Tutorials/Helical_Antenna.m b/openEMS/matlab/Tutorials/Helical_Antenna.m
new file mode 100644
index 0000000..b94ebd6
--- /dev/null
+++ b/openEMS/matlab/Tutorials/Helical_Antenna.m
@@ -0,0 +1,202 @@
+%
+% Tutorials / helical antenna
+%
+% Describtion at:
+% http://openems.de/index.php/Tutorial:_Helical_Antenna
+%
+% Tested with
+% - Matlab 2011a / Octave 4.0
+% - openEMS v0.0.33
+%
+% (C) 2012-2015 Thorsten Liebig <thorsten.liebig@uni-due.de>
+
+close all
+clear
+clc
+
+post_proc_only = 0;
+
+close all
+
+%% setup the simulation
+physical_constants;
+unit = 1e-3; % all length in mm
+
+f0 = 2.4e9; % center frequency, frequency of interest!
+lambda0 = round(c0/f0/unit); % wavelength in mm
+fc = 0.5e9; % 20 dB corner frequency
+
+Helix.radius = 20; % --> diameter is ~ lambda/pi
+Helix.turns = 10; % --> expected gain is G ~ 4 * 10 = 40 (16dBi)
+Helix.pitch = 30; % --> pitch is ~ lambda/4
+Helix.mesh_res = 3;
+
+gnd.radius = lambda0/2;
+
+% feeding
+feed.heigth = 3;
+feed.R = 120; %feed impedance
+
+% size of the simulation box
+SimBox = [1 1 1.5]*2*lambda0;
+
+%% setup FDTD parameter & excitation function
+FDTD = InitFDTD( );
+FDTD = SetGaussExcite( FDTD, f0, fc );
+BC = {'MUR' 'MUR' 'MUR' 'MUR' 'MUR' 'PML_8'}; % boundary conditions
+FDTD = SetBoundaryCond( FDTD, BC );
+
+%% setup CSXCAD geometry & mesh
+max_res = floor(c0 / (f0+fc) / unit / 20); % cell size: lambda/20
+CSX = InitCSX();
+
+% create helix mesh
+mesh.x = SmoothMeshLines([-Helix.radius 0 Helix.radius],Helix.mesh_res);
+% add the air-box
+mesh.x = [mesh.x -SimBox(1)/2-gnd.radius SimBox(1)/2+gnd.radius];
+% create a smooth mesh between specified fixed mesh lines
+mesh.x = SmoothMeshLines( mesh.x, max_res, 1.4);
+
+% copy x-mesh to y-direction
+mesh.y = mesh.x;
+
+% create helix mesh in z-direction
+mesh.z = SmoothMeshLines([0 feed.heigth Helix.turns*Helix.pitch+feed.heigth],Helix.mesh_res);
+% add the air-box
+mesh.z = unique([mesh.z -SimBox(3)/2 max(mesh.z)+SimBox(3)/2 ]);
+% create a smooth mesh between specified fixed mesh lines
+mesh.z = SmoothMeshLines( mesh.z, max_res, 1.4 );
+
+CSX = DefineRectGrid( CSX, unit, mesh );
+
+%% create helix using the wire primitive
+CSX = AddMetal( CSX, 'helix' ); % create a perfect electric conductor (PEC)
+
+ang = linspace(0,2*pi,21);
+coil_x = Helix.radius*cos(ang);
+coil_y = Helix.radius*sin(ang);
+coil_z = ang/2/pi*Helix.pitch;
+
+helix.x=[];
+helix.y=[];
+helix.z=[];
+zpos = feed.heigth;
+for n=0:Helix.turns-1
+ helix.x = [helix.x coil_x];
+ helix.y = [helix.y coil_y];
+ helix.z = [helix.z coil_z+zpos];
+ zpos = zpos + Helix.pitch;
+end
+clear p
+p(1,:) = helix.x;
+p(2,:) = helix.y;
+p(3,:) = helix.z;
+CSX = AddCurve(CSX, 'helix', 0, p);
+
+%% create ground circular ground
+CSX = AddMetal( CSX, 'gnd' ); % create a perfect electric conductor (PEC)
+% add a box using cylindrical coordinates
+start = [0 0 0];
+stop = [gnd.radius 2*pi 0];
+CSX = AddBox(CSX,'gnd',10,start,stop,'CoordSystem',1);
+
+%% apply the excitation & resist as a current source
+start = [Helix.radius 0 0];
+stop = [Helix.radius 0 feed.heigth];
+[CSX port] = AddLumpedPort(CSX, 5 ,1 ,feed.R, start, stop, [0 0 1], true);
+
+%%nf2ff calc
+start = [mesh.x(11) mesh.y(11) mesh.z(11)];
+stop = [mesh.x(end-10) mesh.y(end-10) mesh.z(end-10)];
+[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop, 'OptResolution', lambda0/15);
+
+%% prepare simulation folder
+Sim_Path = 'tmp_Helical_Ant';
+Sim_CSX = 'Helix_Ant.xml';
+
+if (post_proc_only==0)
+ [status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
+ [status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder
+
+ %% write openEMS compatible xml-file
+ WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );
+
+ %% show the structure
+ CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
+
+ %% run openEMS
+ RunOpenEMS( Sim_Path, Sim_CSX);
+end
+
+%% postprocessing & do the plots
+freq = linspace( f0-fc, f0+fc, 501 );
+port = calcPort(port, Sim_Path, freq);
+
+Zin = port.uf.tot ./ port.if.tot;
+s11 = port.uf.ref ./ port.uf.inc;
+
+% plot feed point impedance
+figure
+plot( freq/1e6, real(Zin), 'k-', 'Linewidth', 2 );
+hold on
+grid on
+plot( freq/1e6, imag(Zin), 'r--', 'Linewidth', 2 );
+title( 'feed point impedance' );
+xlabel( 'frequency f / MHz' );
+ylabel( 'impedance Z_{in} / Ohm' );
+legend( 'real', 'imag' );
+
+% plot reflection coefficient S11
+figure
+plot( freq/1e6, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 );
+grid on
+title( 'reflection coefficient S_{11}' );
+xlabel( 'frequency f / MHz' );
+ylabel( 'reflection coefficient |S_{11}|' );
+
+drawnow
+
+%% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%find resonance frequncy from s11
+f_res = f0;
+
+% get accepted antenna power at frequency f0
+P_in_0 = interp1(freq, port.P_acc, f0);
+
+% calculate the far field at phi=0 degrees and at phi=90 degrees
+thetaRange = unique([0:0.5:90 90:180]);
+phiRange = (0:2:360) - 180;
+disp( 'calculating the 3D far field...' );
+
+nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_res, thetaRange*pi/180, phiRange*pi/180,'Mode',0,'Outfile','3D_Pattern.h5','Verbose',1);
+
+theta_HPBW = interp1(nf2ff.E_norm{1}(:,1)/max(nf2ff.E_norm{1}(:,1)),thetaRange,1/sqrt(2))*2;
+
+% display power and directivity
+disp( ['radiated power: Prad = ' num2str(nf2ff.Prad) ' Watt']);
+disp( ['directivity: Dmax = ' num2str(nf2ff.Dmax) ' (' num2str(10*log10(nf2ff.Dmax)) ' dBi)'] );
+disp( ['efficiency: nu_rad = ' num2str(100*nf2ff.Prad./P_in_0) ' %']);
+disp( ['theta_HPBW = ' num2str(theta_HPBW) ' °']);
+
+
+%%
+directivity = nf2ff.P_rad{1}/nf2ff.Prad*4*pi;
+directivity_CPRH = abs(nf2ff.E_cprh{1}).^2./max(nf2ff.E_norm{1}(:)).^2*nf2ff.Dmax;
+directivity_CPLH = abs(nf2ff.E_cplh{1}).^2./max(nf2ff.E_norm{1}(:)).^2*nf2ff.Dmax;
+
+%%
+figure
+plot(thetaRange, 10*log10(directivity(:,1)'),'k-','LineWidth',2);
+hold on
+grid on
+xlabel('theta (deg)');
+ylabel('directivity (dBi)');
+plot(thetaRange, 10*log10(directivity_CPRH(:,1)'),'g--','LineWidth',2);
+plot(thetaRange, 10*log10(directivity_CPLH(:,1)'),'r-.','LineWidth',2);
+legend('norm','CPRH','CPLH');
+
+%% dump to vtk
+DumpFF2VTK([Sim_Path '/3D_Pattern.vtk'],directivity,thetaRange,phiRange,'scale',1e-3);
+DumpFF2VTK([Sim_Path '/3D_Pattern_CPRH.vtk'],directivity_CPRH,thetaRange,phiRange,'scale',1e-3);
+DumpFF2VTK([Sim_Path '/3D_Pattern_CPLH.vtk'],directivity_CPLH,thetaRange,phiRange,'scale',1e-3);
+