# -*- coding: utf-8 -*- """ Bent Patch Antenna Tutorial Tested with - python 3.4 - openEMS v0.0.33+ (C) 2016 Thorsten Liebig """ ### Import Libraries import os, tempfile from pylab import * from mpl_toolkits.mplot3d import Axes3D from CSXCAD import CSXCAD from openEMS.openEMS import openEMS from openEMS.physical_constants import * ### Setup the simulation Sim_Path = os.path.join(tempfile.gettempdir(), 'Bent_Patch') post_proc_only = False unit = 1e-3 # all length in mm f0 = 2.4e9 # center frequency, frequency of interest! lambda0 = round(C0/f0/unit) # wavelength in mm fc = 0.5e9 # 20 dB corner frequency # patch width in alpha-direction patch_width = 32 # resonant length in alpha-direction patch_radius = 50 # radius patch_length = 40 # patch length in z-direction #substrate setup substrate_epsR = 3.38 substrate_kappa = 1e-3 * 2*pi*2.45e9 * EPS0*substrate_epsR substrate_width = 80 substrate_length = 90 substrate_thickness = 1.524 substrate_cells = 4 #setup feeding feed_pos = -5.5 #feeding position in x-direction feed_width = 2 #feeding port width feed_R = 50 #feed resistance # size of the simulation box SimBox_rad = 2*100 SimBox_height = 1.5*200 ### Setup FDTD parameter & excitation function FDTD = openEMS(CoordSystem=1) # init a cylindrical FDTD f0 = 2e9 # center frequency fc = 1e9 # 20 dB corner frequency FDTD.SetGaussExcite(f0, fc) FDTD.SetBoundaryCond(['MUR', 'MUR', 'MUR', 'MUR', 'MUR', 'MUR']) # boundary conditions ### Setup the Geometry & Mesh # init a cylindrical mesh CSX = CSXCAD.ContinuousStructure(CoordSystem=1) FDTD.SetCSX(CSX) mesh = CSX.GetGrid() mesh.SetDeltaUnit(unit) ### Setup the geometry using cylindrical coordinates # calculate some width as an angle in radiant patch_ang_width = patch_width/(patch_radius+substrate_thickness) substr_ang_width = substrate_width/patch_radius feed_angle = feed_pos/patch_radius # create patch patch = CSX.AddMetal('patch') # create a perfect electric conductor (PEC) start = [patch_radius+substrate_thickness, -patch_ang_width/2, -patch_length/2 ] stop = [patch_radius+substrate_thickness, patch_ang_width/2, patch_length/2 ] CSX.AddBox(patch, priority=10, start=start, stop=stop, edges2grid='all') # add a box-primitive to the metal property 'patch' # create substrate substrate = CSX.AddMaterial('substrate', epsilon=substrate_epsR, kappa=substrate_kappa ) start = [patch_radius , -substr_ang_width/2, -substrate_length/2] stop = [patch_radius+substrate_thickness, substr_ang_width/2, substrate_length/2] substrate.AddBox(start=start, stop=stop, edges2grid='all') # save current density oon the patch jt_patch = CSX.AddDump('Jt_patch', dump_type=3, file_type=1) start = [patch_radius+substrate_thickness, -substr_ang_width/2, -substrate_length/2] stop = [patch_radius+substrate_thickness, +substr_ang_width/2, substrate_length/2] jt_patch.AddBox(start=start, stop=stop) # create ground gnd = CSX.AddMetal('gnd') # create a perfect electric conductor (PEC) start = [patch_radius, -substr_ang_width/2, -substrate_length/2] stop = [patch_radius, +substr_ang_width/2, +substrate_length/2] gnd.AddBox(priority=10, start=start, stop=stop, edges2grid='all') # apply the excitation & resist as a current source start = [patch_radius , feed_angle, 0] stop = [patch_radius+substrate_thickness, feed_angle, 0] port = FDTD.AddLumpedPort(1 ,feed_R, start, stop, 'r', 1.0, priority=50, edges2grid='all') ### Finalize the Mesh # add the simulation domain size mesh.AddLine('r', patch_radius+np.array([-20, SimBox_rad])) mesh.AddLine('a', [-0.75*pi, 0.75*pi]) mesh.AddLine('z', [-SimBox_height/2, SimBox_height/2]) # add some lines for the substrate mesh.AddLine('r', patch_radius+np.linspace(0,substrate_thickness,substrate_cells)) # generate a smooth mesh with max. cell size: lambda_min / 20 max_res = C0 / (f0+fc) / unit / 20 max_ang = max_res/(SimBox_rad+patch_radius) # max res in radiant mesh.SmoothMeshLines(0, max_res, 1.4) mesh.SmoothMeshLines(1, max_ang, 1.4) mesh.SmoothMeshLines(2, max_res, 1.4) ## Add the nf2ff recording box nf2ff = FDTD.CreateNF2FFBox() ### Run the simulation if 0: # debugging only CSX_file = os.path.join(Sim_Path, 'bent_patch.xml') if not os.path.exists(Sim_Path): os.mkdir(Sim_Path) CSX.Write2XML(CSX_file) os.system(r'AppCSXCAD "{}"'.format(CSX_file)) if not post_proc_only: FDTD.Run(Sim_Path, verbose=3, cleanup=True) ### Postprocessing & plotting f = np.linspace(max(1e9,f0-fc),f0+fc,401) port.CalcPort(Sim_Path, f) Zin = port.uf_tot / port.if_tot s11 = port.uf_ref/port.uf_inc s11_dB = 20.0*np.log10(np.abs(s11)) figure() plot(f/1e9, s11_dB) grid() ylabel('s11 (dB)') xlabel('frequency (GHz)') P_in = 0.5*np.real(port.uf_tot * np.conj(port.if_tot)) # antenna feed power # plot feed point impedance figure() plot( f/1e6, real(Zin), 'k-', linewidth=2, label=r'$\Re(Z_{in})$' ) grid() plot( f/1e6, imag(Zin), 'r--', linewidth=2, label=r'$\Im(Z_{in})$' ) title( 'feed point impedance' ) xlabel( 'frequency (MHz)' ) ylabel( 'impedance ($\Omega$)' ) legend( ) idx = np.where((s11_dB<-10) & (s11_dB==np.min(s11_dB)))[0] if not len(idx)==1: print('No resonance frequency found for far-field calulation') else: f_res = f[idx[0]] theta = np.arange(-180.0, 180.0, 2.0) print("Calculate NF2FF") nf2ff_res_phi0 = nf2ff.CalcNF2FF(Sim_Path, f_res, theta, 0, center=np.array([patch_radius+substrate_thickness, 0, 0])*unit, read_cached=True, outfile='nf2ff_xz.h5') figure(figsize=(15, 7)) ax = subplot(121, polar=True) E_norm = 20.0*np.log10(nf2ff_res_phi0.E_norm/np.max(nf2ff_res_phi0.E_norm)) + nf2ff_res_phi0.Dmax ax.plot(np.deg2rad(theta), 10**(np.squeeze(E_norm)/20), linewidth=2, label='xz-plane') ax.grid(True) ax.set_xlabel('theta (deg)') ax.set_theta_zero_location('N') ax.set_theta_direction(-1) ax.legend(loc=3) phi = theta nf2ff_res_theta90 = nf2ff.CalcNF2FF(Sim_Path, f_res, 90, phi, center=np.array([patch_radius+substrate_thickness, 0, 0])*unit, read_cached=True, outfile='nf2ff_xy.h5') ax = subplot(122, polar=True) E_norm = 20.0*np.log10(nf2ff_res_theta90.E_norm/np.max(nf2ff_res_theta90.E_norm)) + nf2ff_res_theta90.Dmax ax.plot(np.deg2rad(phi), 10**(np.squeeze(E_norm)/20), linewidth=2, label='xy-plane') ax.grid(True) ax.set_xlabel('phi (deg)') suptitle('Bent Patch Anteanna Pattern\nFrequency: {} GHz'.format(f_res/1e9), fontsize=14) ax.legend(loc=3) print( 'radiated power: Prad = {:.2e} Watt'.format(nf2ff_res_theta90.Prad[0])) print( 'directivity: Dmax = {:.1f} ({:.1f} dBi)'.format(nf2ff_res_theta90.Dmax[0], 10*np.log10(nf2ff_res_theta90.Dmax[0]))) print( 'efficiency: nu_rad = {:.1f} %'.format(100*nf2ff_res_theta90.Prad[0]/real(P_in[idx[0]]))) show()