function h = plotRefl(port, varargin) % h = plotRefl(port,varargin) % % plot the reflection coefficient of a port into a Smith chart. % left and right facing triangles mark the lower and upper cutoff % frequency of the pass bands. An asterisk marks the frequnecy with % the lowest reflection. % % input: % port: port data structure. Call calcPort with an appropriate % frequency vector before calling this routine % % output: graphics handle for further modification of the plot. % % variable input: % 'precision': - number of decimal places (floating point precision) % for the frequency (always in MHz), default is 0 % 'threshold': - Threshold value (in dB) for the upper and lower % cutoff frequency, default is -3 % example: % myport = calcPort(myport, Sim_Path, linspace(f_0-f_c, f_0+f_c, 200)); % plotRefl(myport); % % See also calcPort % % openEMS matlab interface % ----------------------- % author: Georg Michel %defaults precision = 0; threshold = -3; for n=1:2:numel(varargin) if (strcmp(varargin{n},'precision')==1); precision = varargin{n+1}; elseif (strcmp(varargin{n},'threshold')==1); threshold = varargin{n+1}; else warning('openEMS:polarFF',['unknown argument key: ''' varargin{n} '''']); end end if ~isfield(port, 'uf') error('Cannot plot the reflection coefficient. Please call calcPort first.'); end s11 = port.uf.ref ./ port.uf.inc; ffmt = ['%.', num2str(precision), 'f']; figure; %new figure plot([-1, 1], [0, 0], 'k'); axis ([-1.15, 1.15, -1.15, 1.15], "square"); axis off; hold on ReZ = [.2; .5; 1; 2]; ImZ = 1i * [1 2 5 2]; Z = bsxfun(@plus, ReZ, linspace(-ImZ, ImZ, 256)); Gamma = (Z-1)./(Z+1); plot(Gamma.', 'k'); ReZ = [.5 .5 1 1 2 2 5 5 10 10]; ImZ = 1i * [-.2; .2; -.5; .5; -1; 1; -2; 2; -5; 5]; Z = bsxfun(@plus, linspace(0, ReZ, 256), ImZ); Gamma = (Z-1)./(Z+1); plot(Gamma.', 'k'); angle = linspace (0, 2 * pi, 256); ReZ = [0 5 10]; center = ReZ ./ (ReZ + 1); radius = 1 ./ (ReZ + 1); plot(bsxfun(@plus, bsxfun(@times, radius, cos(angle.')), center), bsxfun(@times, radius, sin(angle.')), 'k'); % resistance ReZ = [0.2 0.5 1 2 5 10]; ImZ = zeros (1, length (ReZ)); rho = (ReZ.^2 + ImZ.^2 - 1 + 2i * ImZ) ./ ((ReZ + 1).^2 + ImZ.^2); xoffset = [0.1 0.1 0.05 0.05 0.05 0.075]; yoffset = -0.03; for idx = 1:length (ReZ) text (real (rho(idx)) - xoffset(idx), ... imag (rho(idx)) - yoffset, num2str (ReZ(idx))); end % reactance ReZ = [-0.06 -0.06 -0.06 -0.12 -0.5]; ImZ = [0.2 0.5 1 2 5]; rho = (ReZ.^2 + ImZ.^2 - 1 + 2i * ImZ) ./ ((ReZ + 1).^2 + ImZ.^2); for idx = 1:length (ImZ) text (real (rho(idx)), imag (rho(idx)), [num2str(ImZ(idx)), "j"]); text (real (rho(idx)), -imag (rho(idx)), [num2str(-ImZ(idx)), "j"]); end % zero rho = (-0.05.^2 + 0.^2 - 1) ./ ((-0.05 + 1).^2 + 0.^2); text (real (rho), imag (rho), '0'); s11dB = 20*log10(abs(s11)); upperind = s11dB(1:end-1) < threshold & s11dB(2:end) > threshold; lowerind = s11dB(1:end-1) > threshold & s11dB(2:end) < threshold; minind = nthargout(2, @min, s11dB); handle1 = plot(s11(lowerind),['<','b']); handle2 = plot(s11(upperind),['>','b']); handle3 = plot(s11(minind),['*', 'b']); llegend = num2str(port.f(lowerind)(1)/1e6, ffmt); ulegend = num2str(port.f(upperind)(1)/1e6, ffmt); if nnz(lowerind) > 1 for i= 2:nnz(lowerind) llegend = strjoin({llegend, num2str(port.f(lowerind)(i)/1e6, ffmt)}, ', '); end end if nnz(upperind) > 1 for i= 2:nnz(upperind) ulegend = strjoin({ulegend, num2str(port.f(upperind)(i)/1e6, ffmt)}, ', '); end end legend([handle1, handle2, handle3], {[llegend, " MHz"], ... [ulegend, " MHz"], ... [num2str(20*log10(abs(s11(minind))), "%4.0f"), ... "dB @ ", num2str(port.f(minind)/1e6, ffmt), " MHz"]}); h = plot(s11); if (nargout == 0) clear h; end end