/* * Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "engine_interface_fdtd.h" Engine_Interface_FDTD::Engine_Interface_FDTD(Operator* op) : Engine_Interface_Base(op) { if (op==NULL) { cerr << "Engine_Interface_FDTD::Engine_Interface_FDTD: Error: Operator is not set! Exit!" << endl; exit(1); } m_Op = op; m_Eng = m_Op->GetEngine(); if (m_Eng==NULL) { cerr << "Engine_Interface_FDTD::Engine_Interface_FDTD: Error: Engine is not set! Exit!" << endl; exit(1); } } Engine_Interface_FDTD::~Engine_Interface_FDTD() { } double* Engine_Interface_FDTD::GetEField(const unsigned int* pos, double* out) const { return GetRawInterpolatedField(pos, out, 0); } double* Engine_Interface_FDTD::GetJField(const unsigned int* pos, double* out) const { return GetRawInterpolatedField(pos, out, 1); } double* Engine_Interface_FDTD::GetRotHField(const unsigned int* pos, double* out) const { return GetRawInterpolatedField(pos, out, 2); } double* Engine_Interface_FDTD::GetRawInterpolatedField(const unsigned int* pos, double* out, int type) const { unsigned int iPos[] = {pos[0],pos[1],pos[2]}; int nP,nPP; double delta; switch (m_InterpolType) { default: case NO_INTERPOLATION: for (int n=0; n<3; ++n) out[n] = GetRawField(n,pos,type); break; case NODE_INTERPOLATE: for (int n=0; n<3; ++n) { if (pos[n]==m_Op->GetNumberOfLines(n, true)-1) // use only the "lower value" at the upper bound { --iPos[n]; out[n] = (double)GetRawField(n,iPos,type); ++iPos[n]; continue; } delta = m_Op->GetEdgeLength(n,iPos); out[n] = GetRawField(n,iPos,type); if (delta==0) { out[n]=0; continue; } if (pos[n]==0) // use only the "upper value" at the lower bound continue; --iPos[n]; double deltaDown = m_Op->GetEdgeLength(n,iPos); double deltaRel = delta / (delta+deltaDown); out[n] = out[n]*(1.0-deltaRel) + (double)GetRawField(n,iPos,type)*deltaRel; ++iPos[n]; } break; case CELL_INTERPOLATE: for (int n=0; n<3; ++n) { nP = (n+1)%3; nPP = (n+2)%3; if ((pos[0]==m_Op->GetNumberOfLines(0,true)-1) || (pos[1]==m_Op->GetNumberOfLines(1,true)-1) || (pos[2]==m_Op->GetNumberOfLines(2,true)-1)) { out[n] = 0; //electric field outside the field domain is always zero continue; } out[n]=GetRawField(n,iPos,type); ++iPos[nP]; out[n]+=GetRawField(n,iPos,type); ++iPos[nPP]; out[n]+=GetRawField(n,iPos,type); --iPos[nP]; out[n]+=GetRawField(n,iPos,type); --iPos[nPP]; out[n]/=4; } break; } return out; } double* Engine_Interface_FDTD::GetHField(const unsigned int* pos, double* out) const { unsigned int iPos[] = {pos[0],pos[1],pos[2]}; int nP,nPP; double delta; switch (m_InterpolType) { default: case NO_INTERPOLATION: out[0] = m_Eng->GetCurr(0,pos) / m_Op->GetEdgeLength(0,pos,true); out[1] = m_Eng->GetCurr(1,pos) / m_Op->GetEdgeLength(1,pos,true); out[2] = m_Eng->GetCurr(2,pos) / m_Op->GetEdgeLength(2,pos,true); break; case NODE_INTERPOLATE: for (int n=0; n<3; ++n) { nP = (n+1)%3; nPP = (n+2)%3; if ((pos[0]==m_Op->GetNumberOfLines(0,true)-1) || (pos[1]==m_Op->GetNumberOfLines(1,true)-1) || (pos[2]==m_Op->GetNumberOfLines(2,true)-1) || (pos[nP]==0) || (pos[nPP]==0)) { out[n] = 0; continue; } out[n]=m_Eng->GetCurr(n,iPos)/m_Op->GetEdgeLength(n,iPos,true); --iPos[nP]; out[n]+=m_Eng->GetCurr(n,iPos)/m_Op->GetEdgeLength(n,iPos,true); --iPos[nPP]; out[n]+=m_Eng->GetCurr(n,iPos)/m_Op->GetEdgeLength(n,iPos,true); ++iPos[nP]; out[n]+=m_Eng->GetCurr(n,iPos)/m_Op->GetEdgeLength(n,iPos,true); ++iPos[nPP]; out[n]/=4; } break; case CELL_INTERPOLATE: for (int n=0; n<3; ++n) { delta = m_Op->GetEdgeLength(n,iPos,true); out[n] = m_Eng->GetCurr(n,iPos); if ((pos[n]>=m_Op->GetNumberOfLines(n,true)-1)) { out[n] = 0; //magnetic field on the outer boundaries is always zero continue; } ++iPos[n]; double deltaUp = m_Op->GetEdgeLength(n,iPos,true); double deltaRel = delta / (delta+deltaUp); out[n] = out[n]*(1.0-deltaRel)/delta + (double)m_Eng->GetCurr(n,iPos)/deltaUp*deltaRel; --iPos[n]; } break; } return out; } double Engine_Interface_FDTD::CalcVoltageIntegral(const unsigned int* start, const unsigned int* stop) const { double result=0; for (int n=0; n<3; ++n) { if (start[n]GetVolt(n,pos[0],pos[1],pos[2]); } else { unsigned int pos[3]={stop[0],stop[1],stop[2]}; for (; pos[n]GetVolt(n,pos[0],pos[1],pos[2]); } } return result; } double Engine_Interface_FDTD::GetRawField(unsigned int n, const unsigned int* pos, int type) const { double value = m_Eng->GetVolt(n,pos[0],pos[1],pos[2]); double delta = m_Op->GetEdgeLength(n,pos); if ((type==0) && (delta)) return value/delta; if ((type==1) && (m_Op->m_kappa) && (delta)) return value*m_Op->m_kappa[n][pos[0]][pos[1]][pos[2]]/delta; if (type==2) //calc rot(H) { int nP = (n+1)%3; int nPP = (n+2)%3; unsigned int locPos[] = {pos[0],pos[1],pos[2]}; double area = m_Op->GetEdgeArea(n,pos); value = m_Eng->GetCurr(nPP,pos); value -= m_Eng->GetCurr(nP,pos); if (pos[nPP]>0) { --locPos[nPP]; value += m_Eng->GetCurr(nP,locPos); ++locPos[nPP]; } if (pos[nP]>0) { --locPos[nP]; value -= m_Eng->GetCurr(nPP,locPos); } return value/area; } return 0.0; } double Engine_Interface_FDTD::CalcFastEnergy() const { double E_energy=0.0; double H_energy=0.0; unsigned int pos[3]; if (m_Eng->GetType()==Engine::BASIC) { for (pos[0]=0; pos[0]GetNumberOfLines(0)-1; ++pos[0]) { for (pos[1]=0; pos[1]GetNumberOfLines(1)-1; ++pos[1]) { for (pos[2]=0; pos[2]GetNumberOfLines(2)-1; ++pos[2]) { E_energy+=m_Eng->Engine::GetVolt(0,pos[0],pos[1],pos[2]) * m_Eng->Engine::GetVolt(0,pos[0],pos[1],pos[2]); E_energy+=m_Eng->Engine::GetVolt(1,pos[0],pos[1],pos[2]) * m_Eng->Engine::GetVolt(1,pos[0],pos[1],pos[2]); E_energy+=m_Eng->Engine::GetVolt(2,pos[0],pos[1],pos[2]) * m_Eng->Engine::GetVolt(2,pos[0],pos[1],pos[2]); H_energy+=m_Eng->Engine::GetCurr(0,pos[0],pos[1],pos[2]) * m_Eng->Engine::GetCurr(0,pos[0],pos[1],pos[2]); H_energy+=m_Eng->Engine::GetCurr(1,pos[0],pos[1],pos[2]) * m_Eng->Engine::GetCurr(1,pos[0],pos[1],pos[2]); H_energy+=m_Eng->Engine::GetCurr(2,pos[0],pos[1],pos[2]) * m_Eng->Engine::GetCurr(2,pos[0],pos[1],pos[2]); } } } } else { for (pos[0]=0; pos[0]GetNumberOfLines(0)-1; ++pos[0]) { for (pos[1]=0; pos[1]GetNumberOfLines(1)-1; ++pos[1]) { for (pos[2]=0; pos[2]GetNumberOfLines(2)-1; ++pos[2]) { E_energy+=m_Eng->GetVolt(0,pos[0],pos[1],pos[2]) * m_Eng->GetVolt(0,pos[0],pos[1],pos[2]); E_energy+=m_Eng->GetVolt(1,pos[0],pos[1],pos[2]) * m_Eng->GetVolt(1,pos[0],pos[1],pos[2]); E_energy+=m_Eng->GetVolt(2,pos[0],pos[1],pos[2]) * m_Eng->GetVolt(2,pos[0],pos[1],pos[2]); H_energy+=m_Eng->GetCurr(0,pos[0],pos[1],pos[2]) * m_Eng->GetCurr(0,pos[0],pos[1],pos[2]); H_energy+=m_Eng->GetCurr(1,pos[0],pos[1],pos[2]) * m_Eng->GetCurr(1,pos[0],pos[1],pos[2]); H_energy+=m_Eng->GetCurr(2,pos[0],pos[1],pos[2]) * m_Eng->GetCurr(2,pos[0],pos[1],pos[2]); } } } } return __EPS0__*E_energy + __MUE0__*H_energy; }