function [port] = calcWGPort( port, SimDir, f, varargin) % [port] = calcWGPort( port, SimDir, f, varargin) % % Calculate voltages and currents, the propagation constant beta % and the characteristic impedance ZL of the given waveguide port. % % The port has to be created by e.g. AddWaveGuidePort(). % % input: % port: return value of e.g. AddWaveGuidePort() % SimDir: directory, where the simulation files are % f: frequency vector for DFT % % variable input: % 'RefImpedance': - use a given reference impedance to calculate inc and % ref voltages and currents % - default is given port or calculated line impedance % 'RefPlaneShift': - use a given reference plane shift from port beginning % for a desired phase correction % - default is the measurement plane at the end of the % port % - the plane shift has to be given in drawing units! % 'RefractiveIndex': set a material refractive index % 'SwitchDirection': 0/1, switch assumed direction of propagation % % output: % % output signals/values in time domain (TD): % port.ut.tot total voltage (time-domain) % port.ut.time voltage time vector % port.it.tot total current (time-domain) % port.it.time current time vector % % % output signals/values in frequency domain (FD): % port.f the given frequency fector % port.uf.tot/inc/ref total, incoming and reflected voltage % port.if.tot/inc/ref total, incoming and reflected current % port.beta: propagation constant % port.ZL: characteristic line impedance % port.ZL_ref used reference impedance % % example: % port{1} = calcWGPort( port{1}, Sim_Path, f, 'RefImpedance', 50); % % openEMS matlab interface % ----------------------- % (C) 2013 Thorsten Liebig (thorsten.liebig@gmx.de) % % See also AddWaveGuidePort, calcPort if (iscell(port)) for n=1:numel(port) port{n}=calcWGPort(port{n}, SimDir, f, varargin{:}); end return; end if (strcmpi(port.type,'WaveGuide')~=1) error('openEMS:calcWGPort','error, type is not a waveguide port'); end %set defaults ref_ZL = -1; ref_shift = nan; ref_index = 1; switch_dir = 1; UI_args = {}; for n=1:2:numel(varargin) if (strcmp(varargin{n},'RefPlaneShift')==1); ref_shift = varargin{n+1}; elseif (strcmp(varargin{n},'RefImpedance')==1); ref_ZL = varargin{n+1}; elseif (strcmp(varargin{n},'RefractiveIndex')==1); ref_index = varargin{n+1}; elseif (strcmpi(varargin{n},'SwitchDirection')==1); if (varargin{n+1}) switch_dir = -1; end else UI_args(end+1) = varargin(n); UI_args(end+1) = varargin(n+1); end end % read time domain data U = ReadUI( port.U_filename, SimDir, f, UI_args{:} ); I = ReadUI( port.I_filename, SimDir, f, UI_args{:} ); % store the original frequency domain waveforms u_f = U.FD{1}.val; i_f = I.FD{1}.val * switch_dir; % time domain signal port.ut.time = U.TD{1}.t; port.ut.tot = U.TD{1}.val; port.it.time = I.TD{1}.t; port.it.tot = switch_dir*I.TD{1}.val; physical_constants k = 2*pi*f/C0*ref_index; fc = C0*port.kc/2/pi/ref_index; port.beta = sqrt(k.^2 - port.kc^2); port.ZL = k * Z0 ./ port.beta; %analytic waveguide impedance % reference plane shift (lossless) if ~isnan(ref_shift) % shift relative to the beginning of the waveguide ref_shift = ref_shift - port.measplanepos; ref_shift = ref_shift * port.drawingunit; % store the shifted frequency domain waveforms phase = real(beta)*ref_shift; u_f_shift = u_f .* cos(-phase) + 1i * i_f.*port.ZL .* sin(-phase); i_f_shift = i_f .* cos(-phase) + 1i * u_f./port.ZL .* sin(-phase); u_f = u_f_shift; i_f = i_f_shift; end if (ref_ZL < 0) ref_ZL = port.ZL; end port.ZL_ref = ref_ZL; port.f = f; uf_inc = 0.5 * ( u_f + i_f .* ref_ZL ); if_inc = 0.5 * ( i_f + u_f ./ ref_ZL ); uf_ref = u_f - uf_inc; if_ref = if_inc - i_f; port.uf.tot = u_f; port.uf.inc = uf_inc; port.uf.ref = uf_ref; port.if.tot = i_f; port.if.inc = if_inc; port.if.ref = if_ref; port.raw.U = U; port.raw.I = I;